CN111979484A - 一种400MPa级高硅耐候钢及其制备方法和应用 - Google Patents

一种400MPa级高硅耐候钢及其制备方法和应用 Download PDF

Info

Publication number
CN111979484A
CN111979484A CN202010769262.XA CN202010769262A CN111979484A CN 111979484 A CN111979484 A CN 111979484A CN 202010769262 A CN202010769262 A CN 202010769262A CN 111979484 A CN111979484 A CN 111979484A
Authority
CN
China
Prior art keywords
weathering steel
equal
silicon
grade high
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010769262.XA
Other languages
English (en)
Inventor
李正荣
崔凯禹
汪创伟
姚永国
黄徐晶
李安科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Research Institute Co Ltd
Original Assignee
Pangang Group Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Research Institute Co Ltd filed Critical Pangang Group Research Institute Co Ltd
Priority to CN202010769262.XA priority Critical patent/CN111979484A/zh
Publication of CN111979484A publication Critical patent/CN111979484A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种400MPa级高硅耐候钢及其制备方法和应用,属于钢铁冶炼技术领域。本发明提供了一种全新成分、耐候效果好的高硅耐候钢,其包括:C≤0.12%,Si:1.20~2.00%,Mn≤1.50%,P:0.005~0.030%,S≤0.015%,Cr:0.20~0.80%,Ni:0.10~0.40%,Cu:0.20~0.60%,Als≥0.010%,余量为Fe及不可避免的杂质。本发明的高硅耐候钢耐大气腐蚀性指数I高达到8.05~9.16,显著高于6.0,实现了产品优良的耐大气腐蚀性能,可在干燥地区裸露或轻涂装使用,可广泛用于建筑、桥梁施工或车辆制作领域,具有良好的应用价值。

