CN111966821A - Knowledge graph visualization method based on mechanics principle - Google Patents
Knowledge graph visualization method based on mechanics principle Download PDFInfo
- Publication number
- CN111966821A CN111966821A CN202010868187.2A CN202010868187A CN111966821A CN 111966821 A CN111966821 A CN 111966821A CN 202010868187 A CN202010868187 A CN 202010868187A CN 111966821 A CN111966821 A CN 111966821A
- Authority
- CN
- China
- Prior art keywords
- link
- node
- edge
- data
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007794 visualization technique Methods 0.000 title claims abstract description 12
- 230000000007 visual effect Effects 0.000 claims abstract description 10
- 238000012800 visualization Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 11
- 238000009877 rendering Methods 0.000 claims description 7
- 238000012795 verification Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 230000007812 deficiency Effects 0.000 abstract description 2
- 238000011160 research Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000001423 gas--liquid extraction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/34—Browsing; Visualisation therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/284—Relational databases
- G06F16/288—Entity relationship models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/36—Creation of semantic tools, e.g. ontology or thesauri
- G06F16/367—Ontology
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Computational Linguistics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明公开了一种基于力学原理的知识图谱可视化方法,属于知识图谱可视化领域。本发明将知识图谱的三元组数据转换为关系集合和实体集合;其中,关系集合包括边数据,实体集合包括节点数据;再对边数据和的节点数据进行标记;并对标记后的边数据和节点数据分别进行去重;根据节点数据和边数据计算边的长度、节点与边的交点坐标以及计算边名称坐标;最后利用d3.js对节点和边进行渲染,得到可视化的知识图谱。本发明克服了现有技术中,无法将知识图谱三元组转为可视化的关系图的不足,本发明可以将知识图谱三元组转为关系图,可以实现直观地通过关系图分析问题的能力,更加直观且完整的表达了知识图谱中包含的信息。
The invention discloses a knowledge map visualization method based on mechanical principles, and belongs to the field of knowledge map visualization. The invention converts the triple data of the knowledge graph into a relationship set and an entity set; wherein, the relationship set includes edge data, and the entity set includes node data; then the edge data and the node data are marked; and the marked edge data is marked. Deduplication and node data respectively; calculate the length of the edge, the intersection coordinates of the node and the edge and the coordinates of the edge name according to the node data and edge data; finally use d3.js to render the nodes and edges to obtain a visual knowledge graph. The invention overcomes the deficiencies in the prior art that the knowledge graph triplet cannot be converted into a visualized relational graph. The present invention can convert the knowledge graph triplet into a relational graph, and can realize the ability to analyze problems intuitively through the relational graph. , which more intuitively and completely expresses the information contained in the knowledge graph.
Description
技术领域technical field
本发明属于知识图谱可视化技术领域,更具体地说,涉及一种基于力学原理的知识图谱可视化方法。The invention belongs to the technical field of knowledge map visualization, and more particularly, relates to a knowledge map visualization method based on mechanical principles.
背景技术Background technique
2012年11月Google公司率先提出知识图谱(Knowledge Graph,KG)的概念,表示将在其搜索结果中加入知识图谱的功能。其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。据2015年1月统计的数据,Google构建的KG已经拥有5亿个实体,约35亿条实体关系信息,已经被广泛应用于提高搜索引擎的搜索质量。虽然知识图谱(Knowledge Graph)的概念较新,但它并非是一个全新的研究领域,早在2006年,BernersLee就提出了数据链接(linked data)的思想,呼吁推广和完善相关的技术标准如URI(Uniform resource identifier),RDF(resource discription framework),OWL(Webontology language),为迎接语义网络的到来做好准备。随后掀起了一场语义网络研究的热潮,知识图谱技术正是建立在相关的研究成果之上的,是对现有语义网络技术的一次扬弃和升华。In November 2012, Google first proposed the concept of Knowledge Graph (KG), indicating that it would add the function of Knowledge Graph to its search results. Its original intention is to improve the capabilities of search engines and enhance users' search quality and search experience. According to statistics in January 2015, the KG built by Google has 500 million entities and about 3.5 billion entity relationship information, and has been widely used to improve the search quality of search engines. Although the concept of Knowledge Graph is relatively new, it is not a new research field. As early as 2006, BernersLee proposed the idea of linked data, calling for the promotion and improvement of related technical standards such as URI (Uniform resource identifier), RDF (resource discription framework), OWL (Webontology language), ready for the arrival of the Semantic Web. Subsequently, a wave of semantic network research was launched. The knowledge graph technology is based on the relevant research results, which is a sublation and sublimation of the existing semantic network technology.
知识图谱通常使用三元组的形式来表示,即G=(E,R,S),其中E={e1,e2,e3,…,en}是知识库中的实体集合,共包含|E|种不同的实体;R={r1,r2,…,rn}是知识库中的关系集合,共包含|R|种不同关系;代表知识库中的三元组集合。三元组的基本形式主要包括实体1、关系、实体2和概念、属性、属性值等,实体是知识图谱中的最基本元素,不同的实体间存在不同的关系。概念主要指集合、类别、对象类型、事物的种类,例如人物、地理等;属性主要指对象可能具有的属性、特征、特性、特点以及参数,例如国籍、生日等;属性值主要指对象指定属性的值,例如中国、1988-09-08等。每个实体(概念的外延)可用一个全局唯一确定的ID来标识,每个属性-属性值对可用来刻画实体的内在特性,而关系可用来连接两个实体,刻画它们之间的关联。Knowledge graphs are usually represented in the form of triples, that is, G=(E, R, S), where E={e1, e2, e3,...,en} is the entity set in the knowledge base, including |E| different entities; R={r1,r2,…,rn} is the relation set in the knowledge base, which contains |R| different relations; Represents a collection of triples in the knowledge base. The basic forms of triples mainly include entity 1, relationship, entity 2, concept, attribute, attribute value, etc. Entity is the most basic element in the knowledge graph, and different entities have different relationships. Concepts mainly refer to collections, categories, object types, and types of things, such as people, geography, etc. Attributes mainly refer to the attributes, characteristics, characteristics, characteristics and parameters that objects may have, such as nationality, birthday, etc. Attribute values mainly refer to the specified attributes of objects , such as China, 1988-09-08, etc. Each entity (the extension of the concept) can be identified by a globally unique ID, each attribute-attribute value pair can be used to describe the internal characteristics of the entity, and the relationship can be used to connect two entities and describe the association between them.
