CN111982873B - 一种基于Au3+调节的邻苯二胺自催化氧化的无标记比色法与其应用 - Google Patents

一种基于Au3+调节的邻苯二胺自催化氧化的无标记比色法与其应用 Download PDF

Info

Publication number
CN111982873B
CN111982873B CN202010815663.4A CN202010815663A CN111982873B CN 111982873 B CN111982873 B CN 111982873B CN 202010815663 A CN202010815663 A CN 202010815663A CN 111982873 B CN111982873 B CN 111982873B
Authority
CN
China
Prior art keywords
gsh
detection
opd
phenylenediamine
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010815663.4A
Other languages
English (en)
Other versions
CN111982873A (zh
Inventor
李少光
姚宏
林新华
张晓颖
黄丽英
李光文
刘慧林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Medical University
Original Assignee
Fujian Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Medical University filed Critical Fujian Medical University
Priority to CN202010815663.4A priority Critical patent/CN111982873B/zh
Publication of CN111982873A publication Critical patent/CN111982873A/zh
Application granted granted Critical
Publication of CN111982873B publication Critical patent/CN111982873B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开一种基于Au3+调节的邻苯二胺自催化氧化的无标记比色法与其应用,包括以下步骤:将HAuCl4·3H2O分散在磷酸盐缓冲液中,然后加入待检GSH,最后加入OPD,通过恒温仪孵育,再将反应体系转移用于UV‑vis检测。相对于现有技术,本发明所提出的检测方法具有更少的操作步骤而没有复杂的分离、固定化或功能化过程,因此,所提出的方法简单、快速且灵敏,能够应用于测定实际样品如大鼠心肌缺血再灌注模型血清中GSH的浓度,在生化测定分析领域有较为良好应用前景。