Description

一种400MPa级高硅耐候钢及其制备方法和应用
技术领域
本发明属于钢铁冶炼技术领域,具体涉及一种400MPa级高硅耐候钢及其制备方法和应用。
背景技术
钢的腐蚀对国民经济和国防建设各个领域的危害是一个普遍而严重的问题。据统计,在一些工业发达的国家,由腐蚀导致的经济损失占国民经济生产总值的2%~4%,其中,大气腐蚀是钢结构腐蚀的主要形式,约占全部腐蚀损失的一半。因此,对于耐候钢的研发意义重大。耐候钢又名耐大气腐蚀钢,是一类在大气中具有良好耐腐蚀性能的低合金钢。通过国内外大量的研究,现在普遍认为经过长时间地暴露于大气中,耐候钢表面将生成一层致密且附着性良好的氧化产物使钢基体与外界腐蚀性物质隔绝,从而显著提高耐候钢的耐腐蚀性能。国内耐候钢主要用于铁道车辆和集装箱等,在美国、日本等发达国家,耐候钢更广泛裸装使用于钢结构建筑及市政设施领域。在美国,耐候钢的最大用途是建造桥梁,并扩大了裸露方式的使用,使用裸露耐候钢的建筑物达500座以上。在日本,从1965年开始,建筑物屋顶、百叶窗、钢骨、外装面板灯等外部部件开始裸露使用耐候钢。
目前,由于耐候钢的应用领域不断扩大,需要开发更多种类的耐候钢,以满足市场的需要。
发明内容
本发明所要解决的技术问题是开发一种全新成分且具有优良耐大气腐蚀性能的耐候钢。
本发明解决上述技术问题所采用的技术方案是提供了一种400MPa级高硅耐候钢,其包括以下质量百分比的化学成分:C≤0.12%,Si:1.20~2.00%,Mn≤1.50%,P:0.005~0.030%,S≤0.015%,Cr:0.20~0.80%,Ni:0.10~0.40%,Cu:0.20~0.60%,Als≥0.010%,余量为Fe及不可避免的杂质。
优选的,上述400MPa级高硅耐候钢包括以下质量百分比的化学成分:C:0.06~0.08%,Si:1.60~1.80%,Mn:0.85~1.00%,P:0.010~0.025%,S≤0.007%,Cr:0.40~0.60%,Ni:0.20~0.30%,Cu:0.28~0.38%,Als:0.015~0.050%,余量为Fe及不可避免的杂质。
其中,上述400MPa级高硅耐候钢的耐大气腐蚀性指数I为8.05~9.16。
其中,上述400MPa级高硅耐候钢的相对Q355B腐蚀率为≤40%。
其中,上述400MPa级高硅耐候钢的屈服强度为400~480MPa,抗拉强度为600~680MPa,延伸率为≥18%,-40℃冲击值为≥60J。
本发明还提供了上述400MPa级高硅耐候钢的制备方法,其包括以下步骤:
铁水脱硫→转炉冶炼→LF→RH→板坯连铸→热轧→层流冷却→卷取。
本发明还提供了一种上述400MPa级高硅耐候钢的用途,在建筑、桥梁施工或车辆制作领域,干燥地区裸露或轻涂装使用。
本发明的有益效果:
本发明提供了一种全新成分的400MPa级高硅耐候钢,其耐大气腐蚀性指数I高达8.05~9.16,远高于6.0,实现了产品优良的耐大气腐蚀性能。本发明的钢耐大气腐蚀性能好,后期维护成本少、产品寿命长,全周期使用成本会有所下降;同时减少环境污染,减少腐蚀失效的事故风险。并且,本发明400MPa级高硅耐候钢还可在干燥地区裸露或轻涂装使用,可广泛用于建筑、桥梁施工或车辆制作领域,具有良好的应用价值。
具体实施方式
具体的,一种400MPa级高硅耐候钢,包括以下质量百分比的化学成分:C≤0.12%,Si:1.20~2.00%,Mn≤1.50%,P:0.005~0.030%,S≤0.015%,Cr:0.20~0.80%,Ni:0.10~0.40%,Cu:0.20~0.60%,Als≥0.010%,余量为Fe及不可避免的杂质。
优选的,上述400MPa级高硅耐候钢包括以下质量百分比的化学成分:C:0.06~0.08%,Si:1.60~1.80%,Mn:0.85~1.00%,P:0.010~0.025%,S≤0.007%,Cr:0.40~0.60%,Ni:0.20~0.30%,Cu:0.28~0.38%,Als:0.015~0.050%,余量为Fe及不可避免的杂质。
上述400MPa级高硅耐候钢的成分中,C是钢中有效的强化元素,提高碳含量,对提高强度有利,但是过高的碳含量会在钢中形成较多粗大脆性的碳化物颗粒,对塑性和韧性不利,碳含量过高还会在钢板中心偏析带,对弯曲性能和成型性不利,同时过高的碳含量增加焊接碳当量,不利于焊接加工。因此本发明设计C≤0.12%,优选的C:0.06~0.08%。
上述400MPa级高硅耐候钢的成分中,Mn具有较强的固溶强化作用,能显著降低钢的相变温度,细化钢的显微组织,是重要的强韧化元素,但Mn含量过多时连铸过程容易产生铸坯裂纹,同时还会降低钢的焊接性能。因此本发明设计Mn≤1.50%,优选的Mn:0.85~1.00%。
上述400MPa级高硅耐候钢的成分中,S会形成硫化物夹杂使钢的性能恶化,同时腐蚀过程中易形成孔蚀扩展,对腐蚀性能有不利影响。因此本发明设计S≤0.015%,优选的S≤0.007%。
上述400MPa级高硅耐候钢的成分中,Al加入钢中起脱氧的作用,但是Al含量过高,其氮氧化物容易在奥氏体晶界析出导致铸坯裂纹产生。因此本发明设计Als≥0.010%,优选的Als:0.015~0.050%。