针对知识图谱的可视化,现有技术也提出了一些方案,例如发明创造名称为:一种大数据知识图谱可视化方法及装置(申请日:2020年2月27日;申请号:202010123185.0)该方案提高了供了一种大数据知识图谱可视化方法及装置,其中方法包括:获取待可视化数据;针对待可视化数据中的节点数据和边数据,基于预设的D3.js库,得到格式化处理后的节点数据和格式化处理后的边数据;基于预设的渲染方式,将格式化处理后的节点数据和格式化处理后的边数据,生成相应的待显示节点和待显示边;实时计算每一待显示节点在页面中的待显示位置,以及每一待显示边在页面中的待显示位置;基于每一待显示节点在页面中的待显示位置,以及每一待显示边在页面中的待显示位置,将待显示节点和待显示边渲染至页面中,得到可视化的知识图谱。但是该方案的不足之处在于:知识图谱的操作只包括展示和拖动,并不能对知识图谱的节点进行操作以及不能展示节点之间的关系。For the visualization of knowledge graphs, some solutions have also been proposed in the prior art. For example, the name of the invention is: A big data knowledge graph visualization method and device (application date: February 27, 2020; application number: 202010123185.0) This solution improves the Provided is a big data knowledge graph visualization method and device, wherein the method includes: obtaining data to be visualized; for node data and edge data in the data to be visualized, based on a preset D3.js library, obtaining formatted data. Node data and formatted edge data; based on the preset rendering method, the formatted node data and formatted edge data are generated to generate corresponding nodes to be displayed and edges to be displayed; real-time calculation of each The to-be-displayed position of the node to be displayed on the page, and the to-be-displayed position of each to-be-displayed edge on the page; based on the to-be-displayed position of each to-be-displayed node on the page, and the to-be-displayed edge on the page Display position, render the node to be displayed and the edge to be displayed into the page, and obtain a visual knowledge graph. However, the shortcoming of this scheme is that the operation of the knowledge graph only includes display and dragging, and cannot operate the nodes of the knowledge graph and cannot display the relationship between the nodes.
综上所述,如何将知识图谱转为可视化的关系图,是现有技术亟需解决的问题。To sum up, how to convert the knowledge graph into a visualized relationship graph is an urgent problem to be solved in the prior art.
发明内容SUMMARY OF THE INVENTION
1.要解决的问题1. The problem to be solved
本发明克服了现有技术中,无法将知识图谱三元组转为可视化的关系图的不足,本发明提供一种基于力学原理的知识图谱可视化方法,可以将知识图谱三元组转为关系图,可以实现直观地通过关系图分析问题的能力,更加直观且完整的表达了知识图谱中包含的信息。The present invention overcomes the deficiencies in the prior art that the knowledge graph triples cannot be converted into visualized relational graphs, and provides a knowledge graph visualization method based on mechanical principles, which can convert the knowledge graph triples into relational graphs , which can realize the ability to analyze problems intuitively through the relationship graph, and express the information contained in the knowledge graph more intuitively and completely.
2.技术方案2. Technical solutions
为了解决上述问题,本发明所采用的技术方案如下:In order to solve the above problems, the technical scheme adopted in the present invention is as follows:
本发明一种基于力学原理的知识图谱可视化方法,其特征在于,包括以下步骤:A method for visualizing knowledge graph based on mechanics principle of the present invention is characterized in that, it comprises the following steps:
将知识图谱的三元组数据转换为关系集合和实体集合;其中,关系集合包括边数据,实体集合包括节点数据;对边数据和的节点数据进行标记;对标记后的边数据和节点数据分别进行去重;根据节点数据和边数据计算边的长度、节点与边的交点坐标以及边名称坐标;根据边的长度、节点与边的交点坐标和边名称坐标并利用d3.js对节点和边进行渲染,得到可视化的知识图谱。Convert the triple data of the knowledge graph into a relationship set and an entity set; wherein, the relationship set includes edge data, and the entity set includes node data; the edge data and the node data are marked; the marked edge data and node data are respectively Carry out deduplication; calculate the length of the edge, the coordinates of the intersection of the node and the edge and the coordinates of the edge name according to the node data and the edge data; according to the length of the edge, the coordinates of the intersection of the node and the edge and the coordinates of the edge name, and use d3.js to compare the node and edge Render to get a visual knowledge graph.
更进一步地,对边数据和的节点数据进行标记的具体过程为:对节点数据进行关联查询,对查询的节点以及关联的边进行标记,其中查询过的节点集合为idlist,边和节点标记的集合为labellist。Further, the specific process of marking the edge data and the node data is as follows: perform an associated query on the node data, and mark the queried node and the associated edge, wherein the queried node set is an idlist, and the edge and the node are marked. The collection is labellist.