Description

一种基于Au3+调节的邻苯二胺自催化氧化的无标记比色法与 其应用
技术领域
本发明涉及生化测定分析领域,设计开发一种基于Au3+调节的邻苯二胺自催化氧化的无标记比色法并研究其在检测谷胱甘肽(GSH)方面的应用。
背景技术
谷胱甘肽(glutathione, L-γ-谷氨酰基-L-半胱氨酰甘氨酸,GSH)是一种生物硫醇,作为一种重要的内源性抗氧化剂,在细胞防御毒素和自由基方面起着重要作用。GSH可以广泛参与免疫调节,人体新陈代谢,能量运输和其他生理过程。因此,GSH已被广泛用于保护肝脏和肾脏,用于解毒和抗癌药物。一般来说,GSH的异常水平与几种疾病密切相关,例如癌症,肝损伤,人类免疫缺陷病毒和糖尿病等。因此,对GSH简单灵敏的检测将有助于疾病的监测。
目前,关于GSH的检测,已报道了荧光测定法,电化学方法,高效液相色谱法,表面增强拉曼散射(SERS),时间门控发光测定和酶联免疫吸附试验。其中荧光测定法及时间门控发光测定对仪器的要求较高,电化学方法的干扰因素多,酶联免疫吸附试验对酶的状态要求高,成本高的酶稍有偏差,便会影响检测结果。除此之外,大部分方法依然不能很好地减少半胱氨酸(Cys)、高半胱氨酸(Hcy)等生物硫醇的影响。因此,简单、低成本、快速且能减少Cys、Hcy等生物硫醇干扰的GSH检测方法仍是亟待研究的方向之一。
比色法是一种通过测量或比较有色物质溶液来确定目标分析物含量的方法。由于具有低成本,简单操作,且无需复杂设备的优点,比色生物传感器特别适用于临床医疗点诊断。然而,由于硫醇化合物具有相似的官能团,因此在选择性检测GSH的同时减少其他生物硫醇如Cys或Hcy的影响仍然对大多数GSH检测方法具有挑战性。所以,迫切需要建立一种低成本,高选择性和灵敏度的GSH检测方法,以满足临床和医学要求。
基于邻苯二胺(OPD)的显色反应是开发视觉比色测定的有用工具,已经基于OPD的显色反应报道了一系列荧光测定。基于过氧化氢触发的OPD的显色反应,也报道了几种比色测定法。然而,基于由金属离子触发OPD的显色响应的比色测定报道很少。由于贵金属纳米团簇(NPs)独特的电子结构和性质,如超小尺寸,大的斯托克斯移位,以及良好的生物相容性和光稳定性,NPs在许多应用中显示出巨大的潜力。但NPs的大多数分析应用都集中在它们的荧光上特性,很少关注它们的催化性能。因此,基于NC的催化活性探索新的传感平台是非常重要的。
发明内容
本发明的目的在于提供一种基于Au3+调节的邻苯二胺自催化氧化的无标记比色法与其在检测谷胱甘肽(GSH)方面的应用。
本发明所提出的无标记比色法,其对GSH检测方法的具体步骤如下:
(1)将HAuCl4·3H2O分散在磷酸盐缓冲液中;
(2)往步骤(1)所得溶液中加入待检GSH;
(3)往步骤(2)所得溶液中加入邻苯二胺(OPD);
(4)将步骤(3)所得溶液恒温孵育后,将反应体系转移用于UV-vis检测。
步骤(1)中,具体流程为:将25 μL 0.75 mM HAuCl4·3H2O分散在0.6 mL pH 5.0磷酸盐缓冲液(0.01 M)中。
步骤(2)中,该法待检GSH的浓度范围为1 nM至1 mM,检测用量为200 μL。
步骤(3)中,OPD的浓度及用量为2 mM、50 μL。
步骤(4)中,恒温温度为10 ℃,孵育时间为15 min,UV-vis最佳吸收波长为447nm。
本发明中,GSH的浓度与 UV-vis中ΔA值的对数呈线性正比关系,检测线性范围1nM-1 mM,检测限(LOD)为0.08 nM(ΔA=ΔA0-A,其中A0和A分别是在不存在和存在GSH时体系在447 nm处的吸光度强度)。
本发明上述的测定方法在生化测定分析领域测试药物中的应用如下:
该法用于特异性检测GSH,检测时用磷酸盐缓冲溶液稀释待检品,以确保待检GSH浓度在1 nM-1 mM范围,检测用量为200 μL。
本发明中,所提出的比色测定显示出对包括竞争性生物硫醇如Cys和Hcy在内的潜在干扰的GSH检测的高选择性。这种高选择性是由于GSH对基于Au3+-OPD的自催化反应的选择性抑制作用。GSH的选择性抑制作用是综合作用,归因于GSH对Au3+的高螯合能力,GSH与形成的Au NPs之间的强相互作用,结合了GSH的高还原活性。
本发明中,所提出的比色测定在大鼠心肌缺血再灌注模型中的血清样品中检测GSH的回收率为93.7%-103.0%,RSD为1.77%-8.49%。
本发明有益效果:本发明提供的比色法,具有简单,快速,灵敏的特点,实现了生物硫醇如Cys和Hcy的判别性检测,且能区分检测GSH与Cys/Hcy。此外,该方法已成功应用于血清中的GSH检测。所开发的方法在简便性,灵敏度,选择性和效率方面表现出优于许多先前报道的方法,其在生物测定,临床检测中具有巨大潜力。拓宽了该方法在生化测定分析领域的应用。
附图说明
图1为在存在GSH的情况下,基于Au3+ -OPD的传感系统的示意图。
图2为在有/无GSH存在下,Au3+和OPD反应产生的Au NPs的透射电子显微图。
图3为氧化态OPD (ox OPD) 的荧光光谱图。
图4为OPD和ox OPD的UV-vis吸收光谱图。
图5为检测体系随GSH浓度变化的UV-vis吸收光谱图。
图6为GSH的浓度与 UV-vis中ΔA值的对数间关系图。
图7为OPD与不同金属离子结合体系对GSH检测的UV-vis吸收光谱图。
图8为大鼠心肌缺血再灌注模型血清中GSH浓度随时间变化图。
具体实施方式
本发明所提出的无标记比色法检测谷胱甘肽(GSH),具体步骤如下(其原理见图1):
(1)将HAuCl4·3H2O分散在磷酸盐缓冲液中;
(2)往步骤(1)所得溶液中加入待检GSH;
(3)往步骤(2)所得溶液中加入邻苯二胺(OPD);
(4)将步骤(3)所得溶液恒温孵育后,将反应体系转移用于UV-vis检测。
实施例1:
通过TEM进一步研究GSH对Au3+和OPD之间反应的影响。分别将加入GSH、不加入GSH的Au NPs体系经TEM表征,TEM结果如图2所示,在GSH存在下产生的Au NPs在尺寸和形状上与不存在GSH时产生的Au NPs完全不同。表明GSH对OPD与Au3+之间的氧化还原反应具有影响,进一步影响Au NPs的合成。
实施例2:
OPD可以被Au3+氧化而生成浅黄色的氧化态OPD (ox OPD),检测体系的荧光光谱图如图3所示,可知ox OPD具有较强的荧光,激发波长在420 nm,吸收波长在568 nm。分别将加入HAuCl4·3H2O、不加入HAuCl4·3H2O的检测体系经UV-vis表征,结果如图4所示,原料药OPD在447 nm无吸收仅在288 nm有吸收峰,而ox OPD在447 nm有明显吸收峰。
实施例3:
该比色法对不同浓度的GSH的UV-vis 检测,GSH为谷胱甘肽简称(glutathione,L-γ-谷氨酰基-L-半胱氨酰甘氨酸,GSH),具体步骤如下:
将25 μL 0.75 mM HAuCl4·3H2O分散在0.6 mL pH 5.0磷酸盐缓冲液(0.01 M)中,然后加入200 μL 不同浓度的GSH(从上至下分别为1.14、5.71、11.43、57.14、114.29、571.43、1142.86、5714.29、11428.57、57142.86、114285.71 nM),最后加入50 μL 2 mMOPD。通过恒温仪在10 ℃下孵育15 min,将反应体系转移用于UV-vis检测。结果如图5所示,可以看出,吸光度峰位于447 nm,这归因于ox OPD(氧化态OPD)。空白组吸光度最高,吸光度随GSH浓度的增加而逐渐降低。因此,随着GSH浓度的增加,ΔA值系统地增加,并且当GSH浓度达到1 mM时达到最高值。ΔA值的对数与GSH浓度的对数呈线性关系,如图6所示,线性范围为1 nM至1 mM。
实施例4:
OPD反应体系对不同金属离子的选择性响应,具体步骤如下:
将不同种类的金属离子,包括Au3+、Fe2+、Fe3+、Zn2+、Mg2+、Cu2+、Co2+、Mn2+等,与OPD反应体系结合,检测反应体系在447 nm处的吸光度(OPD和金属离子的浓度分别为2mM、1mM)。结果如图7所示,当Au3+与OPD体系结合时,反应体系的吸光度明显高于其他金属离子,表明在上述其他金属离子干扰存在下,Au3+-OPD体系对GSH的检测仍具有良好的选择性与灵敏度。
实施例5:
该比色法对大鼠心肌缺血再灌注模型血清中GSH的检测,具体步骤如下:
用磷酸盐缓冲液将模型大鼠血清样品稀释100倍,以确保GSH的浓度在线性范围内。按照上述检测方法,通过标准加入法测定稀释的血清样品中GSH的初始浓度。结果如图8所示,可知在ISO造模后大鼠集体出现应激情况,大量释放GSH,而在第60 min时GSH达到最大值后开始降低,为心脏急性损伤再灌注的病理表现。然后,将五种已知浓度的GSH掺入血清样品中。进一步测定血清样品中加标浓度的GSH。可接受的回收率(93.7%-103.0%)和RSD(1.77%-8.49%)证实了所开发的实际血清样品中GSH检测方法的良好准确性和可靠性。