钢中Si、P、Cu、Cr、Ni含量将影响耐大气腐蚀性指数I的计算值,是提高钢材的耐大气腐蚀性能的主要合金元素;因此在上述C、Mn、S、Al几种元素确定后,本发明为了提高耐大气腐蚀性能,基于《耐候结构钢》(GB/T 4171-2008)附录D《评估低合金钢的耐大气腐蚀性指南》中的耐大气腐蚀性指数计算公式I=26.01(%Cu)+3.88(%Ni)+1.20(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%Ni)-9.10(%Ni)(%P)-33.39(%Cu)2,确定了钢中Si、P、Cu、Cr、Ni的含量。
上述400MPa级高硅耐候钢的成分中,Cu加入钢中有利于在钢的表面形成致密的、粘附性好的非晶态氧化物(烃基氧化物)保护层,耐蚀作用明显。另外,Cu与S生成难溶的硫化物,从而抵消S对钢耐蚀性的有害作用。但是Cu含量过高时,由于Cu的熔点较低,低于钢坯加热温度,析出的Cu呈液态聚集于奥氏体晶界处,当析出的Cu含量达到一定程度后,容易在加热或热轧时产生裂纹。另外,根据耐大气腐蚀性指数I的计算公式,Cu含量过小或过大都将减小耐大气腐蚀性指数I的计算值。因此本发明设计Cu:0.20~0.60%,优选的Cu:0.28~0.38%。
上述400MPa级高硅耐候钢的成分中,Ni加入钢中,将显著提高钢材的耐蚀性能,同时Ni与Cu元素形成含Ni的富Cu相,并以固态保留在外氧化层中,降低基体中Cu的富集量,减少液态富Cu相形成的机会,从而避免热脆缺陷发生,因此一般控制钢中Ni/Cu≥1/2。但过高的Ni会增大氧化皮的粘附性,压入钢中会在表面形成热轧缺陷,且Ni为贵重金属,Ni含量过高将显著增加钢材合金成本。因此本发明设计Ni:0.10~0.40%,优选的Ni:0.20~0.30%。
上述400MPa级高硅耐候钢的成分中,P能有效提高钢的耐大气腐蚀性能,当P与Cu联合加入钢中时,可显示出更好的复合效应,但P含量过高会显著降低钢的塑性及低温韧性。因此本发明设计P:0.005~0.30%,优选的0.010~0.025%。
上述400MPa级高硅耐候钢的成分中,Cr对改善钢的钝化能力具有显著效果,可促使钢表面进行致密的钝化膜或保护性锈层,其在锈层内的富集能有效提高锈层对腐蚀性介质的选择性透过特性。但是Cr含量过高会使生产成本提高。因此本发明设计Cr:0.20~0.80%,优选的Cr:0.40~0.60%。
上述400MPa级高硅耐候钢的成分中,Si在钢中具有较高的固溶度,有利于细化锈层组织,降低钢整体的腐蚀速率,根据耐大气腐蚀性指数I的计算公式,高硅含量可以显著提高I值。但Si含量过高会使轧制时除鳞困难,还会导致焊接性能下降。因此本发明设计Si:1.20~2.00%,优选的Si:1.60~1.80%。
基于优选的成分,所述400MPa级高硅耐候钢的耐大气腐蚀性指数I可达到8.05~9.16,其值大于6.0,实现了产品优良的耐大气腐蚀性能。
本发明400MPa级高硅耐候钢的相对Q355B腐蚀率为≤40%。
本发明400MPa级高硅耐候钢的屈服强度为400~480MPa,抗拉强度为600~680MPa,延伸率为≥18%,-40℃冲击值为≥60J。
本发明还提供了一种上述400MPa级高硅耐候钢的制备方法,包括以下步骤:
铁水脱硫→转炉冶炼→LF→RH→板坯连铸→热轧→层流冷却→卷取。
本发明中,上述400MPa级高硅耐候钢的制备方法中,各步骤按表1进行参数控制。
表1各步骤采取的主要技术措施及控制目标
Figure BDA0002615914870000041
上述400MPa级高硅耐候钢的热轧和层冷工序,铸坯采用热送热装或立即堆垛缓冷且在24h内装炉,出炉温度1240~1280℃,粗轧全长全数除鳞,精轧开轧温度≤1020℃,精轧终轧温度810~850℃,层流冷却采用稀疏冷却,卷取温度为580~620℃。
对于合金含量较高的钢,堆垛时间长、入炉温度低时铸坯易产生边裂缺陷,因此铸坯采用热送热装或立即堆垛缓冷且在24h内装炉。
含硅较高的钢在加热炉中长时间加热过程中会在氧化铁皮层和基体之间形成铁橄榄石(Fe2SiO4),其熔点为1173℃。消除或者减轻含硅钢除鳞困难的有效方法是提高出炉温度,使板坯在粗除鳞时表面温度高于Fe2SiO4的熔点,在其呈液态时没有形成FeO/Fe2SiO4的锚状物,易于清除。
基于上述高硅耐候钢优异的耐腐蚀性能,本发明还提供了一种上述400MPa级高硅耐候钢的用途,在建筑、桥梁施工或车辆制作领域,干燥地区裸露或轻涂装使用。
下面通过实施例对本发明作进一步详细说明,但并不因此将本发明保护范围限制在所述的实施例范围之中。
实施例和对比例
采用上述冶炼和控轧控冷工艺进行400MPa级高硅耐候钢制备,根据《铁路用耐候钢周期浸润腐蚀试验方法》TB/T 2375检测相对Q355B的耐腐蚀性能,本发明高硅耐候钢和对比例1(普通耐候钢Q450NQR1)和对比例2(低合金高强钢Q355B)的具体成分和耐大气腐蚀性能如表2所示。
表2实施例和对比例主要成分(/%)和耐大气腐蚀性能
Figure BDA0002615914870000051
由实施例和对比例可知,本发明所述400MPa级高硅耐候钢的耐大气腐蚀性指数I超过6.0,且远大于普通耐候钢和低合金高强钢,可以实现优良的耐大气腐蚀性能,产品可在干燥地区裸露或轻涂装使用,减少涂装和除锈成本,降低因腐蚀引起的失效事故,同时减少环境污染,可用于建筑、桥梁施工或车辆制作领域,具有良好的应用前景。

Claims (7)

1.400MPa级高硅耐候钢,其特征在于:包括以下质量百分比的化学成分:C≤0.12%,Si:1.20~2.00%,Mn≤1.50%,P:0.005~0.030%,S≤0.015%,Cr:0.20~0.80%,Ni:0.10~0.40%,Cu:0.20~0.60%,Als≥0.010%,余量为Fe及不可避免的杂质。
2.根据权利要求1所述的400MPa级高硅耐候钢,其特征在于:包括以下质量百分比的化学成分:C:0.06~0.08%,Si:1.60~1.80%,Mn:0.85~1.00%,P:0.010~0.025%,S≤0.007%,Cr:0.40~0.60%,Ni:0.20~0.30%,Cu:0.28~0.38%,Als:0.015~0.050%,余量为Fe及不可避免的杂质。
3.根据权利要求2所述的400MPa级高硅耐候钢,其特征在于:所述400MPa级高硅耐候钢的耐大气腐蚀性指数I为8.05~9.16。
4.根据权利要求1所述的400MPa级高硅耐候钢,其特征在于:所述400MPa级高硅耐候钢的相对Q355B腐蚀率为≤40%。
5.根据权利要求1所述的400MPa级高硅耐候钢,其特征在于:所述400MPa级高硅耐候钢的屈服强度为400~480MPa,抗拉强度为600~680MPa,延伸率为≥18%,-40℃冲击值为≥60J。
6.权利要求1~5任一项所述的400MPa级高硅耐候钢的制备方法,其特征在于,包括以下步骤:
铁水脱硫→转炉冶炼→LF→RH→板坯连铸→热轧→层流冷却→卷取。
7.权利要求1~5任一项所述的400MPa级高硅耐候钢的用途,其特征在于:在建筑、桥梁施工或车辆制作领域,干燥地区裸露或轻涂装使用。
CN202010769262.XA 2020-08-03 2020-08-03 一种400MPa级高硅耐候钢及其制备方法和应用 Pending CN111979484A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010769262.XA CN111979484A (zh) 2020-08-03 2020-08-03 一种400MPa级高硅耐候钢及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010769262.XA CN111979484A (zh) 2020-08-03 2020-08-03 一种400MPa级高硅耐候钢及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111979484A true CN111979484A (zh) 2020-11-24

Family

ID=73444441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010769262.XA Pending CN111979484A (zh) 2020-08-03 2020-08-03 一种400MPa级高硅耐候钢及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111979484A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435360A (zh) * 2016-10-25 2017-02-22 武汉科技大学 高强韧耐腐耐候钢板及其制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435360A (zh) * 2016-10-25 2017-02-22 武汉科技大学 高强韧耐腐耐候钢板及其制造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JA MEJÍA GÓMEZ等: "Effects of Si as alloying element on corrosion resistance of weathering steel", 《CORROSION SCIENCE》 *
关建辉等: "加热温度对SPA-H钢氧化铁皮结构的影响", 《第五届宝钢学术年会》 *
刘仁生等: "《钢铁工业节能减排新技术5000问》", 31 July 2009, 北京:中国科学技术出版社 *
干勇等: "《中国材料工程大典.第2卷.钢铁材料工程(上)》", 31 January 2006, 北京:化学工业出版社 *

Similar Documents

Publication Publication Date Title
CN111676427A (zh) 590MPa级高耐蚀耐候钢及其制备方法
CN1884608A (zh) 一种基于薄板坯连铸连轧工艺生产700MPa级V-N微合金化高强耐大气腐蚀钢的方法
CN110923572A (zh) 一种富含合金化稀土元素的稀土耐候钢及其制造方法
JP7233483B2 (ja) 630MPaグレードの高耐食性耐候性鋼およびその製造方法
CN111850416A (zh) 570MPa级高耐蚀耐候钢及其制备方法
CN111926254A (zh) 440MPa级高磷高铬耐候钢及其制备方法和应用
CN111690879A (zh) 600MPa级高耐蚀耐候钢及其制备方法
CN110284060B (zh) 一种煤矿运输货车车体用高强韧耐蚀钢及其制造方法
CN112251674A (zh) 一种铁路客车用热轧低屈强比高耐候钢及其制造方法
JP7233481B2 (ja) 660MPa級の高耐食性耐候性鋼及びその製造方法
CN111945065A (zh) 一种500MPa级高铬耐候钢及其制备方法和应用
CN111850406A (zh) 380MPa级高磷耐候钢及其制备方法
CN111850411A (zh) 400MPa级高铬耐候钢及其制备方法
CN113444973A (zh) 一种桥梁用Q420qENH免热处理钢板及其制造方法
CN111979500A (zh) 一种500MPa级高硅高磷耐候钢及其制备方法和应用
JP7233482B2 (ja) 540MPaグレードの高ケイ素高クロム耐候性鋼およびその製造方法
CN111850417A (zh) 530MPa级高硅高铬耐候钢及其制备方法
CN111996464A (zh) 一种570MPa级高耐蚀耐候钢及其制备方法和应用
CN111996450A (zh) 570MPa级高耐蚀耐候钢及其制备方法和应用
CN111647824A (zh) 510MPa级高硅高磷高铬耐候钢及其制备方法
CN111961971A (zh) 500MPa级高磷高铬耐候钢及其制备方法和应用
CN111647819A (zh) 620MPa级高耐蚀耐候钢及其制备方法
CN111057968B (zh) 一种用于路灯灯杆的耐腐蚀热轧钢板及其制备方法
CN111979484A (zh) 一种400MPa级高硅耐候钢及其制备方法和应用
CN111850415A (zh) 470MPa级高硅耐候钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201124

RJ01 Rejection of invention patent application after publication