更进一步地,通过下列公式计算边的长度:Further, the length of the edge is calculated by the following formula:
link.length=link.name.length*fontSize+nlink.length=link.name.length*fontSize+n
其中,link.length代表边的长度,link.name.length代表边名称长度,fontSize代表字号,n代表常量。Among them, link.length represents the length of the side, link.name.length represents the length of the side name, fontSize represents the font size, and n represents a constant.
更进一步地,计算节点与边的交点坐标的具体过程为:边数据包括起始节点和终止节点,根据起始节点和终止节点的圆心坐标计算得到节点与边的交点坐标。Furthermore, the specific process of calculating the coordinates of the intersection point between the node and the edge is as follows: the edge data includes the start node and the end node, and the coordinates of the intersection point of the node and the edge are calculated according to the center coordinates of the start node and the end node.
更进一步地,当边为起始节点和终止节点之间的圆心连线时,通过以下公式计算节点与边的交点坐标:Further, when the edge is a line connecting the center of the circle between the start node and the end node, the intersection coordinates of the node and the edge are calculated by the following formula:
当link.target.x与link.source.x相等时:When link.target.x is equal to link.source.x:
y1=link.target.y-link.source.y>0?link.source.y+r:link.source.y–r;y1=link.target.y-link.source.y>0? link.source.y+r: link.source.y–r;
y2=link.target.y-link.source.y>0?link.target.y-r:link.target.y+r;y2=link.target.y-link.source.y>0? link.target.y-r: link.target.y+r;
x1=link.source.x;x1 = link.source.x;
x2=link.target.x;x2 = link.target.x;
其中,(link.source.x,link.source.y)为起始节点的圆心坐标,(link.target.x,link.target.y)为终止节点的圆心坐标,r为起始节点和终止节点的半径值,(x1,y1)为边与起始节点的交点坐标,(x2,y2)为边与终止节点的交点坐标;Among them, (link.source.x, link.source.y) is the center coordinate of the starting node, (link.target.x, link.target.y) is the center coordinate of the ending node, and r is the starting node and the ending node. The radius value of the node, (x1, y1) is the intersection coordinates of the edge and the start node, (x2, y2) is the intersection coordinates of the edge and the end node;
当link.target.y与link.source.y相等时:When link.target.y is equal to link.source.y:
y1=link.source.y;y1 = link.source.y;
y2=link.target.y;y2 = link.target.y;
x1=link.target.x-link.source.x>0?link.source.x+r:link.source.x-r;x1=link.target.x-link.source.x>0? link.source.x+r: link.source.x-r;
x2=link.target.x-link.source.x>0?link.target.x-r:link.target.x+r;x2=link.target.x-link.source.x>0? link.target.x-r: link.target.x+r;
当link.target.x与link.source.x不相等且link.target.y与link.source.y不相等时:When link.target.x is not equal to link.source.x and link.target.y is not equal to link.source.y:
其中,为起始节点和终止节点之间的圆心角tan值。in, is the central angle tan value between the start node and the end node.
更进一步地,当边位于起始节点和终止节点之间的圆心连线的两侧时,通过以下公式计算节点与边的交点坐标:Further, when the edge is located on both sides of the line connecting the center of the circle between the start node and the end node, the intersection coordinates of the node and the edge are calculated by the following formula:
计算过边与起始节点的交点对圆心连线作垂线的交点坐标(xm,ym):Calculate the intersection coordinates (xm, ym) of the vertical line connecting the center of the circle through the intersection of the edge and the starting node:
其中,a=r*link.linknum/maxLinkNumber,link.linknum为边的层数标记,maxLinkNumber为圆心两侧边的最大数量值;Among them, a=r*link.linknum/maxLinkNumber, link.linknum is the layer number mark of the edge, and maxLinkNumber is the maximum number of edges on both sides of the center of the circle;
计算过边与终止节点的交点对圆心连线做垂线的交点坐标(xn,yn):Calculate the intersection coordinates (xn, yn) of the vertical line connecting the center of the circle through the intersection of the edge and the end node:
更进一步地,通过以下公式计算边名称坐标;令sy=link.source.y,sx=link.source.x,tx=link.target.x,ty=link.target.y;Further, the edge name coordinates are calculated by the following formula; let sy=link.source.y, sx=link.source.x, tx=link.target.x, ty=link.target.y;
dx=(distance-link.name.length*fontSize-2*r)/2dx=(distance-link.name.length*fontSize-2*r)/2
再利用d3.js对dx进行计算得到dy,(dx,dy)为边名称坐标。Then use d3.js to calculate dx to get dy, (dx, dy) is the coordinate of the edge name.
更进一步地,利用d3.js渲染的具体过程为:对节点数据和边数据进行校验,校验后利用d3.js进行渲染得到可视化的知识图谱。Further, the specific process of rendering using d3.js is: verifying the node data and edge data, and then using d3.js to render to obtain a visual knowledge graph after verification.
更进一步地,对节点数据和边数据进行校验的具体过程为:校验边的起始节点和终止节点是否都存在,若起始节点和终止节点中任一节点不存在,则对该边进行过滤。Further, the specific process of verifying the node data and the edge data is as follows: verifying whether the start node and the end node of the edge exist, if any of the start node and the end node does not exist, then the edge to filter.
3.有益效果3. Beneficial effects
相比于现有技术,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
本发明的一种基于力学原理的知识图谱可视化方法,将结构化数据的知识图谱的实体作为节点,关系作为边,从而实现了知识图谱的可视化表达。进一步基于力学原理对每一条关系进行独立的表达,从而实现了知识图谱中信息的完整表达。此外,通过节点的缩放,将不需要展示的节点收起,从而实现通过关系图分析问题的能力,更加直观且完整的表达了知识图谱中包含的信息。A knowledge graph visualization method based on the mechanical principle of the present invention takes the entities of the knowledge graph of structured data as nodes and the relationships as edges, thereby realizing the visual expression of the knowledge graph. Further, each relationship is expressed independently based on the mechanical principle, thereby realizing the complete expression of the information in the knowledge graph. In addition, through the scaling of nodes, the nodes that do not need to be displayed are put away, so as to realize the ability to analyze problems through the relationship graph, and express the information contained in the knowledge graph more intuitively and completely.
附图说明Description of drawings
图1为本发明的方法流程示意图;Fig. 1 is the method flow schematic diagram of the present invention;
图2为本发明的边与节点的交点坐标示意图。FIG. 2 is a schematic diagram of the coordinates of the intersection of an edge and a node according to the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例;而且,各个实施例之间不是相对独立的,根据需要可以相互组合,从而达到更优的效果。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of the embodiments of the present invention, not all of the embodiments; moreover, each embodiment is not relatively independent, and can be combined with each other according to needs, so as to achieve better effects. Thus, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
为进一步了解本发明的内容,结合附图和实施例对本发明作详细描述。In order to further understand the content of the present invention, the present invention will be described in detail with reference to the accompanying drawings and embodiments.
实施例1Example 1
如图1所示,本发明的一种基于力学原理的知识图谱可视化方法,包括以下步骤:As shown in FIG. 1, a knowledge graph visualization method based on mechanical principles of the present invention includes the following steps:
1、数据转换1. Data conversion
将知识图谱的三元组数据转换为关系集合和实体集合;值得说明的是,关系集合包括边数据,实体集合包括节点数据;该转换后的数据即为d3.js能够处理的数据结构,具体结构如下所示:Convert the triplet data of the knowledge graph into a relationship set and an entity set; it is worth noting that the relationship set includes edge data, and the entity set includes node data; the converted data is the data structure that can be processed by d3.js. The structure looks like this:
其中,nodes为实体集合,nodes记录了节点数据,每个节点至少具有name和id两个属性,name是节点的展示名称,id是节点的唯一标识。links为关系集合记录了边数据,边数据表示具有关联关系的节点之间的关系,每条边都会记录source和target以及id,source为边的起始节点,target为边的终止节点,id是边的唯一标识。Among them, nodes is a collection of entities, nodes record node data, each node has at least two attributes: name and id, name is the display name of the node, and id is the unique identifier of the node. Links records the edge data for the relationship set. The edge data represents the relationship between nodes with an associated relationship. Each edge records the source, target and id. The source is the start node of the edge, and the target is the end node of the edge. The id is Unique ID of the edge.
2、标记数据2. Tag data
对关系集合的边数据和实体集合中的节点数据进行标记;具体地,对节点数据进行关联查询,对查询的节点以及关联的边进行标记,其中查询过的节点集合为idlist,边和节点标记的集合为labellist。具体过程包括:Mark the edge data of the relationship set and the node data in the entity set; specifically, perform an associated query on the node data, and mark the queried node and the associated edge, wherein the queried node set is idlist, edge and node label The collection is labellist. The specific process includes:
2-1)原点关联数据查询:初始化状态下包含一个原点以及与原点关联的其他节点2-1) Origin-related data query: In the initialization state, it contains an origin and other nodes associated with the origin
对原点做标记,标记为origin;对其他节点标记,标记为起点的id即原点id;Mark the origin and mark it as origin; mark other nodes, the id marked as the origin is the origin id;
对边做标记,标记为起点的id即原点id;将原点id加入到全局变量idList中。Mark the edge, and the id marked as the starting point is the origin id; add the origin id to the global variable idList.
2-2)其他节点关联数据查询:对除原点以外的其他节点的展开2-2) Other node related data query: expansion of other nodes other than the origin
对节点标记,标记为展开节点的label加上展开节点的id;对边标记,标记为展开节点的label加上展开节点的id;将展开节点的id加入到全局变量idList中。For node labeling, add the label of the expanded node plus the id of the expanded node; for the edge label, add the label of the expanded node to the id of the expanded node; add the id of the expanded node to the global variable idList.
3、数据去重3. Data deduplication
对标记后的边数据和节点数据分别进行去重,由于两个节点展开后可能关联同一个节点,所以需要对标记前的数据与标记后的数据进行对比,具体步骤如下:The marked edge data and node data are deduplicated respectively. Since the two nodes may be associated with the same node after expansion, it is necessary to compare the data before marking with the data after marking. The specific steps are as follows:
3-1)将标记前和标记后的nodes数据做两重遍历,如果标记后的nodes数据中存在已有的节点,即id相同去除重复节点。3-1) Do double traversal of the nodes data before marking and after marking, if there are existing nodes in the marked nodes data, that is, the id is the same to remove duplicate nodes.
3-2)将标记前和标记后的links数据做两重遍历,如果标记后的links数据中存在已有的边,即id相同去除重复边3-2) Do double traversal of the links data before and after the mark, if there are existing edges in the links data after the mark, that is, the id is the same, and the duplicate edges are removed
4、计算边的长度4. Calculate the length of the side
根据节点数据和边数据计算边的长度;具体地,通过下列公式计算边的长度:Calculate the length of the edge according to the node data and edge data; specifically, calculate the length of the edge by the following formula:
link.length=link.name.length*fontSize+nlink.length=link.name.length*fontSize+n
其中,link.length代表边的长度,link.name.length代表边名称长度,即为边名称的字符串长度,fontSize代表字号,具体为前端设置的文本的字体大小,用正整数表示;n代表常量,该n作为边名称两侧的留白长度,n的取值范围为(0,10)。Among them, link.length represents the length of the side, link.name.length represents the length of the side name, which is the string length of the side name, and fontSize represents the font size, which is the font size of the text set at the front end, represented by a positive integer; n represents Constant, the n is the length of the space on both sides of the edge name, and the value range of n is (0, 10).
5、计算节点与边的交点坐标5. Calculate the intersection coordinates of nodes and edges
结合图2所示,根据节点数据和边数据计算节点与边的交点坐标,具体地,边数据包括起始节点和终止节点,根据起始节点和终止节点的圆心坐标计算得到节点与边的交点坐标。计算步骤包括:As shown in Figure 2, the intersection coordinates of the node and the edge are calculated according to the node data and the edge data. Specifically, the edge data includes the start node and the end node, and the intersection of the node and the edge is calculated according to the center coordinates of the start node and the end node. coordinate. The calculation steps include:
5-1)对边进行分组;具体地,根据边的起始节点和终止节点进行分组,不区分连接线的方向,只要边连接的是同一对节点,即认为是同一组:5-1) Group the edges; specifically, according to the start node and the end node of the edge, the direction of the connecting line is not distinguished, as long as the edge connects the same pair of nodes, it is considered to be the same group:
计算边的起始节点(source)和终止节点(target)的hash值:Calculate the hash value of the start node (source) and end node (target) of the edge:
m(source)=link.source字符串长度;m(target)=link.target字符串长度m(source)=link.source string length; m(target)=link.target string length
比较source和target的hash:Compare the hashes of source and target:
key=link.source.hash<link.target.hash?link.source+':'+link.target:link.target+':'+key=link.source.hash<link.target.hash? link.source+':'+link.target:link.target+':'+
link.source;link.source;
其中m为source或target字符串长度,ASCII(target[i]/source[i])为target或source每一个字符的ASCII码。Where m is the length of the source or target string, and ASCII (target[i]/source[i]) is the ASCII code of each character of the target or source.
遍历links中的所有边,如果边的key相同即为同一组。Traverse all the edges in the links, if the keys of the edges are the same, they are in the same group.
5-2)将同一组的边均匀分布在经过两个节点圆心的两侧5-2) Distribute the edges of the same group evenly on both sides passing through the center of the two nodes
maxLinkNumber=group.length%2==0?group.length/2:(group.length-1)/2maxLinkNumber=group.length%2==0? group.length/2:(group.length-1)/2
其中,maxLinkNumber为两侧边的最大数量值,group.length为当前边组的数量。Among them, maxLinkNumber is the maximum number of edges on both sides, and group.length is the number of current edge groups.
对每条边进行层数标记,最下层边标记为-maxLinkNumber,从下往上边的层数标记依次加1,即起始节点和终止节点之间的圆心连线的层数标记为0,上层的边的层数标记依次加1,下层的边的层数标记依次减1。Each edge is marked with the number of layers. The bottom edge is marked as -maxLinkNumber, and the number of layers from the bottom to the top is incremented by 1, that is, the number of layers of the center line between the start node and the end node is marked as 0, and the upper layer is marked as 0. The layer number marks of the edges of 1 are sequentially increased by 1, and the layer number marks of the lower layers are decreased by 1 in turn.
5-3)判断边的层数标记link.linknum是否等于05-3) Determine whether the layer number mark link.linknum of the edge is equal to 0
5-4)若link.linknum=0,则通过以下公式计算节点与边的交点坐标(x1,y1),(x2,y2):5-4) If link.linknum=0, the intersection coordinates (x1, y1), (x2, y2) of the node and the edge are calculated by the following formula:
当link.target.x与link.source.x相等时,即当起始节点和终止节点在一条垂直线上时:When link.target.x is equal to link.source.x, that is, when the start and end nodes are on a vertical line:
y1=link.target.y-link.source.y>0?link.source.y+r:link.source.y–r;y1=link.target.y-link.source.y>0? link.source.y+r: link.source.y–r;
y2=link.target.y-link.source.y>0?link.target.y-r:link.target.y+r;y2=link.target.y-link.source.y>0? link.target.y-r: link.target.y+r;
x1=link.source.x;x1 = link.source.x;
x2=link.target.x;x2 = link.target.x;
其中,(link.source.x,link.source.y)为起始节点的圆心坐标,(link.target.x,link.target.y)为终止节点的圆心坐标,r为起始节点和终止节点的半径值,(x1,y1)为边与起始节点的交点坐标,(x2,y2)为边与终止节点的交点坐标;Among them, (link.source.x, link.source.y) is the center coordinate of the starting node, (link.target.x, link.target.y) is the center coordinate of the ending node, and r is the starting node and the ending node. The radius value of the node, (x1, y1) is the intersection coordinates of the edge and the start node, (x2, y2) is the intersection coordinates of the edge and the end node;
当link.target.y与link.source.y相等时,即当起始节点和终止节点在一条水平线上时:When link.target.y is equal to link.source.y, i.e. when the start and end nodes are on a horizontal line:
y1=link.source.y;y1 = link.source.y;
y2=link.target.y;y2 = link.target.y;
x1=link.target.x-link.source.x>0?link.source.x+r:link.source.x-r;x1=link.target.x-link.source.x>0? link.source.x+r: link.source.x-r;
x2=link.target.x-link.source.x>0?link.target.x-r:link.target.x+r;x2=link.target.x-link.source.x>0? link.target.x-r: link.target.x+r;
当link.target.x与link.source.x不相等且link.target.y与link.source.y不相等时,即当起始节点和终止节点既不在同一水平线,也不在同一垂直线上时:When link.target.x is not equal to link.source.x and link.target.y is not equal to link.source.y, that is, when the start node and end node are neither on the same horizontal line nor on the same vertical line :
其中,为起始节点和终止节点之间的圆心角tan值。in, is the central angle tan value between the start node and the end node.
5-5)若link.linknum不等于0,通过以下公式计算节点与边的交点坐标:5-5) If link.linknum is not equal to 0, calculate the intersection coordinates of nodes and edges by the following formula:
对圆心连线做垂线,根据边的层数标记计算交点与圆心连线的距离a:Make a vertical line on the line connecting the center of the circle, and calculate the distance a between the intersection point and the line connecting the center of the circle according to the number of layers marked on the side:
a=r*link.linknum/maxLinkNumbera=r*link.linknum/maxLinkNumber
其中,link.linknum为边的层数标记,maxLinkNumber为圆心两侧边的最大数量值;Among them, link.linknum is the layer number mark of the edge, and maxLinkNumber is the maximum number of edges on both sides of the center of the circle;
计算过边与起始节点的交点对圆心连线作垂线的交点坐标(xm,ym):Calculate the intersection coordinates (xm, ym) of the vertical line connecting the center of the circle through the intersection of the edge and the starting node:
当起始节点和终止节点在一条垂直线上时:When the start and end nodes are on a vertical line:
计算过边与终止节点的交点对圆心连线做垂线的交点坐标(xn,yn):Calculate the intersection coordinates (xn, yn) of the vertical line connecting the center of the circle through the intersection of the edge and the end node:
其中(xn,yn)为过边与终止节点交点对圆心连线作垂线的交点坐标Where (xn, yn) is the coordinate of the intersection point of the line connecting the center of the circle with the intersection of the edge and the end node
当起始节点和终止节点在一条垂直线上时:When the start and end nodes are on a vertical line:
过边与节点交点与对圆心连线作垂线,垂线与x轴的斜率:Draw a vertical line through the intersection of the edge and the node and the line connecting the center of the circle, and the slope of the vertical line and the x-axis:
tanω=(x1-x2)/(y2-y1)tanω=(x1-x2)/(y2-y1)
相对于垂点(xm,ym)的x轴距离:The x-axis distance relative to the vertical point (xm, ym):
相对于垂点(xm,ym)的y轴距离:The y-axis distance relative to the vertical point (xm, ym):
如果(y2-y1)=0if (y2-y1)=0
kx=0kx=0
ky=aky=a
如果a>0:If a>0:
xs=a>0?xm-kx:xm+kxxs=a>0? xm-kx:xm+kx
ys=ym-kyys=ym-ky
xt=a>0?xn-dx:xn+dxxt=a>0? xn-dx:xn+dx
yt=yn-kyyt=yn-ky
其中(xs,ys)为边与起始节点的交点坐标,(xt,yt)为边与终止节点的交点坐标。值得说的是,考虑到节点间多关系的展示方式,没有将节点间的多条关系合并为一条边,使得每一条关系都能独立的表达,从而实现了知识图谱中信息的完整表达。Where (xs, ys) are the coordinates of the intersection of the edge and the starting node, and (xt, yt) are the coordinates of the intersection of the edge and the ending node. It is worth mentioning that, considering the way of displaying multiple relationships between nodes, multiple relationships between nodes are not combined into one edge, so that each relationship can be expressed independently, thus realizing the complete expression of information in the knowledge graph.
6、计算边名称坐标6. Calculate the coordinates of the edge name
根据节点数据和边数据计算边名称坐标;通过以下公式计算边名称坐标;令sy=link.source.y,sx=link.source.x,tx=link.target.x,ty=link.target.y;Calculate the edge name coordinates according to the node data and edge data; calculate the edge name coordinates by the following formula; let sy=link.source.y, sx=link.source.x, tx=link.target.x, ty=link.target. y;
dx=(distance-link.name.length*fontSize-2*r)/2dx=(distance-link.name.length*fontSize-2*r)/2
再利用d3.js对dx进行计算得到dy,(dx,dy)为边名称坐标。Then use d3.js to calculate dx to get dy, (dx, dy) is the coordinate of the edge name.
7、利用d3.js渲染7. Rendering with d3.js
根据边的长度、节点和边的交点坐标和边名称坐标并利用d3.js对节点和边进行渲染,得到可视化的知识图谱。具体过程为:对节点数据和边数据进行校验,具体地,校验边的起始节点和终止节点是否都存在,若起始节点和终止节点中任一节点不存在,则对该边进行过滤;校验后利用d3.js进行渲染得到可视化的知识图谱。According to the length of the edge, the intersection coordinates of the node and the edge, and the coordinates of the edge name, and use d3.js to render the node and edge to obtain a visual knowledge graph. The specific process is: check the node data and the edge data, specifically, check whether the start node and the end node of the edge exist, if any of the start node and the end node does not exist, then the edge Filtering; after verification, use d3.js to render to obtain a visual knowledge graph.
值得说明的是,在利用d3.js渲染进行可视化的过程中,节点展开和节点收缩的具体步骤如下:It is worth noting that in the process of visualization using d3.js rendering, the specific steps of node expansion and node contraction are as follows:
7-1)节点展开,步骤包括:7-1) Node expansion, the steps include:
7-1-1)首先判断节点的id是否已存在于idList中,如果已存在则表明该节点展开过就不需要做额外的查询,并且该节点当前处于收缩状态,只需将该节点的label从labelList中去除并重新渲染。7-1-1) First judge whether the id of the node already exists in the idList. If it does, it means that the node has been expanded and no additional query is needed, and the node is currently in a shrinking state, just the label of the node Remove from labelList and re-render.
7-1-2)如果节点的id不存在于idList中,表明该节点没有展开过,需要对该节点的关联节点和关系做查询,并将节点的id添加到idList中并重新渲染。7-1-2) If the id of the node does not exist in the idList, it indicates that the node has not been expanded. It is necessary to query the associated nodes and relationships of the node, and add the id of the node to the idList and re-render it.
7-2)节点收缩,具体地,将节点的label加入到labelList,再重新渲染。值得说明的是,通过节点的缩放,将不需要展示的节点收起,从而实现通过关系图分析问题的能力,更加直观且完整的表达了知识图谱中包含的信息。7-2) The node shrinks, specifically, the label of the node is added to the labelList, and then re-rendered. It is worth noting that, through the scaling of nodes, the nodes that do not need to be displayed are put away, thereby realizing the ability to analyze problems through the relationship graph, and expressing the information contained in the knowledge graph more intuitively and completely.
本发明的一种基于力学原理的知识图谱可视化方法,将结构化数据的知识图谱的实体作为节点,关系作为边,从而实现了知识图谱的可视化表达。进一步基于力学原理对每一条关系进行独立的表达,从而实现了知识图谱中信息的完整表达。此外,通过节点的缩放,将不需要展示的节点收起,从而实现通过关系图分析问题的能力,更加直观且完整的表达了知识图谱中包含的信息。A knowledge graph visualization method based on the mechanical principle of the present invention takes the entities of the knowledge graph of structured data as nodes and the relationships as edges, thereby realizing the visual expression of the knowledge graph. Further, each relationship is expressed independently based on the mechanical principle, thereby realizing the complete expression of the information in the knowledge graph. In addition, through the scaling of nodes, the nodes that do not need to be displayed are put away, so as to realize the ability to analyze problems through the relationship graph, and express the information contained in the knowledge graph more intuitively and completely.
在上文中结合具体的示例性实施例详细描述了本发明。但是,应当理解,可在不脱离由所附权利要求限定的本发明的范围的情况下进行各种修改和变型。详细的描述和附图应仅被认为是说明性的,而不是限制性的,如果存在任何这样的修改和变型,那么它们都将落入在此描述的本发明的范围内。此外,背景技术旨在为了说明本技术的研发现状和意义,并不旨在限制本发明或本申请和本发明的应用领域。The present invention has been described in detail above with reference to specific exemplary embodiments. However, it should be understood that various modifications and variations can be made without departing from the scope of the present invention as defined by the appended claims. The detailed description and drawings are to be regarded in an illustrative rather than a restrictive sense, and if any such modifications and variations exist, they will fall within the scope of the invention described herein. In addition, the background art is intended to illustrate the research and development status and significance of the present technology, and is not intended to limit the present invention or the application and application fields of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010868187.2A CN111966821B (en) | 2020-08-26 | 2020-08-26 | A knowledge graph visualization method based on mechanics principles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010868187.2A CN111966821B (en) | 2020-08-26 | 2020-08-26 | A knowledge graph visualization method based on mechanics principles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111966821A true CN111966821A (en) | 2020-11-20 |
CN111966821B CN111966821B (en) | 2024-06-04 |
Family
ID=73390489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010868187.2A Active CN111966821B (en) | 2020-08-26 | 2020-08-26 | A knowledge graph visualization method based on mechanics principles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111966821B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114036311A (en) * | 2021-11-08 | 2022-02-11 | 北京邮电大学 | Time sequence visual development method and system based on knowledge graph |
CN117112807A (en) * | 2023-10-23 | 2023-11-24 | 浙江大学 | Knowledge graph associated information focus visualization method and system based on mechanical model |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9465891B1 (en) * | 2015-04-29 | 2016-10-11 | Data Cocoon LLC | Tessellated data visualization system |
CN106021836A (en) * | 2015-10-12 | 2016-10-12 | 苏州中科知图信息科技有限公司 | Method and system for generating disciplinary knowledge map based on disciplinary logic knowledge relation |
US20170132296A1 (en) * | 2015-11-06 | 2017-05-11 | Cloudera, Inc. | Database workload analysis and optimization visualizations |
CN108363797A (en) * | 2018-01-04 | 2018-08-03 | 北京工商大学 | A kind of associated diagram visual analysis method and its system based on transformation |
WO2019057190A1 (en) * | 2017-09-25 | 2019-03-28 | 腾讯科技(深圳)有限公司 | Method and apparatus for displaying knowledge graph, terminal device, and readable storage medium |
CN109815327A (en) * | 2018-12-07 | 2019-05-28 | 南京中新赛克科技有限责任公司 | A kind of big data knowledge mapping visibility solution based on SVG |
US20190163835A1 (en) * | 2017-11-27 | 2019-05-30 | International Business Machines Corporation | Structuring incoherent nodes by superimposing on a base knowledge graph |
US20190273660A1 (en) * | 2016-12-29 | 2019-09-05 | Ping An Technology (Shenzhen) Co., Ltd. | Network topology self-adapting data visualization method, device, apparatus, and storage medium |
CN110489599A (en) * | 2019-07-08 | 2019-11-22 | 深圳壹账通智能科技有限公司 | Business connection map construction method, apparatus, computer equipment and storage medium |
CN110889014A (en) * | 2019-10-21 | 2020-03-17 | 浙江工业大学 | A display method of enterprise relationship graph based on d3 |
CN111026895A (en) * | 2019-12-02 | 2020-04-17 | 上海交通大学 | Data visualization processing method and device and storage medium |
CN111259297A (en) * | 2020-01-14 | 2020-06-09 | 清华大学 | Interaction visualization method, platform and system for knowledge graph |
-
2020
- 2020-08-26 CN CN202010868187.2A patent/CN111966821B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9465891B1 (en) * | 2015-04-29 | 2016-10-11 | Data Cocoon LLC | Tessellated data visualization system |
CN106021836A (en) * | 2015-10-12 | 2016-10-12 | 苏州中科知图信息科技有限公司 | Method and system for generating disciplinary knowledge map based on disciplinary logic knowledge relation |
US20170132296A1 (en) * | 2015-11-06 | 2017-05-11 | Cloudera, Inc. | Database workload analysis and optimization visualizations |
US20190273660A1 (en) * | 2016-12-29 | 2019-09-05 | Ping An Technology (Shenzhen) Co., Ltd. | Network topology self-adapting data visualization method, device, apparatus, and storage medium |
WO2019057190A1 (en) * | 2017-09-25 | 2019-03-28 | 腾讯科技(深圳)有限公司 | Method and apparatus for displaying knowledge graph, terminal device, and readable storage medium |
US20190163835A1 (en) * | 2017-11-27 | 2019-05-30 | International Business Machines Corporation | Structuring incoherent nodes by superimposing on a base knowledge graph |
CN108363797A (en) * | 2018-01-04 | 2018-08-03 | 北京工商大学 | A kind of associated diagram visual analysis method and its system based on transformation |
CN109815327A (en) * | 2018-12-07 | 2019-05-28 | 南京中新赛克科技有限责任公司 | A kind of big data knowledge mapping visibility solution based on SVG |
CN110489599A (en) * | 2019-07-08 | 2019-11-22 | 深圳壹账通智能科技有限公司 | Business connection map construction method, apparatus, computer equipment and storage medium |
CN110889014A (en) * | 2019-10-21 | 2020-03-17 | 浙江工业大学 | A display method of enterprise relationship graph based on d3 |
CN111026895A (en) * | 2019-12-02 | 2020-04-17 | 上海交通大学 | Data visualization processing method and device and storage medium |
CN111259297A (en) * | 2020-01-14 | 2020-06-09 | 清华大学 | Interaction visualization method, platform and system for knowledge graph |
Non-Patent Citations (2)
Title |
---|
OMER KOREN: "d3.js Force Layout: drawing multiple straight, parallel links between two nodes", pages 1 - 9, Retrieved from the Internet <URL:https://blog.webiks.com/d3-js-force-layout-straight-parallel-links/> * |
匿名: "已知2个圆的圆点坐标、半径。如何求圆心连线与圆交点的坐标?", pages 1 - 2, Retrieved from the Internet <URL:https://www.zhihu.com/question/358981311?utm_id=0> * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114036311A (en) * | 2021-11-08 | 2022-02-11 | 北京邮电大学 | Time sequence visual development method and system based on knowledge graph |
CN117112807A (en) * | 2023-10-23 | 2023-11-24 | 浙江大学 | Knowledge graph associated information focus visualization method and system based on mechanical model |
CN117112807B (en) * | 2023-10-23 | 2024-01-30 | 浙江大学 | Knowledge graph related information focus visualization method and system based on mechanical model |
Also Published As
Publication number | Publication date |
---|---|
CN111966821B (en) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103412863B (en) | Embedded-device-oriented method for achieving rapid visualization of high-capacity vector map | |
CN103390039B (en) | Urban disaster thematic map real-time generating method based on network information | |
US9442905B1 (en) | Detecting neighborhoods from geocoded web documents | |
CN103955549A (en) | Web GIS system based on SVG and data input and search method thereof | |
CN103995804B (en) | Cross-media topic detection method and device based on multimodal information fusion and graph clustering | |
CN113568995B (en) | Dynamic tile map manufacturing method and tile map system based on search conditions | |
CN106709067A (en) | Multi-source heterogeneous spatial data flow method based on Oracle database | |
CN101436192A (en) | Method and apparatus for optimizing inquiry aiming at vertical storage type database | |
CN107180045A (en) | A kind of internet text contains the abstracting method of geographical entity relation | |
CN1936892A (en) | Image content semanteme marking method | |
CN110321446B (en) | Related data recommendation method and device, computer equipment and storage medium | |
Zeng et al. | Data visualization for air quality analysis on bigdata platform | |
CN111966821A (en) | Knowledge graph visualization method based on mechanics principle | |
CN104376038A (en) | Position associated text information visualization method based on label cloud | |
CN105808262B (en) | A kind of name matching process based on json formatted datas | |
CN110019634A (en) | The geographical spatial data correlating method and device of quantitative accurate | |
CN115129719B (en) | A method for constructing qualitative location space range based on knowledge graph | |
CN111581233A (en) | Real-time slicing method and storage medium for vector graphics data of power grid equipment | |
CN104765763B (en) | A kind of semantic matching method of the Heterogeneous Spatial Information classification of service based on concept lattice | |
CN102184194B (en) | Ontology-based knowledge map drawing system | |
CN103900533A (en) | Island resource dynamic monitoring method based on 3S technology | |
CN107180024A (en) | A kind of multi-source heterogeneous data entity recognition methods of center connected subgraph and system | |
CN115168601A (en) | A visual analysis system and method for time series knowledge graph | |
CN115344723A (en) | Digital Culture Visualization Method Based on Improved Constructive Covering Clustering Algorithm | |
CN112802158B (en) | A large-scale dynamic symbol plotting method based on multi-scale visualization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A Knowledge Graph Visualization Method Based on Mechanics Principles Granted publication date: 20240604 Pledgee: Nanjing Bank Co.,Ltd. Nanjing Financial City Branch Pledgor: NANJING KEJI DATA TECHNOLOGY CO.,LTD. Registration number: Y2025980000372 |