Claims (1)

1.一种谷胱甘肽GSH的检测方法,其特征在于:能灵敏地检测谷胱甘肽,实现了生物硫醇Cys和Hcy的判别性检测;具体步骤如下:
1)将HAuCl4·3H2O分散在磷酸盐缓冲液中;
2)往步骤1)所得溶液中加入待检GSH;
3)往步骤2)所得溶液中加入邻苯二胺OPD;
4)将步骤3)所得溶液恒温孵育后,将反应体系转移用于UV-vis检测;
步骤(1)中具体流程为:将25 μL 0.75 mM HAuCl4·3H2O分散在0.6 mL pH为 5.0、浓度为0.01 M的磷酸盐缓冲液中;
步骤(2)中,待检GSH的浓度范围为1 nM-1 mM,检测用量为200 μL;
步骤(3)中,OPD的浓度及用量为2 mM、50 μL;
步骤(4)中,恒温温度为10℃,孵育时间为15min,UV-vis最佳吸收波长为447 nm;检测限为0.08 nM。
CN202010815663.4A 2020-08-14 2020-08-14 一种基于Au3+调节的邻苯二胺自催化氧化的无标记比色法与其应用 Active CN111982873B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010815663.4A CN111982873B (zh) 2020-08-14 2020-08-14 一种基于Au3+调节的邻苯二胺自催化氧化的无标记比色法与其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010815663.4A CN111982873B (zh) 2020-08-14 2020-08-14 一种基于Au3+调节的邻苯二胺自催化氧化的无标记比色法与其应用

Publications (2)

Publication Number Publication Date
CN111982873A CN111982873A (zh) 2020-11-24
CN111982873B true CN111982873B (zh) 2023-12-01

Family

ID=73434377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010815663.4A Active CN111982873B (zh) 2020-08-14 2020-08-14 一种基于Au3+调节的邻苯二胺自催化氧化的无标记比色法与其应用

Country Status (1)

Country Link
CN (1) CN111982873B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512855A (zh) * 2013-09-27 2014-01-15 湖南大学 还原型谷胱甘肽的检测方法
CN106093272A (zh) * 2016-06-01 2016-11-09 西安交通大学 一种二氧化锰纳米片模拟氧化物酶检测还原性生物分子的方法
CN107238586A (zh) * 2017-04-26 2017-10-10 福建医科大学孟超肝胆医院 一种检测谷胱甘肽的荧光生物传感方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512855A (zh) * 2013-09-27 2014-01-15 湖南大学 还原型谷胱甘肽的检测方法
CN106093272A (zh) * 2016-06-01 2016-11-09 西安交通大学 一种二氧化锰纳米片模拟氧化物酶检测还原性生物分子的方法
CN107238586A (zh) * 2017-04-26 2017-10-10 福建医科大学孟超肝胆医院 一种检测谷胱甘肽的荧光生物传感方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
An ultrasensitive label-free colorimetric assay for glutathione based on Ag+ regulated autocatalytic oxidation of o-phenylenediamine;Fang Li et al.;《Talanta》;第186卷;第331-335页 *
Kinetic spectrophotometric method for o-phenylenediamine in the presence of gold(III);O¨ zlen Altun et al.;《Spectrochimica Acta Part A》;第66卷;第500页 *
Label-free colorimetric detection of glutathione by autocatalytic oxidation of o-phenylenediamine based on Au3+ regulation and its application;Shaoguang Li et al.;《New Journal of Chemistry》;第45卷;第9066-9072页 *

Also Published As

Publication number Publication date
CN111982873A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
Zhai et al. Gold-silver bimetallic nanoclusters with enhanced fluorescence for highly selective and sensitive detection of glutathione
Wang et al. An ascorbic acid sensor based on protein-modified Au nanoclusters
Tesfaldet et al. Sequential injection spectrophotometric determination of iron as Fe (II) in multi-vitamin preparations using 1, 10-phenanthroline as complexing agent
Wang et al. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination
Luo et al. An ultrasensitive fluorescent sensor for organophosphorus pesticides detection based on RB-Ag/Au bimetallic nanoparticles
Jafari et al. Colorimetric biosensor for phenylalanine detection based on a paper using gold nanoparticles for phenylketonuria diagnosis
Zheng et al. Microfluidic paper-based analytical device by using Pt nanoparticles as highly active peroxidase mimic for simultaneous detection of glucose and uric acid with use of a smartphone
Wang et al. A convenient and label-free colorimetric assay for dopamine detection based on the inhibition of the Cu (ii)-catalyzed oxidation of a 3, 3′, 5, 5′-tetramethylbenzidine–H 2 O 2 system
Chen et al. Non-oxidation reduction strategy for highly selective detection of ascorbic acid with dual-ratio fluorescence and colorimetric signals
Xu et al. A novel chemiluminescence sensor for sensitive detection of cholesterol based on the peroxidase-like activity of copper nanoclusters
Zhang et al. A convenient label free colorimetric assay for pyrophosphatase activity based on a pyrophosphate-inhibited Cu 2+–ABTS–H 2 O 2 reaction
Wu et al. A dual-signal colorimetric and ratiometric fluorescent nanoprobe for enzymatic determination of uric acid by using silicon nanoparticles
Xia et al. Gold nanoparticle-based colorimetric method for the detection of prostate-specific antigen
Li et al. An ultrasensitive label-free colorimetric assay for glutathione based on Ag+ regulated autocatalytic oxidation of o-phenylenediamine
Li et al. Colorimetric determination of cysteine based on inhibition of GSH-Au/Pt NCs as peroxidase mimic
An et al. Simply translating mercury detection into a temperature measurement: using an aggregation-activated oxidase-like activity of gold nanoparticles
Alwarthan et al. Chemiluminescent determination of pyridoxine hydrochloride in pharmaceutical samples using flow injection
Gorbunova et al. A dynamic gas extraction-assisted paper-based method for colorimetric determination of bromides
AU2018101303A4 (en) Synthesis of Rh-Cu Nanozyme and Application for the Detection of Ascorbic Acid and Tannic Acid
Chang et al. Determination of L-cysteine base on the reversion of fluorescence quenching of calcein by copper (II) ion
Zhang et al. Monodispersed silver-gold nanorods controllable etching for ultrasensitive SERS detection of hydrogen peroxide-involved metabolites
Şen et al. Redox-based colorimetric sensing of H2O2 after removal of antioxidants with ABTS radical oxidation
He et al. Bare eye detection of Hg (II) ions based on enzyme inhibition and using mercaptoethanol as a reagent to improve selectivity
Menon et al. A fluorescent biosensor for the determination of xanthine in tea and coffee via enzymatically generated uric acid
Liu et al. Monitoring of parathion methyl using a colorimetric gold nanoparticle-based acetylcholinesterase assay

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant