CN111954986A - 用于上行链路多波束操作的方法和装置 - Google Patents

用于上行链路多波束操作的方法和装置 Download PDF

Info

Publication number
CN111954986A
CN111954986A CN201980025129.9A CN201980025129A CN111954986A CN 111954986 A CN111954986 A CN 111954986A CN 201980025129 A CN201980025129 A CN 201980025129A CN 111954986 A CN111954986 A CN 111954986A
Authority
CN
China
Prior art keywords
uplink
control signal
transmission
transmission beams
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980025129.9A
Other languages
English (en)
Other versions
CN111954986B (zh
Inventor
S·阿卡拉卡兰
骆涛
X·F·王
M·P·约翰威尔逊
周彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN111954986A publication Critical patent/CN111954986A/zh
Application granted granted Critical
Publication of CN111954986B publication Critical patent/CN111954986B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

描述了用于无线通信的方法、系统和设备。基站可以发送下行链路控制信号,并且由用户设备(UE)接收下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号。UE可以至少部分地基于下行链路控制信号来识别该两个或更多个传输波束,并且可以在该两个或更多个传输波束上发送上行链路信号的多个重复。每个重复可以至少部分地基于该下行链路控制信号而使用该两个或更多个传输波束中的一个不同的传输波束在不同的TTI上发送的。

Description

用于上行链路多波束操作的方法和装置
交叉引用
本专利申请要求享有Akkarakaran等人于2019年4月11日提交的题为“UplinkMulti-Beam Operation”的美国专利申请No.16/381,723,以及Akkarakaran等人于2018年4月13日提交的题为“Uplink Multi-Beam Operation”的美国临时专利申请N0.62/657,583的权益;其被转让给其受让人。
技术领域
以下总体上涉及无线通信,并且更具体而言,涉及上行链路多波束操作。
背景技术
无线通信系统被广泛部署以提供各种类型的通信内容,例如语音、视频、分组数据、消息收发、广播等等。这些系统能够通过共享可用系统资源(例如,时间、频率和功率)来支持与多个用户的通信。这种多址系统的示例包括第四代(4G)系统,例如长期演进(LTE)系统、高级LTE(LTE-A)系统或LTE-A Pro系统,以及第五代(5G)系统,其可以被称为新无线电(NR)系统。这些系统可以采用诸如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)或离散傅里叶变换扩展OFDM(DFT-S-OFDM)的技术。无线多址通信系统可以包括多个基站或网络接入节点,每个基站或网络接入节点同时支持用于多个通信设备的通信,所述通信设备可以被称为用户终端或用户设备(UE)。
在一些无线通信系统中,可以使用多波束操作。例如,UE能够使用多个传输波束进行发送。UE可以通过在两个或更多个传输波束上发送信号而以多波束模式操作。
发明内容
所描述的技术涉及支持上行链路多波束操作的改进的方法、系统、设备或装置。总体而言,所描述的技术提供了启用针对上行链路控制和数据信号的多波束操作。基站可以向UE发送下行链路控制信号。UE可以至少部分地基于下行链路控制信号来识别两个或更多个传输波束,并且可以在该两个或更多个传输波束上发送上行链路信号的多个重复。
描述了一种无线通信的方法。该方法可以包括:由用户设备(UE)接收下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号;至少部分地基于该下行链路控制信号来识别该两个或更多个传输波束;以及发送该上行链路控制信号的多个重复,其中,每个重复是至少部分地基于该下行链路控制信号而使用该两个或更多个传输波束中的一不同传输波束在不同的TTI上发送的。
描述了一种用于无线通信的装置。该装置可以包括:用于由用户设备(UE)接收下行链路控制信号的单元,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号;用于至少部分地基于下行链路控制信号来识别该两个或更多个传输波束的单元;以及用于该发送上行链路控制信号的多个重复的单元,其中,每个重复是至少部分地基于该下行链路控制信号而使用该两个或更多个传输波束中的一不同传输波束在不同的TTI上发送的。
描述了另一种用于无线通信的装置。该装置可以包括处理器、与处理器耦合的存储器以及存储在存储器中的指令。该指令可操作以使得处理器:由用户设备(UE)接收下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号;至少部分地基于下行链路控制信号来识别两个或更多个传输波束;以及发送上行链路控制信号的多个重复,其中,每个重复是至少部分地基于该下行链路控制信号而使用该两个或更多个传输波束中的一不同传输波束在不同的TTI上发送的。
描述了一种用于无线通信的非暂时性计算机可读介质。该非暂时性计算机可读介质可以包括指令,该指令可操作以使得处理器:由用户设备(UE)接收下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号;至少部分地基于该下行链路控制信号来识别该两个或更多个传输波束;以及发送该上行链路控制信号的多个重复,其中,每个重复是至少部分地基于该下行链路控制信号而使用该两个或更多个传输波束中的一不同传输波束在不同的TTI上发送的。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该下行链路控制信号可以是无线电资源控制(RRC)信号。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于接收该RRC信号中的波束循环信息元素,该波束循环信息元素指示该两个或更多个传输波束的数量。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该波束循环信息元素可以与以下各项中的一个或多个相关联:该上行链路控制信号的上行链路资源或该上行链路控制信号的上行链路资源的类型。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该下行链路控制信号可以是上行链路授权。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于至少部分地基于该上行链路授权来识别用于该上行链路控制信号的不同重复的不同上行链路资源集合,其中,每个上行链路资源集合可以与该两个或更多个传输波束中的不同的一个传输波束相关联。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该上行链路授权可以包括持久性或半持久性授权。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于接收多个空间关系信息元素,每个空间关系信息元素与一不同的传输波束相关联,其中,识别该两个或更多个传输波束还可以至少部分地基于该多个空间关系信息元素。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,识别该两个或更多个传输波束可以包括:至少部分地基于该多个空间关系信息元素的顺序来选择该两个或更多个传输波束。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,识别该两个或更多个传输波束可以包括:接收介质访问控制(MAC)控制元素(CE),该MAC-CE指示在接收到的该多个空间关系信息元素中与该两个或更多个传输波束相对应的空间关系信息元素集合。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,发送该上行链路控制信号的该多个重复的顺序可以是至少部分地基于接收到的空间关系信息元素的顺序的。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,使用该两个或更多个传输波束发送该上行链路控制信号的该多个重复可以包括:至少部分地基于所发送的TTI索引、与该上行链路控制信号相关联的绝对TTI索引或者与该上行链路控制信号相关联的一组TTI(即,以每N个TTI为基础)来在该两个或更多个传输波束中进行循环。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于选择用于发送该上行链路控制信号的该多个重复中的每一个重复的功率控制参数。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,用于在第一TTI中的传输的第一功率控制参数可以至少部分地基于用于在前一TTI中的传输的前一功率控制参数来选择。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,用于在第一TTI中的传输的第一功率控制参数可以至少部分地基于第一TTI来选择。
描述了一种无线通信的方法。该方法可以包括:识别用于从用户设备(UE)接收上行链路控制信号的两个或更多个传输波束;向UE发送下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送该上行链路控制信号;以及从UE接收该上行链路控制信号的多个重复,其中,每个重复是至少部分地基于该下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
描述了一种用于无线通信的装置。该装置可以包括:用于识别用于从用户设备(UE)接收上行链路控制信号的两个或更多个传输波束的单元;用于向UE发送下行链路控制信号的单元,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用该两个或更多个传输波束来发送该上行链路控制信号;以及用于从UE接收该上行链路控制信号的多个重复的单元,其中,每个重复是至少部分地基于该下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
描述了另一种用于无线通信的装置。该装置可以包括处理器、与处理器耦合的存储器以及存储在存储器中的指令。该指令可操作以使得处理器:识别用于从用户设备(UE)接收上行链路控制信号的两个或更多个传输波束;向UE发送下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用该两个或更多个传输波束来发送该上行链路控制信号;以及从UE接收该上行链路控制信号的多个重复,其中,每个重复是至少部分地基于该下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
描述了一种用于无线通信的非暂时性计算机可读介质。该非暂时性计算机可读介质可以包括指令,该指令可操作以使得处理器:识别用于从用户设备(UE)接收上行链路控制信号的两个或更多个传输波束;向UE发送下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用该两个或更多个传输波束来发送该上行链路控制信号;以及从UE接收该上行链路控制信号的多个重复,其中,每个重复是至少部分地基于该下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该下行链路控制信号可以是无线电资源控制(RRC)信号。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于在RRC信号中包括波束循环信息元素,该波束循环信息元素指示该两个或更多个传输波束的数量。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该下行链路控制信号可以包括要被用于发送该上行链路控制信号的该两个或更多个传输波束的列表。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于发送介质访问控制(MAC)控制元素(CE),其中,该MAC-CE可以包括两个或更多个空间关系信息元素的列表。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该两个或更多个空间关系信息元素可以按要被用于波束循环的顺序列出。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该下行链路控制信号可以包括针对该上行链路控制信号的上行链路授权,该上行链路授权标识用于该上行链路控制信号的不同重复的不同上行链路资源集合,其中,每个上行链路资源集合可与该两个或更多个传输波束中的不同的一个传输波束相关联。
描述了一种无线通信的方法。该方法可以包括:由用户设备(UE)接收下行链路控制信息(DCI),该下行链路控制信息(DCI)指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号并且指示至少一个探测参考信号(SRS)资源指示符;至少部分地基于该至少一个SRS资源指示符来确定用于上行链路数据信号的传输波束循环方案;以及发送该上行链路数据信号的多个重复,其中,每个重复是至少部分地基于该传输波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。
描述了一种用于无线通信的装置。该装置可以包括:用于由用户设备(UE)接收下行链路控制信息(DCI)的单元,该下行链路控制信息(DCI)指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号并且指示至少一个探测参考信号(SRS)资源指示符;用于至少部分地基于该至少一个SRS资源指示符来确定用于上行链路数据信号的传输波束循环方案的单元;以及用于发送该上行链路数据信号的多个重复的单元,其中,每个重复是至少部分地基于该传输波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。
描述了另一种用于无线通信的装置。该装置可以包括处理器、与处理器耦合的存储器以及存储在存储器中的指令。该指令可操作以使得处理器:由用户设备(UE)接收下行链路控制信息(DCI),该下行链路控制信息(DCI)指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号并且指示至少一个探测参考信号(SRS)资源指示符;至少部分地基于该至少一个SRS资源指示符来确定用于该上行链路数据信号的传输波束循环方案;以及发送该上行链路数据信号的多个重复,其中,每个重复是至少部分地基于该传输波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。
描述了一种用于无线通信的非暂时性计算机可读介质。该非暂时性计算机可读介质可以包括指令,该指令可操作以使得处理器:由用户设备(UE)接收下行链路控制信息(DCI),该下行链路控制信息(DCI)指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号并且指示至少一个探测参考信号(SRS)资源指示符;至少部分地基于该至少一个SRS资源指示符来确定用于该上行链路数据信号的传输波束循环方案;以及发送该上行链路数据信号的多个重复,其中,每个重复是至少部分地基于该传输波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该至少一个SRS资源指示符可以是两个或更多个SRS资源指示符。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于至少部分地基于该两个或更多个SRS资源指示符来确定循环周期。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,可以在由该两个或更多个SRS资源指示符指示的资源之后的传输机会中发送该上行链路数据信号的该多个重复。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该至少一个SRS资源指示符可以是单个SRS资源指示符。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于至少部分地基于该单个SRS资源指示符来识别额外SRS资源指示符的集合。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该DCI可以包括与该传输波束循环方案相对应的索引。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于接收波束循环方案的集合,每个波束循环方案具有对应的索引。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于至少部分地基于该索引来确定波束循环方案。
描述了一种无线通信的方法。该方法可以包括:发送下行链路控制信息(DCI),该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号以及指示对至少一个SRS资源指示符的指示;至少部分地基于该至少一个SRS资源指示符来确定用于该上行链路数据信号的波束循环方案;以及接收该上行链路数据信号的多个重复,其中,每个重复是至少部分地基于该波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
描述了一种用于无线通信的装置。该装置可以包括:用于发送下行链路控制信息(DCI)的单元,该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号以及指示对至少一个SRS资源指示符的指示;用于至少部分地基于该至少一个SRS资源指示符来确定用于该上行链路数据信号的波束循环方案的单元;以及用于接收该上行链路数据信号的多个重复的单元,其中,每个重复是至少部分地基于该波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
描述了另一种用于无线通信的装置。该装置可以包括处理器、与处理器耦合的存储器以及存储在存储器中的指令。该指令可操作以使得处理器:发送下行链路控制信息(DCI),该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号以及指示对至少一个SRS资源指示符的指示;至少部分地基于该至少一个SRS资源指示符来确定用于该上行链路数据信号的波束循环方案;以及接收该上行链路数据信号的多个重复,其中,每个重复是至少部分地基于该波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
描述了一种用于无线通信的非暂时性计算机可读介质。该非暂时性计算机可读介质可以包括指令,该指令可操作以使得处理器:发送下行链路控制信息(DCI),该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号以及指示对至少一个SRS资源指示符的指示;至少部分地基于该至少一个SRS资源指示符来确定用于该上行链路数据信号的波束循环方案;以及接收该上行链路数据信号的多个重复,其中,每个重复是至少部分地基于该波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,对该至少一个SRS资源指示符的指示可以包括两个或更多个SRS资源指示符。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,对该至少一个SRS资源指示符的指示可以包括单个SRS资源指示符。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,对该至少一个SRS资源指示符的指示可以包括与该波束循环方案相对应的索引。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于发送波束循环方案的集合,每个波束循环方案具有对应的索引。
描述了一种无线通信的方法。该方法可以包括:接收指示用于上行链路数据传输的资源的授权;确定用于上行链路控制信号的默认波束循环方案;至少部分地基于用于控制信道的默认波束循环方案来确定用于该上行链路数据传输的波束循环方案;以及发送该上行链路数据信号的多个重复,其中,每个重复是至少部分地基于所确定的用于上行链路数据传输的波束循环方案而使用两个或更多个传输波束中的不同的一个传输波束在不同的传输时间间隔(TTI)上发送的。
描述了一种用于无线通信的装置。该装置可以包括用于接收指示用于上行链路数据传输的资源的授权的单元;用于确定用于上行链路控制信号的默认波束循环方案的单元;用于至少部分地基于用于控制信道的默认波束循环方案来确定用于该上行链路数据传输的波束循环方案的单元;以及用于发送该上行链路数据信号的多个重复的单元,其中,每个重复是至少部分地基于所确定的用于上行链路数据传输的波束循环方案而使用两个或更多个传输波束中的不同的一个传输波束在不同的传输时间间隔(TTI)上发送的。
描述了另一种用于无线通信的装置。该装置可以包括处理器、与处理器耦合的存储器以及存储在存储器中的指令。该指令可操作以使得处理器:接收指示用于上行链路数据传输的资源的授权;确定用于上行链路控制信号的默认波束循环方案;至少部分地基于用于控制信道的默认波束循环方案来确定用于该上行链路数据传输的波束循环方案;以及发送该上行链路数据信号的多个重复,其中,每个重复是至少部分地基于所确定的用于上行链路数据传输的波束循环方案而使用两个或更多个传输波束中的不同的一个传输波束在不同的传输时间间隔(TTI)上发送的。
描述了一种用于无线通信的非暂时性计算机可读介质。该非暂时性计算机可读介质可以包括指令,该指令可操作以使得处理器:接收指示用于上行链路数据传输的资源的授权;确定用于上行链路控制信号的默认波束循环方案;至少部分地基于用于控制信道的默认波束循环方案来确定用于该上行链路数据传输的波束循环方案;以及发送该上行链路数据信号的多个重复,其中,每个重复是至少部分地基于所确定的用于上行链路数据传输的波束循环方案而使用两个或更多个传输波束中的不同的一个传输波束在不同的传输时间间隔(TTI)上发送的。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括过程、特征、单元或指令,用于识别配置可以包括识别用于与该上行链路数据传输相关联的物理上行链路共享信道的默认波束。在上述方法、装置和非暂时性计算机可读介质的一些示例中,用于控制信道的默认波束循环方案可以是至少部分地基于用于物理上行链路共享信道的该默认波束的。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,该控制信道可以包括上行链路控制信道或下行链路控制信道中的一个或多个。
附图说明
图1示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统的示例。
图2示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统的示例。
图3示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的通信流程的示例。
图4示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的传输序列的示例。
图5示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的通信流程的示例。
图6示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的通信流程的示例。
图7示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的通信流程的示例。
图8示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的通信流程的示例。
图9至图11示出了根据本公开内容各方面的支持上行链路多波束操作的设备的方框图。
图12示出了根据本公开内容各方面的包括支持上行链路多波束操作的UE的系统的方框图。
图13至图15示出了根据本公开内容各方面的支持上行链路多波束操作的设备的方框图。
图16示出了根据本公开内容各方面的包括支持上行链路多波束操作的基站的系统的方框图。
图17至图26示出了根据本公开内容各方面的用于上行链路多波束操作的方法。
具体实施方式
多波束通信可以提高通信的可靠性。例如,多波束通信的使用提供了对抗由于波束分集而引起的阻塞的鲁棒性。在一些情况下,上行链路多波束操作可以涉及用户设备(UE)在不同的传输时间间隔(TTI)期间使用不同的传输波束来发送上行链路信号的重复。
在一些示例中,基站可以向UE发送下行链路控制信号,例如,包含下行链路控制信息块的无线电资源控制信号(RRC)或物理下行链路控制信道(PDCCH)传输,以实现多波束操作。下行链路控制信号可以指示要使用不同的传输波束在不同的TTI中发送上行链路控制信号。在一些示例中,下行链路控制信号可以包括波束循环信息元素(IE),其指示哪些资源(例如,TTI)将被用于多波束操作。UE可以在所指示的资源期间发送上行链路控制信号的重复。UE可以至少部分地基于下行链路控制信号中的空间关系IE的顺序、从基站接收的后续信号(例如,介质访问控制-控制元素(MAC-CE))或其组合,来确定要在每个资源期间使用的传输波束。在一些其它示例中,下行链路控制信号可以是上行链路授权。上行链路授权可以指示要被用于多波束操作的资源(例如,时间和频率资源),并且还可以标识要用于在该资源期间的传输的一个或多个传输波束。
在一些示例中,UE可确定波束循环方案,并且可以至少部分地基于该波束循环方案在不同TTI期间使用不同传输波束来发送上行链路数据信号的重复。UE可以至少部分地基于从基站接收的一个或多个探测参考信号(SRS)资源指示符来确定波束循环方案。在一些其它示例中,UE可以至少部分地基于默认波束循环方案来确定该波束循环方案,该默认波束循环方案可以是与默认上行链路数据波束、上行链路控制波束、或下行链路波束相关联的波束循环方案。
首先在无线通信系统的上下文中描述本公开内容的各方面。进一步通过与上行链路多波束操作有关的装置图、系统图和流程图来例示并参考其来描述本公开内容的各方面。
图1示出了根据本公开内容的各个方面的无线通信系统100的示例。无线通信系统100包括基站105、UE 115和核心网络130。在一些示例中,无线通信系统100可以是长期演进(LTE)网络、高级LTE(LTE-A)网络、LTE-A Pro网络或新无线电(NR)网络。在一些情况下,无线通信系统100可以支持增强宽带通信、超可靠(即关键任务)通信、低延迟通信以及与低成本和低复杂度设备的通信。
基站105可以经由一个或多个基站天线与UE 115进行无线通信。本文描述的基站105可以包括或者可以被本领域技术人员称为基站收发机、无线电基站、接入点、无线电收发机、NodeB、eNodeB(eNB)、下一代NodeB或giga-NodeB(都可以称为gNB)、家庭NodeB、家庭eNodeB或某个其他合适的术语。无线通信系统100可以包括不同类型的基站105(例如,宏小区基站或小型小区基站)。本文描述的UE 115能够与各种类型的基站105和网络设备进行通信,包括宏eNB、小型小区eNB、gNB、中继基站等。
每个基站105可以与其中支持与各种UE 115的通信的特定地理覆盖区域110相关联。每个基站105可以经由通信链路125为相应的地理覆盖区域110提供通信覆盖,并且基站105和UE 115之间的通信链路125可以利用一个或多个载波。无线通信系统100中示出的通信链路125可以包括从UE 115到基站105的上行链路传输,或者从基站105到UE 115的下行链路传输。下行链路传输也可以称为前向链路传输,而上行链路传输也可以称为反向链路传输。
可以将用于基站105的地理覆盖区域110划分为仅构成地理覆盖区域110的一部分的扇区,并且每个扇区可以与小区相关联。例如,每个基站105可以为宏小区、小型小区、热点或其他类型的小区或其各种组合提供通信覆盖。在一些示例中,基站105可以是可移动的,并且因此为移动的地理覆盖区域110提供通信覆盖。在一些示例中,与不同技术相关联的不同地理覆盖区域110可以重叠,并且与不同技术相关联的重叠地理覆盖区域110可以由相同基站105或不同基站105支持。无线通信系统100可以包括例如异构LTE/LTE-A/LTE-APro或NR网络,其中不同类型的基站105为各种地理覆盖区域110提供覆盖范围。
术语“小区”是指用于与基站105通信(例如,通过载波)的逻辑通信实体,并且可以与用于区分通过相同或不同载波操作的相邻小区的标识符(例如,物理小区标识符(PCID)、虚拟小区标识符(VCID))相关联。在一些示例中,载波可以支持多个小区,并且可以根据可以为不同类型的设备提供接入的不同协议类型(例如,机器类型通信(MTC)、窄带物联网(NB-IoT)、增强型移动宽带(eMBB)等等)来配置不同的小区。在一些情况下,术语“小区”可以指逻辑实体在其上操作的地理覆盖区域110的一部分(例如,扇区)。
UE 115可以分散在整个无线通信系统100中,并且每个UE 115可以是固定的或移动的。UE 115也可以被称为移动设备、无线设备、远程设备、手持设备或订户设备,或者某个其他合适的术语,其中“设备”也可以被称为单元、站、终端或客户端。UE 115也可以是个人电子设备,例如蜂窝电话、个人数字助理(PDA)、平板电脑、膝上型电脑或个人计算机。在一些示例中,UE 115还可以指代无线本地环路(WLL)站、物联网(IoT)设备、万物联网(IoE)设备或MTC设备等等,它们可以是可以在诸如家用电器、车辆、仪表等的各种物品中实施。
诸如MTC或IoT设备的一些UE 115可以是低成本或低复杂度设备,并且可以提供机器之间的自动化通信(例如经由机器对机器(M2M)通信)。M2M通信或MTC可以是指允许设备彼此或与基站进行通信而无需人为干预的数据通信技术。在一些数量中,M2M通信或MTC可以包括来自集成了传感器或仪表的设备的通信,用于测量或捕获信息并将该信息中继给中央服务器或应用程序,该中央服务器或应用程序可以利用该信息或将信息呈现给与程序或应用程序交互的人。一些UE 115可被设计为收集信息或启用机器的自动行为。MTC设备的一些应用示例包括智能计量、库存监控、水位监控、设备监控、医疗监控、野生动物监控、天气和地质事件监控、车队管理和跟踪、远程安全感测、物理门禁控制和基于交易的业务计费。
一些UE 115可以被配置为采用降低功耗的操作模式,例如半双工通信(例如,支持经由发送或接收但不同时发送和接收的单向通信的模式)。在一些示例中,可以以降低的峰值速率执行半双工通信。UE 115的其他节电技术包括:当不参与活动通信时进入节电“深度睡眠”模式,或者在有限的带宽上操作(例如,根据窄带通信)。在一些情况下,UE 115可以被设计为支持关键功能(例如,任务关键功能),并且无线通信系统100可以被配置为为这些功能提供超可靠的通信。
在一些情况下,UE 115还能够与其他UE 115直接通信(例如,使用对等(P2P)或设备对设备(D2D)协议)。利用D2D通信的一组UE 115中的一个或多个可以在基站105的地理覆盖区域110内。在该组中的其他UE 115可以在基站105的地理覆盖区域110外,或者由于其他原因而无法从基站105接收传输。在一些情况下,经由D2D通信进行通信的UE 115的组可以使用一对多(1:M)系统,其中每个UE 115向组中的每个其他UE 115进行发送。在一些情况下,基站105实现用于D2D通信的资源的调度。在其他情况下,在不涉及基站105的情况下在UE 115之间执行D2D通信。
基站105可以与核心网络130进行通信并且与彼此进行通信。例如,基站105可以通过回程链路132(例如,经由S1或其他接口)与核心网络130连接。基站105可以通过回程链路134(例如,经由X2或其他接口)直接(例如,直接在基站105之间)或间接地(例如,经由核心网络130)彼此进行通信。
核心网络130可以提供用户认证、接入授权、跟踪、网际协议(IP)连接以及其他接入、路由或移动性功能。核心网络可以是演进分组核心(EPC),其可以包括至少一个移动性管理实体(MME)、至少一个服务网关(S-GW)和至少一个分组数据网络(PDN)网关(P-GW)。MME可以管理非接入层(例如,控制平面)功能,例如针对与EPC相关联的基站105服务的UE 115的移动性、认证和承载管理。用户IP分组可以通过S-GW转发,S-GW本身可以连接到P-GW。P-GW可以提供IP地址分配以及其他功能。P-GW可以连接到网络运营商IP服务。运营商IP服务可以包括对互联网、内联网、IP多媒体子系统(IMS)和分组交换(PS)流服务的接入。
诸如基站105的网络设备中的至少一些可以包括诸如接入网络实体的子组件,其可以是接入节点控制器(ANC)的示例。每个接入网络实体可以通过多个其他接入网络传输实体与UE 115通信,其他接入网络传输实体可以被称为无线电头端、智能无线电头端或传输/接收点(TRP)。在一些配置中,每个接入网络实体或基站105的各种功能可以分布在各种网络设备(例如,无线电头端和接入网络控制器)上或者合并到单个网络设备(例如,基站105)中。
无线通信系统100可以使用通常在300MHz至300GHz范围内的一个或多个频带来操作。通常,从300MHz到3GHz的区域被称为特高频(UHF)区域或分米频带,因为波长的长度范围从大约1分米到1米。建筑物和环境特征可能会阻挡或重定向UHF波。然而,这些波足以穿透结构以使宏小区向位于室内的UE 115提供服务。与使用低于300MHz的频谱的高频(HF)或甚高频(VHF)部分的较小频率和较长波的传输相比,UHF波的传输可以与较小的天线和较短的距离(例如,小于100km)相关联。
无线通信系统100还可以使用从3GHz到30GHz的频带在超高频(SHF)区域(也被称为厘米频带)中操作。SHF区域包括诸如5GHz工业、科学和医学(ISM)频带的频带,这些频带可以被能够容忍来自其他用户的干扰的设备机会性地使用。
无线通信系统100还可以在频谱的极高频(EHF)区域(例如,从30GHz到300GHz)(也被称为毫米频带)中操作。在一些示例中,无线通信系统100可以支持UE 115和基站105之间的毫米波(mmW)通信,并且各个设备的EHF天线可以甚至比UHF天线更小并且间隔更紧密。在一些情况下,这可以有利于UE 115内使用天线阵列。然而,与SHF或UHF传输相比,EHF传输的传播可能经受甚至更大的大气衰减和更短的距离。可以跨使用一个或多个不同频率区域的传输采用本文公开的技术,并且跨这些频率区域的频带的指定使用可能因国家或监管机构而异。
在一些情况下,无线通信系统100可以利用已许可和免许可无线电频谱频带。例如,无线通信系统100可以在诸如5GHz ISM频带的免许可频带中采用许可辅助接入(LAA)、免许可LTE(LTE-U)无线电接入技术或NR技术。当在免许可无线电频谱频带中操作时,诸如基站105和UE 115之类的无线设备可以采用通话前监听(LBT)过程来确保在发送数据之前频率信道畅通。在一些情况下,免许可频带中的操作可以基于CA配置结合在已许可频带(例如,LAA)中操作的CC。免许可频谱中的操作可以包括下行链路传输、上行链路传输、对等传输或这些的组合。免许可频谱中的双工可以基于频分双工(FDD)、时分双工(TDD)或两者的组合。
在一些示例中,基站105或UE 115可以配备有多个天线,其可以用于采用诸如发射分集、接收分集、多输入多输出(MIMO)通信或波束成形之类的技术。例如,无线通信系统100可以使用发送设备(例如,基站105)和接收设备(例如,UE 115)之间的传输方案,其中,发送设备配备有多个天线并且接收设备配备有一个或多个天线。MIMO通信可以采用多径信号传播以通过经由不同空间层发送或接收多个信号来增加频谱效率,这可以被称为空间复用。例如,该多个信号可以由发送设备经由不同的天线或不同的天线组合来发送。同样地,该多个信号可以由接收设备经由不同的天线或不同的天线组合来接收。该多个信号中的每一个可以被称为单独的空间流,并且可以携带与相同数据流(例如,相同的码字)或不同数据流相关联的比特。不同的空间层可以与用于信道测量和报告的不同天线端口相关联。MIMO技术包括单用户MIMO(SU-MIMO),其中多个空间层被发送到相同的接收设备,以及多用户MIMO(MU-MIMO),其中多个空间层被发送到多个设备。
波束成形,也可以称为空间滤波、定向发送或定向接收,是可以在发送设备或接收设备(例如,基站105或UE 115)处使用的信号处理技术,用以沿着发送设备和接收设备之间的空间路径成形或者引导天线波束(例如,发送波束或接收波束)。可以通过组合经由天线阵列的天线元件发送的信号来实现波束成形,使得相对于天线阵列在特定方向上传播的信号经历相长干涉,而其他信号经历相消干涉。经由天线元件发送的信号的调整可以包括发送设备或接收设备将经由某些幅度和相位偏移应用于经由与设备相关联的每个天线元件携带的信号。与每个天线元件相关联的调整可以由与特定方向相关联(例如,相对于发送设备或接收设备的天线阵列,或者相对于某个其他方向)的波束成形权重集来定义。
在一个示例中,基站105可以使用多个天线或天线阵列来进行波束成形操作以与UE 115进行定向通信。例如,一些信号(例如,同步信号、参考信号、波束选择信号或其他控制信号)可以由基站105在不同方向上多次发送,其可以包括根据与不同传输方向相关联的不同波束成形权重集来发送信号。不同波束方向上的传输可以用于(例如,由基站105或接收设备(诸如UE 115))识别用于基站105进行后续传输和/或接收的波束方向。一些信号,例如与特定接收设备相关联的数据信号,可以由基站105在单个波束方向(例如,与接收设备(诸如UE 115)相关联的方向)上发送。在一些示例中,可以至少部分地基于在不同波束方向上已发送的信号,来确定与沿单个波束方向的传输相关联的波束方向。例如,UE 115可以接收由基站105在不同方向上发送的一个或多个信号,并且UE 115可以向基站105报告对于其以最高信号质量或者其他可接受的信号质量接收的信号的指示。尽管参考由基站105在一个或多个方向上发送的信号来描述这些技术,但是UE 115可以采用类似的技术来在不同方向上多次发送信号(例如,用于识别用于UE 115进行后续发送或接收的波束方向)或在单个方向上发送信号(例如,用于将数据发送到接收设备)。
接收设备(例如,UE 115,其可以是mmW接收设备的示例)可以在从基站105接收各种信号时尝试多个接收波束,这些信号诸如同步信号、参考信号、波束选择信号或其他控制信号。例如,接收设备可以通过经由不同的天线子阵列进行接收、通过根据不同的天线子阵列处理接收的信号、通过根据应用于在天线阵列的多个天线元件处接收的信号的不同接收波束成形权重集进行接收、或者通过根据应用于在天线阵列的多个天线元件处接收的信号的不同接收波束成形权重集处理接收信号,来尝试多个接收方向,其中任何一种方式都可以被称为根据不同的接收波束或接收方向进行“监听”。在一些示例中,接收设备可以使用单个接收波束来沿单个波束方向进行接收(例如,当接收数据信号时)。单个接收波束可以在至少部分地基于根据不同接收波束方向进行监听而确定的波束方向上对准(例如,至少部分地基于根据多个波束方向进行监听而确定为具有最高信号强度、最高信噪比或者其他可接受信号质量的波束方向)。
在一些情况下,基站105或UE 115的天线可以位于一个或多个天线阵列内,其可以支持MIMO操作、或者发送或接收波束成形。例如,一个或多个基站天线或天线阵列可以共同位于天线组件处,例如天线塔。在一些情况下,与基站105相关联的天线或天线阵列可以位于不同的地理位置。基站105可以具有天线阵列,该天线阵列具有多个行和列的天线端口,基站105可以使用这些天线端口来支持与UE 115的通信的波束成形。同样,UE 115可以具有一个或多个天线阵列,其可以支持各种MIMO或波束成形操作。
在一些情况下,无线通信系统100可以是根据分层协议栈操作的基于分组的网络。在用户平面中,承载或分组数据汇聚协议(PDCP)层处的通信可以是基于IP的。无线电链路控制(RLC)层在一些情况下可以执行分组分段和重组以在逻辑信道上进行通信。介质访问控制(MAC)层可以执行优先级处理和逻辑信道到传输信道的复用。MAC层也可以使用混合自动重传请求(HARQ)来在MAC层提供重传以提高链路效率。在控制平面中,无线电资源控制(RRC)协议层可以提供UE 115与基站105或支持用户平面数据的无线电承载的核心网络130之间的RRC连接的建立、配置和维护。在物理层(PHY),可以将传输信道映射到物理信道。
在一些情况下,UE 115和基站105可以支持数据的重传以增加成功接收数据的可能性。HARQ反馈是增加通过通信链路125正确接收数据的可能性的一种技术。HARQ可以包括错误检测(例如,使用循环冗余校验(CRC))、前向纠错(FEC)和重传(例如,自动重传请求(ARQ))的组合。HARQ可以在较差的无线电条件(例如,信噪比条件)下改善MAC层的吞吐量。在一些情况下,无线设备可以支持相同时隙HARQ反馈,其中该设备可以在特定时隙中为在该时隙中的先前符号中接收的数据提供HARQ反馈。在其他情况下,设备可以在后续时隙中或根据某个其他时间间隔提供HARQ反馈。
LTE或NR中的时间间隔可以以基本时间单位(其可以称为Ts=1/30,720,000秒的采样周期)的倍数来表示。可以根据各自具有10毫秒(ms)持续时间的无线电帧来组织通信资源的时间间隔,其中,帧周期可以表示为Tf=307,200Ts。无线电帧可以通过范围从0到1023的系统帧号(SFN)来标识。每个帧可以包括编号从0到9的10个子帧,并且每个子帧可以具有1ms的持续时间。子帧可以被进一步分成各自具有0.5ms的持续时间的2个时隙,每个时隙可以包含6或7个调制符号周期(取决于每个符号周期前面的循环前缀的长度)。不包括循环前缀的情况下,每个符号周期可以包含2048个采样周期。在一些情况下,子帧可以是无线通信系统100的最小调度单元,并且可以被称为传输时间间隔(TTI)。在其他情况下,无线通信系统100的最小调度单元可以比子帧短或可以动态选择(例如,在缩短型TTI(sTTI)的突发中或使用sTTI的选定分量载波中)。
在一些无线通信系统中,时隙可以进一步划分为包含一个或多个符号的多个小时隙。在一些情况下,小时隙的符号或小时隙可以是最小调度单元。例如,每个符号的持续时间可以根据子载波间隔或操作频带而变化。此外,一些无线通信系统可以实现时隙聚合,其中多个时隙或小时隙被聚合在一起并用于UE 115和基站105之间的通信。
术语“载波”指的是具有定义的物理层结构的无线电频谱资源集合,用于支持通信链路125上的通信。例如,通信链路125的载波可以包括根据用于给定的无线电接入技术的物理层信道操作的无线电频谱频带的一部分。每个物理层信道可以携带用户数据、控制信息或其他信令。载波可以与预定义的频率信道(例如,E-UTRA绝对无线电频率信道号(EARFCN))相关联,并且可以根据信道栅格来定位以供UE 115发现。载波可以是下行链路或上行链路(例如,在FDD模式中),或者被配置为携带下行链路和上行链路通信(例如,在TDD模式中)。在一些示例中,在载波上发送的信号波形可以由多个子载波构成(例如,使用诸如OFDM或DFT-s-OFDM的多载波调制(MCM)技术)。
对于不同的无线电接入技术(例如,LTE、LTE-A、LTE-A Pro、NR等),载波的组织结构可以是不同的。例如,载波上的通信可以根据TTI或时隙来组织,TTI或时隙中的每一者可以包括用户数据以及用于支持解码用户数据的控制信息或信令。载波还可以包括专用捕获信令(例如,同步信号或系统信息等等)和协调载波操作的控制信令。在一些示例中(例如,在载波聚合配置中),载波还可以具有捕获信令或协调其他载波的操作的控制信令。
可以根据各种技术在载波上复用物理信道。物理控制信道和物理数据信道可以在下行链路载波上复用,例如,使用时分复用(TDM)技术、频分复用(FDM)技术或混合TDM-FDM技术。在一些示例中,在物理控制信道中发送的控制信息可以以级联方式分布在不同控制区域之间(例如,在公共控制区域或公共搜索空间与一个或多个UE特定控制区域或UE特定搜索空间之间)。
载波可以与无线电频谱的特定带宽相关联,并且在一些示例中,载波带宽可以被称为载波或无线通信系统100的“系统带宽”。例如,载波带宽可以是用于特定无线电接入技术的载波的多个预定带宽之一(例如,1.4、3、5、10、15、20、40或80MHz)。在一些示例中,每个被服务的UE 115可以被配置用于在部分或全部载波带宽上进行操作。在其他示例中,一些UE 115可以被配置用于使用与载波内的预定义部分或范围(例如,子载波或RB的集合)相关联的窄带协议类型的操作(例如,窄带协议类型的“带内”部署)。
在采用多载波调制(MCM)技术的系统中,资源元素可以包括一个符号周期(例如,一个调制符号的持续时间)和一个子载波,其中符号周期和子载波间隔是反向相关的。每个资源元素携带的比特数可以取决于调制方案(例如,调制方案的阶数)。此,UE 115接收的资源元素越多并且调制方案的阶数越高,UE 115的数据速率就可以越高。在MIMO系统中,无线通信资源可以指无线电频率频谱资源、时间资源和空间资源(例如,空间层)的组合,并且多个空间层的使用可以进一步增加用于与UE 115通信的数据速率。
无线通信系统100的设备(例如,基站105或UE 115)可以具有支持特定载波带宽上的通信的硬件配置,或者可以配置为支持载波带宽集合中的一个载波带宽上的通信。在一些示例中,无线通信系统100可以包括基站105和/或UE 115,其可以支持经由与多于一个不同载波带宽相关联的载波的同时通信。
无线通信系统100可以支持在多个小区或载波上与UE 115的通信,该特征可以被称为载波聚合(CA)或多载波操作。UE 115可以根据载波聚合配置而配置有多个下行链路CC和一个或多个上行链路CC。载波聚合可以与FDD和TDD分量载波一起使用。
在一些情况下,无线通信系统100可以使用增强型分量载波(eCC)。eCC可以由一个或多个特征表征,包括更宽的载波或频率信道带宽、更短的符号持续时间、更短的TTI持续时间或修改的控制信道配置。在一些情况下,eCC可以与载波聚合配置或双连接配置相关联(例如,当多个服务小区具有次优或非理想的回程链路时)。eCC还可以被配置用于免许可频谱或共享频谱(例如,允许多于一个运营商使用该频谱)中。以宽载波带宽为特征的eCC可以包括可由不能够监视整个载波带宽或者由于其他原因而被配置为使用有限的载波带宽(例如,以节省功率)的UE 115使用的一个或多个分段。
在一些情况下,eCC可以使用与其他CC不同的符号持续时间,其可以包括使用与其他CC的符号持续时间相比减少的符号持续时间。较短的符号持续时间可以与相邻子载波之间的间隔增加相关联。利用eCC的设备(诸如UE 115或基站105)可以以减少的符号持续时间(例如,16.67微秒)发送宽带信号(例如,根据20、40、60、80MHz等的频率信道或载波带宽)。eCC中的TTI可以包括一个或多个符号周期。在一些情况下,TTI持续时间(即,TTI中的符号周期的数量)可以是可变的。
诸如NR系统的无线通信系统可以利用已许可、共享和免许可频谱频带等等的任何组合。eCC符号持续时间和子载波间隔的灵活性可允许跨多个频谱使用eCC。在一些示例中,NR共享频谱可以增加频谱利用率和频谱效率,具体地通过资源的动态垂直(例如跨频率)和水平(例如跨时间)共享。
基站105中的一个或多个可以包括基站通信管理器101,其可以实现多波束上行链路操作。基站通信管理器101可以通过使基站105发送一个或多个下行链路控制消息来实现多波束上行链路操作。
在一些示例中,基站通信管理器101可以在诸如物理上行链路控制信道(PUCCH)的上行链路控制信道上实现多波束上行链路操作。
在一些示例中,基站通信管理器101可以生成RRC消息或信号,其可以包括空间关系信息元素(IE)的列表和资源IE的列表。RRC信号可以包括波束循环IE,其可以是时隙间、时隙内或TTI间波束循环IE等等(其中TTI可以是例如小时隙、时隙或多个时隙)。基站通信管理器101可以使基站105向UE 115发送RRC信号。
基站通信管理器101可以生成介质访问控制(MAC)控制元素(CE)。该MAC-CE可以将要用于多波束传输的资源IE链接到空间关系IE的列表中。空间关系IE可以按照波束将被循环的顺序列出。基站通信管理器101可以使基站105向UE 115发送MAC-CE。
在一些其它示例中,基站通信管理器101可以生成上行链路授权。上行链路授权可以标识要被用于多波束操作的两个或更多个资源(例如,传输时间间隔(TTI)),并且对于每个这样的资源,可以标识要使用的传输波束。基站通信管理器101可以使基站105向UE 115发送上行链路授权。
在一些示例中,基站通信管理器101可以在诸如物理上行链路共享信道(PUSCH)的上行链路数据信道上实现多波束上行链路操作。在一些示例中,针对不同分组或针对给定分组的不同HARQ重复的、利用经由SRS指示符的波束切换的单波束操作,也可以提供波束分集。在这种情况下,如果检测到链路劣化,则基站通信管理器101可以配置PUSCH重复,并且如果识别出两个独立的强度相当的波束,则添加波束跳变。这种PUSCH重复和波束跳变配置在超可靠低延迟通信的示例中是有帮助的,在超可靠低延迟通信的示例中可能需要在无需等待HARQ往返时间的情况下的更高的可靠性。
在一些示例中,基站通信管理器101可以生成下行链路控制信息(DCI)。DCI可以包括对探测参考信号(SRS)资源指示符的指示。对SRS资源指示符的指示可以是例如两个或更多个SRS资源指示符。在其它示例中,对SRS资源指示符的指示可以是单个SRS资源指示符。在一些其它示例中,对SRS资源指示符的指示可以是与SRS资源指示符模式相对应的索引。在这样的示例中,基站通信管理器101可能先前已经使得基站105向UE 115发送了多个SRS资源指示符模式以及相应的索引。基站通信管理器101可以使基站105向UE 115发送DCI。
UE 115可以包括UE通信管理器102,其可使用不同的传输波束在不同的TTI中在上行链路信道上发送上行链路信号的重复。UE通信管理器102可以至少部分地基于波束循环方案来发送上行链路信号的重复,其中,波束循环方案可以至少部分地基于从基站105接收的下行链路信号来确定。
上行链路信道可以是上行链路控制信道,例如PUCCH。UE通信管理器102可以从基站105接收下行链路控制信号,并且可以至少部分地基于下行链路控制信号来确定波束循环方案。
在一些示例中,下行链路控制信号可以是RRC信号。UE通信管理器102可以至少部分地基于RRC信号来确定波束循环方案。在一些示例中,UE通信管理器102还可以至少部分地基于从基站105接收的MAC-CE来确定波束循环方案。在一些其它示例中,UE通信管理器102可以至少部分地基于RRC信号中的空间关系IE的顺序来确定波束循环方案。
在一些示例中,下行链路控制信号可以是上行链路授权。UE通信管理器102可以至少部分地基于上行链路授权来确定波束循环方案。
UE通信管理器102可以使得UE 115至少部分地基于波束循环方案,使用不同的传输波束,在不同的TTI中在上行链路控制信道上发送上行链路控制信号的重复。
在一些其它示例中,上行链路信道可以是上行链路控制信道,例如PUSCH。UE通信管理器102可以识别在实施波束循环时要遵循的一个或多个波束。
在一些示例中,UE通信管理器102可以从基站105接收DCI。DCI可以包括对一个或多个SRS资源指示符的指示。UE通信管理器102可以至少部分地基于所指示的SRS资源指示符来实施波束循环方案。
在一些示例中,DCI可以包括两个或更多个SRS资源指示符。UE通信管理器102可以遵循所指示的SRS资源的波束。在一些其它示例中,DCI可以包括单个SRS资源指示符。UE通信管理器102可以至少部分地基于单个SRS资源指示符来识别额外SRS资源。UE通信管理器102可以遵循所指示的单个SRS资源和额外SRS资源的波束。在一些其它示例中,DCI可以包括与SRS资源指示符模式相对应的索引。UE通信管理器102可以至少部分地基于所接收的索引来确定SRS资源指示符模式。UE通信管理器可以至少部分地基于SRS资源指示符模式来实施波束循环。
在一些示例中,UE通信管理器102可以从基站105接收上行链路授权。UE通信管理器102可以根据该授权来识别用于传输的默认多波束配置。在一些示例中,默认多波束配置可以是默认PUSCH配置。在一些示例中,默认多波束配置可以是PUCCH配置。在一些示例中,默认多波束配置可以是下行链路配置。UE通信管理器102可以至少部分地基于默认多波束配置来确定波束循环方案。例如,默认多波束配置可以是默认波束循环方案,并且可以将默认波束循环方案用作用于上行链路信号的传输的波束循环方案。在一些其它示例中,可以例如基于上行链路数据信道和与默认配置相关联的信道之间的差异来修改默认波束循环方案。
UE通信管理器102可以使得UE 115基于由UE通信管理器102识别的波束循环方案,在不同TTI中使用不同传输波束,在上行链路数据信道上发送上行链路数据信号的重复。
图2示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统200的示例。在一些示例中,无线通信系统200可以实现无线通信系统100的各方面。
无线通信系统200可以包括基站205和UE 210。基站205可以是参考图1描述的基站105的各方面的示例。UE 210可以是参考图1描述的UE 115的各方面的示例。UE 210能够使用多个传输波束进行发送。
基站205可以在下行链路信道215上向UE 210发送信息,并且可以在上行链路信道220上从UE 210接收信息。为了在上行链路信道220上实现多波束操作,基站205可以在下行链路信道215上发送下行链路信号。下行链路信号可以指示要使用多个传输波束中的两个或更多个传输波束在上行链路信道220上发送上行链路信号。
在一些示例中,上行链路信道220可以是上行链路控制信道,例如物理上行链路控制信道(PUCCH)。基站205可以通过发送下行链路控制信号来在上行链路控制信道上实现多波束操作,其中该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号。TTI可以是例如时隙、小时隙等。在这样的示例中,例如,如果重复可以增加覆盖范围,则基站205可以配置使用不同波束的上行链路传输重复,或者当识别出具有相似强度的两个不同波束时,波束跳变配置可以提供额外的鲁棒性。
在一些示例中,下行链路控制信号可以是无线电资源控制(RRC)信号。RRC信号可以包括空间关系信息元素(IE)的列表和资源IE的列表。每个空间关系IE可以指示传输波束。例如,空间关系IE可以包括同步信号块(SSB)波束索引、非零功率(NZP)信道状态信息参考信号(CSI-RS)、探测参考信号(SRS)资源。每个空间关系IE还可以包括与所指示的传输波束相关联的功率控制参数。功率控制参数可以包括例如下行链路路径损耗参考、闭环索引、P0索引或其组合。每个资源IE可以指示要被用于上行链路传输的TTI或资源集合。例如,每个资源IE可以包括对起始资源块(RB)的指示、对是否启用传输时间间隔(TTI)内的跳频的指示、对第二跳变物理RB(PRB)的指示、以及资源特定参数,例如,符号编号、起始符号、初始循环移位(例如,用于PUCCH格式0和1)、PRB编号(例如,用于PUCCH格式2和3)、正交覆盖码索引(例如,用于PUCCH格式1和4)。
RRC信号还可以包括波束循环IE。波束循环IE可以是TTI间波束循环IE,例如时隙间波束循环IE。波束循环IE可以包括要被循环通过的多个波束。在一些示例中,波束循环IE可以与每个资源IE一起被包括(例如,通过在资源IE中包括与要被循环通过的多个波束相对应的索引)。在一些其它示例中,波束循环IE可以对应于资源的格式,使得波束循环IE应用于具有对应格式的所有资源IE。
基站205还可以在下行链路信道215上向UE 210发送介质访问控制(MAC)控制元素(CE)。MAC-CE可以指示在所指示的TTI期间哪些传输波束将被用于传输。对于要被发送一次的上行链路控制信号,MAC-CE可以将资源IE与空间关系IE相关联。
对于多波束操作,MAC-CE可以将索引大于或等于一的资源IE与空间关系IE的列表相关联。空间关系IE可以按照将利用时隙重复对传输波束进行循环的顺序列出。MAC-CE的大小可以基于要被循环通过的波束的数量、重复TTI的数量或其组合而变化。可替换地,可以根据需要使用填充比特,以确保填充之后的最终MAC-CE大小与这些变化无关。
UE 210可以接收RRC信号和MAC-CE,并且可以基于此来确定用于多波束操作的参数。例如,UE 210可以至少部分地基于RRC信号、MAC-CE或其组合,来识别要被用于发送上行链路控制信号的重复的TTI,以及要在每个TTI期间使用的传输波束。UE 210可以使用所识别的TTI和传输波束的组合在220上发送上行链路控制信号的重复。
UE 210还可以确定要在每个TTI期间使用的功率控制参数。在一些示例中,UE 210可以确定要在初始TTI期间用于传输的功率控制参数,并且可以在后续TTI期间应用这些功率控制参数。在一些示例中,UE 210可以至少部分地基于与要被用于TTI的传输波束相对应的空间关系IE,来确定用于该TTI的功率控制参数。在一些示例中,UE 210可以至少部分地基于前一TTI中的功率控制参数来确定用于第一TTI的第一功率控制参数(例如,P0和/或闭环索引),并且可以至少部分地基于与第一TTI相对应的空间关系IE来确定用于第一TTI的第二功率控制参数(例如,下行链路路径损耗参考)。
在一些示例中,UE 210可以跳过针对多波束传输所识别的TTI中的一个或多个TTI(例如,因为在上行链路/下行链路配置中存在的上行链路符号不够)。在一些示例中,UE210可以至少部分地基于所发送的TTI计数来执行波束循环。在这样的示例中,UE 210可以在UE 210在其中进行发送的TTI内,循环通过所识别的波束。在一些其它示例中,UE 210可以至少部分地基于绝对TTI索引来执行波束循环。在这样的示例中,UE 210可以跳过一个或多个传输波束。
在一些示例中,UE 210可以通过单独地循环通过每个传输波束来执行波束循环。在一些其它示例中,UE 210可以在每N个时隙的基础上执行波束循环,其中N是整数。在这样的示例中,UE 210可以在N个TTI的第一集合中使用第一传输波束来发送上行链路控制信号的重复,在N个TTI的第二集合中使用第二传输波束来发送上行链路控制信号的重复,并且依此类推。
基站205和/或UE 210可能不支持MAC-CE更新。在一些示例中,可能不支持多波束上行链路操作。在一些其它示例中,UE 210可以在没有MAC-CE的情况下实施多波束上行链路操作。例如,UE 210可以至少部分地基于RRC信号来识别要被用于多波束操作的TTI。UE210可以通过按照所列出的空间关系IE的顺序循环通过传输波束,来识别要在所识别的TTI中的每一个TTI期间使用的传输波束。
在一些示例中,下行链路控制信号可以是针对上行链路控制信号的上行链路授权。例如,上行链路授权可以是在下行链路控制信息(DCI)中发送的PUCCH授权。
上行链路授权可以包括对可被用于发送上行链路控制信号的重复的两个或更多个上行链路资源集合的指示。对两个或更多个上行链路资源集合的指示可以是例如确认资源指示符(ARI)集合。上行链路授权还可以包括对要被用于每个上行链路资源集合的传输波束的指示。例如,对传输波束的该指示可以是k1值。在一些示例中,上行链路授权可以包括针对上行链路资源集合中的一个或多个集合的传输参数(例如,功率控制参数)。
基站205可以在下行链路信道215上向UE 210发送上行链路授权。UE 210可以至少部分地基于上行链路授权来识别用于多波束操作的两个或更多个TTI。例如,UE 210可以至少部分地基于对两个或更多个上行链路资源集合的指示来识别两个或更多个TTI。UE 210可以识别要在所识别的TTI中的每一个TTI期间使用的传输波束。在一些示例中,上行链路授权可以包括与用于每个TTI的传输波束相关联的标识符,并且UE 210可以至少部分地基于用于TTI的相应标识符来识别传输波束。在一些其它示例中,上行链路授权可以包括与用于第一TTI的传输波束相关联的标识符,并且UE 210可以至少部分地基于用于第一TTI的标识符来识别用于其它TTI的传输波束。UE 210可以使用所识别的TTI和传输波束的组合来在220上发送上行链路控制信号的重复。
在一些其它示例中,上行链路信道220可以是上行链路数据信道,例如物理上行链路共享信道(PUSCH)。
在一些示例中,基站205可以发送下行链路控制信息(DCI),该DCI指示要在不同的TTI期间使用两个或更多个传输波束来发送上行链路数据信号。DCI还可以包括对至少一个探测参考信号(SRS)资源指示符SRI的指示。PUSCH上的多波束操作可以遵循由至少一个SRS资源指示符指示的SRS资源的波束。SRS资源指示符还可以索引到功率控制参数的列表中,例如下行链路路径损耗参考、P0(例如,目标接收功率)、α(例如,路径损耗补偿因子)、闭环索引、等等。在这种情况下,一旦两个SRI与PUSCH相关联,则可以重用一个SRI的功率控制参数。
在一些示例中,对至少一个SRS资源指示符的指示可以是多个SRS资源指示符。上行链路数据信号的重复的传输可以遵循多个SRS资源指示符的波束。在一些示例中,可以预先配置波束循环周期。在一些其它示例中,可以至少部分地基于多个SRS资源指示符来确定波束循环周期。
在一些示例中,对至少一个SRS资源指示符的指示可以是单个SRS资源指示符。UE210可以至少部分地基于单个SRS资源指示符,来确定要被用于波束循环的额外SRS资源指示符。在一些示例中,UE 210可以基于后续SRS资源指示符的列表来确定额外SRS资源指示符(例如,可以基于对SRS资源指示符SRI的接收来确定额外SRS资源指示符SRI+1、SRI+2等)。在一些其它示例中,UE 210可以至少部分地基于单个SRS资源指示符来缩减选择(downselect)SRS资源指示符。在一些示例中,UE 210可以在与SRS相对应的SRI中进行缩减选择,其中该SRS实际上已经在与第一SRS所指的时隙或TTI相关联的(例如,开始于该时隙或TTI)的多个连续时隙或TTI中被发送。在这种情况下,当确定连续时隙或TTI的数量时,UE210可以跳过某些时隙或TTI(例如,将仅下行链路时隙或TTI视为没有破坏“连续性”)。
在一些示例中,基站205可以向UE 210发送SRS资源指示符模式集合。SRS资源指示符模式集合中的每个SRS资源指示符模式可以包括对应的索引。对至少一个SRS资源指示符的指示可以是与其中一个SRS资源指示符模式相对应的索引。UE 210可以选择与该资源相对应的SRS资源指示符模式,并且可以遵循在SRS资源指示符模式中标识的SRS资源指示符的波束。在一些示例中,DCI可以将索引携带到SRI或波束循环模式的集合中,而不是SRI中。在这种情况下,可以至少部分地基于多个定义的模式在灵活性和DCI开销之间进行折衷,并且可以通过RRC信号或MAC-CE来更新这些模式。在一些示例中,即使没有配置SRS,也可以存在SRI,并且可以直接将SRI解释为指向波束列表(例如PUCCH波束列表、PUCCH空间关系IE等)中的索引。在不存在或未定义SRS和/或SRI的一些示例中,可以使用基于PUCCH的默认波束,遵循用于PUCCH的方法。基于PUCCH的默认波束可以应用于半持久性调度或免授权情况。
在一些其它示例中,UE 210可以执行遵循默认波束的波束循环。默认波束可以是例如默认上行链路数据波束、上行链路控制波束或下行链路波束。
基站205可以向UE 210发送上行链路授权。上行链路授权可以指示UE 210可以用于上行链路数据传输的资源。
基站205可以确定默认波束循环方案。在一些示例中,默认波束循环方案可以是与上行链路数据信道(例如,PUSCH)相关联的默认波束循环方案。在一些其它示例中,默认波束循环方案可以是与上行链路控制信道(例如,PUCCH)相关联的波束循环方案。在一些其它示例中,默认波束循环方案可以是与下行链路信道相关联的波束循环方案。在这种情况下,默认波束循环可以遵循PDCCH多波束配置(如果有的话),或者与多个PDCCH波束相关联。在这些情况下,功率控制参数仍然可以基于默认PUCCH波束,并且遵循用于PUCCH多波束功率控制的方法。
UE 210随后可以至少部分地基于默认波束循环方案来确定用于上行链路数据传输的波束循环方案。在一些示例中,波束循环方案可以是默认波束循环方案。在一些其它示例中,UE 210可以修改默认波束循环方案。例如,默认波束循环方案可以是与PUCCH波束相关联的波束循环方案。PUCCH波束可以使用每N个TTI的循环,其中N是整数。然而,PUCCH波束和PUSCH波束可以具有不同的重复因子。因此,UE 210可以基于PUSCH重复因子来调整N的值。UE 210随后可以至少部分地基于所确定的波束循环方案来发送上行链路数据信号的重复。在一些示例中,UE 210可以使用相同的N,并且循环的数量可以基于重复因子而不同。
在一些示例中,基站205可以定义多个固定PUCCH资源以指示多个默认PUSCH波束。UE 210可以在重复的PUSCH TTI中循环通过多个默认PUSCH波束。在一些示例中,可以至少部分地基于MAC-CE更新来更新该多个默认PUSCH波束,例如,如在所有PUCCH波束中一样。这种MAC-CE可更新的PUSCH波束可以允许多波束PUSCH,即使PUCCH可能不是多波束的。
图3示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的通信流程300的示例。在一些示例中,该无线通信系统可以实现无线通信系统100的各方面。
通信流程300示出了基站305和UE 310之间的通信。基站305和UE 310可以分别是如参考图1所描述的基站105和UE 115的各方面的示例。
基站305可以向UE 310发送空间关系信息元素(IE)315的列表。空间关系IE 315可以是物理上行链路控制信道(PUCCH)空间关系信息IE。可以在无线电资源控制(RRC)信令中发送空间关系IE 315。每个空间关系IE 315可以指示传输波束。例如,空间关系IE 315可以包括同步信号块(SSB)波束索引、非零功率(NZP)信道状态信息参考信号(CSI-RS)、探测参考信号(SRS)资源。空间关系IE 315还可以包括与所指示的传输波束相关联的功率控制参数。功率控制参数可以包括例如下行链路路径损耗参考、闭环索引、P0索引或其组合。在一些示例中,一旦将用于每个PUCCH资源的两个PUCCH空间关系信息配置进行了关联,每个波束可以获得其自己的功率控制参数。
基站305可以向UE 310发送资源IE 320的列表。资源IE 320可以是PUCCH资源IE。可以在RRC信令中发送资源IE 320。每个资源IE 320可以指示可用于上行链路控制传输的资源。例如,资源IE 320可以包括对起始资源块(RB)的指示、对是否启用传输时间间隔(TTI)内的跳频的指示、对第二跳变物理RB(PRB)的指示、以及资源特定参数。资源特定参数可以包括符号的数量、起始符号、初始循环移位、PRB的数量、正交覆盖码(OCC)或其组合。资源IE 320的列表还可以包括针对每种格式的单独格式配置IE,其可以包括对与该格式相关联的所有资源共同的参数。这些参数可以包括TTI重复、TTI之间的跳频、额外的解调参考信号、π/2移位二相移键控(BPSK)、等等。
基站305可以发送波束循环IE 325。波束循环IE 325可以是TTI间波束循环IE,例如时隙间波束循环IE。然而,也可以使用其它TTI。例如,TTI可以是小时隙。波束循环IE 325可以指示要在不同的TTI期间使用两个或更多个传输波束来发送上行链路控制信号。在一些示例中,可以仅当要在多于一个TTI中发送上行链路控制信号时才发送波束循环IE 325。在一些示例中,波束循环IE 325可以指示要被用于在两个或更多个TTI期间发送上行链路控制信号的传输波束的数量。
在一些示例中,波束循环IE 325可以在RRC信令中发送。在一些示例中,波束循环IE 325可以与空间关系IE 315和/或资源IE 320一起发送。例如,波束循环IE 325可以与每个资源IE 320相关联。在一些其它示例中,可以将波束循环IE 325包括在格式配置IE中。
在一些情况下,基站305可以向UE 310发送介质访问控制(MAC)控制元素(CE)330。MAC-CE 330将资源IE 320与空间关系IE 315相关联。MAC-CE 330可以将索引大于或等于一的每个资源IE 320(即,具有相关联的波束循环IE 325的每个资源IE 320)链接到一个或多个空间关系IE 315。例如,MAC-CE 330可以将索引大于或等于一的资源IE 320的列表与空间关系IE 315的列表相关联。空间关系IE 315可以按照要利用TTI重复循环通过波束的顺序而在MAC-CE 330中列出。MAC-CE 330的大小可以基于每个波束循环IE 325要循环通过的波束的数量、重复的TTI的数量或其组合而变化。
基站305可以向UE 310发送上行链路授权335。上行链路授权335可以标识要由UE310用于传输的资源。
在340处,UE 310可以选择要被用于波束循环的传输波束。UE 310可以至少部分地基于MAC-CE 330来选择这些波束,例如,通过选择在MAC-CE 330中标识的波束。在一些示例中,UE 310可以至少部分地基于空间关系IE 315、资源IE 320、波束循环IE 325、MAC-CE330和上行链路授权335或其任意组合来选择波束。
在345处,UE 310可以执行波束循环。在一些示例中,可以至少部分地基于所发送的TTI计数来执行波束循环,使得UE 310在UE 310在其中进行发送的TTI中循环通过所选择的传输波束。在一些其它示例中,可以至少部分地基于绝对TTI索引来执行波束循环,使得UE 310在资源IE 320的列表中所标识的TTI中循环通过所选择的传输波束,即使是UE 310在该TTI中没有进行发送(例如,因为该TTI被用于下行链路传输)。在一些其它示例中,可以在每N个TTI的基础上执行波束循环。
UE 310可以向基站305发送上行链路控制信号350的重复。可以在与索引大于或等于一(即,与波束循环IE 325相关联)的资源IE 320相对应的TTI中发送上行链路控制信号的重复。UE 310可以至少部分地基于波束循环过程来发送上行链路控制信号的重复。
UE 310可以基于一个或多个功率参数来发送上行链路控制信号的重复。在一些示例中,UE 310可以确定用于发送上行链路控制信号的初始TTI的功率控制参数,并且可以将用于初始TTI的功率控制参数用于UE 310在其中发送上行链路控制信号的重复的剩余TTI。在一些其它示例中,UE 310可以至少部分地基于与TTI相关联的空间关系IE 315(例如,在MAC-CE 330中),来确定用于TTI的功率控制参数。在一些示例中,UE 310可以至少部分地基于前一TTI(例如,初始TTI)来确定用于TTI的第一功率控制参数,并且可以至少部分地基于相关联的空间关系IE 315来确定第二功率控制参数。
图4示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的通信流程400的示例。在一些示例中,该无线通信系统可以实现无线通信系统100的各方面。
通信流程400示出了基站405和UE 410之间的通信。基站405和UE 410可以分别是如参考图1所描述的基站105和UE 115的各方面的示例。
基站405可以向UE 410发送空间关系IE 415。空间关系IE 415可以是参考图3描述的空间关系IE 315的各方面的示例。
基站405可以向UE 410发送资源IE 420。资源IE 420可以是参考图3描述的资源IE320的各方面的示例。
基站405可以向UE 410发送波束循环IE 425。波束循环IE 425可以是如参考图3所描述的波束循环IE 325的各方面的示例。
基站405可以向UE 410发送上行链路授权430。上行链路授权430可以标识要由UE410用于传输的资源。
基站405可以不向UE 410发送MAC-CE。例如,基站405和/或UE 410可能不支持MAC-CE更新。在一些示例中,当不支持MAC-CE更新时,可能不支持多波束PUCCH。在一些其它示例中,UE 410可以至少部分地基于空间关系IE 415的列表来发送上行链路控制信号的重复。
例如,在435处,UE 410可以选择传输波束。UE 410可以至少部分地基于空间关系IE 415的列表来选择传输波束。在一些示例中,UE 410可以选择空间关系IE 415的列表中所指示的所有传输波束。在一些其它示例中,UE 410可以选择空间关系IE 415的列表中所指示的前N个传输波束,其中N是整数。数量N可以至少部分地基于波束循环IE 425来确定(例如,基于波束循环IE 425中的对要被循环通过的波束的数量N的指示)。在一些示例中,UE 410可以至少部分地基于空间关系IE 415、资源IE 420、波束循环IE 425和上行链路授权430或其任意组合来选择传输波束。
在440处,UE 410可以执行波束循环。UE 410可以使用在435处选择的传输波束来执行波束循环。在一些示例中,UE 410可以使用空间关系IE 415的列表中的传输波束的顺序来执行波束循环。
在440处,UE 410可以至少部分地基于波束循环来发送上行链路控制信号445的重复。可以如参考图3中的上行链路控制信号350的传输所描述的那样来发送上行链路控制信号445的重复。
图5示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的波束循环序列500的示例。在一些示例中,该无线通信系统可以实现无线通信系统100的各方面。
波束循环序列500包括第一波束循环序列505、第二波束循环序列510、第三波束循环序列515和第四波束循环序列520。每个波束循环序列使用一个三个传输波束的序列。例如,循环波束IE可以指示要循环通过三个波束。这三个波束由A、B和C表示。每个波束循环序列500使用十二个TTI。例如,MAC-CE可以指示波束循环序列500中的十二个TTI与三个波束A、B和C相关联。在一些其它示例中,DCI可以指示在十二个TTI期间可以使用波束A、B和C。
第一波束循环序列505示出了当所有十二个TTI都用于传输时这三个传输波束的使用。如第一波束循环序列505中所示,在这样的示例中,UE 115可以循环通过传输波束A、B和C。
然而,在一些示例中,UE 115可以跳过一个或多个TTI。例如,当在上行链路/下行链路配置中存在的上行链路符号不够时,UE 115可以跳过TTI。例如,UE 115可以在第二波束循环序列510和第三波束循环序列515期间跳过第一TTI 525和第二TTI 530。第一TTI525可以对应于索引3,而第二TTI可以对应于索引9。
在一些示例中,UE 115可以至少部分地基于所发送的TTI计数,使用传输波束进行发送。例如,在第二波束循环序列510中,UE 115可以至少部分地基于所发送的TTI计数,使用三个传输波束A、B和C进行发送。因为UE 115使用三个波束,所以该传输是基于模3方案的。UE 115在传输计数mod 3=1时使用波束A进行发送,在传输计数mod 3=2时使用波束B进行发送,并且在传输计数mod 3=0时使用波束C进行发送。
例如,UE 115可以在第一TTI(索引0)中使用波束A进行发送,在第二TTI(索引1)中使用波束B进行发送,并且在第三TTI(索引2)中使用波束C进行发送。UE 115可以跳过第四TTI(索引3)。在第五TTI(索引4)中,发送计数为四,因为传输计数中不包括跳过的TTI。因此,UE 115可以使用波束A进行发送。类似地,在第十一TTI(索引10)中,传输计数为9。因此,UE 115可以使用波束C进行发送。
在一些示例中,UE 115可以至少部分地基于绝对TTI索引,使用传输波束进行发送。例如,在第三波束循环序列515中,UE 115可以至少部分地基于绝对TTI索引,使用三个传输波束A、B和C进行发送。因为UE 115使用三个波束,所以传输是基于模3方案的。UE 115在TTI索引mod 3=0时使用波束A进行发送,在TTI索引mod 3=1时使用波束B进行发送,并且在TTI索引mod 3=2时使用波束C进行发送。
例如,UE 115可以在第一TTI(索引0)中使用波束A进行发送,在第二TTI(索引1)中使用波束B进行发送,并且在第三TTI(索引2)中使用波束C进行发送。UE 115可以跳过第四TTI(索引3)。在第五TTI(索引4)中,TTI索引是四。因此,UE 115可以使用波束B进行发送。在这样的示例中,在循环中跳过波束A。类似地,在第十一TTI(索引10)中,TTI索引为十。因此,UE 115可以使用波束B进行发送,并且可以再次跳过波束A。
在一些示例中,UE 115可以在每N个时隙的基础上使用传输波束进行发送,其中N是整数。在这样的示例中,UE 115可以确定重复的数量N。数量N可以至少部分地基于波束循环IE和/或空间关系IE来配置。UE 115然后可以在循环到下一传输波束之前,使用每个传输波束在N个TTI中进行发送。
例如,在第四波束循环序列520中,UE 115可以使用三个传输波束A、B和C。UE 115可以确定每个波束应当重复四次使用。因此,UE 115可以在第一组四个TTI(索引0-3)中使用传输波束A进行发送,可以在第二组四个TTI(索引4-7)中使用传输波束B进行发送,并且可以在第三组四个TTI(索引8-11)中使用传输波束C进行发送。
图6示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的通信流程600的示例。在一些示例中,该无线通信系统可以实现无线通信系统100的各方面。
通信流程600示出了基站605和UE 610之间的通信。基站605和UE 610可以分别是如参考图1所描述的基站105和UE 115的各方面的示例。
基站605可以向UE 610发送上行链路授权615。上行链路授权615可以是PUCCH上行链路授权,并且可以在下行链路控制信息(DCI)中发送。上行链路授权615可以包括对可被用于发送上行链路控制信号的重复的两个或更多个上行链路资源集合的指示。上行链路授权615还可以包括对要被用于每个上行链路资源集合的传输波束的指示。例如,上行链路授权615可以包括两个或更多个确认资源指示符(ARI),其可以标识两个TTI上的确认资源。每个ARI可以对应于k1值(例如,在例如DCI格式1_0或1_1中的PDSCH到HARQ反馈定时指示符)。在一些其它示例中,DCI可以指示单个k1值,并且剩余的k1值可以基于TTI重复方案来确定。在一些示例中,上行链路授权615可以包括用于其中一个或多个上行链路资源集合的传输参数(例如,功率控制参数)。在一些示例中,不同资源的参数可以遵循资源配置中的参数,或者可以从上行链路授权中的信息和/或从第一资源(例如,TTI)的参数中推断出。例如,所有TTI或时隙可以使用相同的PUCCH格式,即使是后来的资源配置指示不同的PUCCH格式。在遵循相应资源配置的情况下,可能存在一些约束,例如,所有资源可以具有相同PUCCH格式,否则上行链路授权可能被拒绝。在一些示例中,对于周期性和/或半持久性资源或传输,资源或传输配置可以标识多于一个PUCCH资源,例如,而不是标识已经被配置用于多波束操作的单个PUCCH资源。对多于一个PUCCH资源的这种标识可以应用于调度请求、周期性CSI报告或半持久性CSI报告。在这种情况下,由于配置是半静态的,因此具有更大的灵活性(例如,在资源开销方面)。例如,非连续时隙或TTI可以用于多时隙传输。在另一示例中,PUCCH多时隙配置可以应用于该PUCCH格式的所有PUCCH资源,从而允许仅针对某些用途(例如,针对调度请求)而选择性地实现多时隙传输。
在620处,UE 610可以识别两个或更多个TTI。UE 610可以至少部分地基于上行链路授权615来识别两个或更多个TTI。例如,该两个或更多个TTI可以对应于两个或更多个资源集合。
在625处,UE 610可以选择用于两个或更多个TTI中的每一个TTI的传输波束。UE610可以至少部分地基于上行链路授权615来识别用于两个或更多个TTI的传输波束。例如,可以在上行链路授权615中标识用于每个TTI的传输波束。在一些其它示例中,可以在上行链路授权615中标识用于这些TTI中的一个TTI的传输波束,并且UE 610可以至少部分地基于在上行链路授权615中标识的传输波束来确定用于其它TTI的传输波束。
UE 610发送上行链路控制信号630的重复。UE 610可以在620处识别的TTI之一上发送上行链路控制信号的每个重复。UE 610可以使用在625处选择的传输波束来在相应的TTI中发送上行链路控制信号的重复。
图7示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的通信流程700的示例。在一些示例中,该无线通信系统可以实现无线通信系统100的各方面。
通信流程700示出了基站705和UE 710之间的通信。基站705和UE 710可以分别是如参考图1所描述的基站105和UE 115的各方面的示例。
基站705可以向UE 710发送DCI 715。DCI 715可以指示要在不同的TTI期间使用两个或更多个传输波束来发送上行链路数据信号。DCI 715还可以包括一个或多个探测参考信号(SRS)资源指示符。
在一些示例中,DCI 715可以包括两个或更多个SRS资源指示符。在一些示例中,DCI 715可以包括单个SRS资源指示符。在一些示例中,DCI 715可以包括对波束循环模式的指示(例如,与波束循环模式相对应的索引)。
在720处,UE 710可以确定波束循环方案。在一些示例中,UE 710可以至少部分地基于DCI 715来识别两个或更多个SRS资源指示符。UE 710可以至少部分地基于该两个或更多个SRS资源指示符来确定波束循环周期,或者波束循环周期可以是预先配置的。
在一些示例中,UE 710可以至少部分地基于DCI 715来识别单个SRS资源指示符。UE 710可以至少部分地基于单个SRS指示符来识别额外SRS资源指示符。例如,UE 710可以识别接下来的N个SRS资源指示符的一集合,或者在前的N个资源指示符的一集合,其中,“接下来”和“在前”是指接下来的SRS索引和在前的SRS索引或者接下来发送的SRS和在前发送的SRS,并且N是整数。UE 710可以至少部分地基于单个SRS资源指示符来确定波束循环周期,或者波束循环周期可以是预先配置的。
在一些示例中,UE 710可以至少部分地基于DCI 715来识别索引。UE 710可以至少部分地基于所存储的索引集合来确定波束循环模式。例如,UE 710可以先前已经由基站705(例如,经由RRC信令或MAC-CE)配置有索引集合和对应的波束循环模式。UE 710可以至少部分地基于先前配置的索引,来识别与所识别的索引相对应的波束循环模式。
在725处,UE 710可以执行波束循环。UE 710可以至少部分地基于在720处确定的波束循环方案来执行波束循环。
UE 710可以发送上行链路数据信号730的重复。UE 710可以遵循由SRS资源指示符指示的SRS的波束。UE 710可以至少部分地基于在725处执行的波束循环过程来发送上行链路数据信号730的重复。
图8示出了根据本公开内容各方面的支持上行链路多波束操作的无线通信系统中的通信流程800的示例。在一些示例中,该无线通信系统可以实现无线通信系统100的各方面。
通信流程800示出了基站805和UE 810之间的通信。基站805和UE 810可以分别是如参考图1所描述的基站105和UE 115的各方面的示例。
基站805可以向UE 810发送授权815。授权815可以指示要被用于上行链路数据传输的资源。在一些示例中,授权815可以是PUSCH授权。
在820处,UE 810可以基于对授权815的接收来确定默认波束循环方案。在一些示例中,可以至少部分地基于用于PUCCH波束的波束循环方案来确定默认波束循环方案。在一些示例中,可以至少部分地基于用于PUSCH波束的默认波束循环方案来确定默认波束循环方案。在一些示例中,可以至少部分地基于用于下行链路波束的波束循环方案来确定默认波束循环方案。
在一些示例中,UE 810可以被配置有多个固定PUCCH资源以指示多个默认PUSCH波束。UE810可以在重复的PUSCH TTI中循环通过该多个PUSCH波束。默认PUSCH波束可以例如通过MAC-CE更新来更新。
在825处,UE 810可以确定波束循环方案。可以至少部分地基于在820处确定的默认波束循环方案来确定波束循环方案。在一些示例中,波束循环方案可以是默认波束循环方案。在一些其它示例中,波束循环方案可以是经修改的默认波束循环方案。例如,默认波束循环方案可以使用每N个TTI的循环,其中N是整数。数量N在对应于默认波束循环方案的波束与PUSCH波束之间可以不同。因此,可以修改数量N以对应于PUSCH波束。
在830处,UE 810可以执行波束循环。可以至少部分地基于在825处确定的波束循环方案来执行波束循环。UE 810可以向基站805发送上行链路数据信号835的重复。可以至少部分地基于830处的波束循环过程来发送上行链路数据信号835的重复。
图9示出了根据本公开内容各方面的支持上行链路多波束操作的无线设备905的方框图900。无线设备905可以是如本文所描述的用户设备(UE)115的各方面的示例。无线设备905可以包括接收机910、UE通信管理器915和发射机920。无线设备905还可以包括处理器。这些组件中的每一个可以彼此通信(例如,经由一条或多条总线)。
接收机910可以接收诸如与各种信息信道(例如,与上行链路多波束操作相关的控制信道、数据信道及信息等)相关联的分组、用户数据或控制信息的信息。可以将信息传递到设备905的其他组件。接收机910可以是参考图12描述的收发机1235的各方面的示例。接收机910可以利用单个天线或一组天线。
UE通信管理器915可以是参考图12描述的UE通信管理器1215的各方面的示例。
UE通信管理器915和/或其各个子组件中的至少一些可以用硬件、由处理器执行的软件、固件或其任何组合来实现。如果用由处理器执行的软件来实现,则UE通信管理器915和/或其各个子组件中的至少一些的功能可以由被设计为执行本公开内容中描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立门或晶体管逻辑、分立硬件组件或其任何组合来执行。UE通信管理器915和/或其各个子组件中的至少一些可以物理地位于各个位置,包括被分布为使得功能的各部分由一个或多个物理设备在不同的物理位置来实现。在一些示例中,根据本公开内容的各个方面,UE通信管理器915和/或其各个子组件中的至少一些可以是分离且不同的组件。在其他示例中,根据本公开内容的各个方面,UE通信管理器915和/或其各个子组件中的至少一些可以与一个或多个其他硬件组件组合,包括但不限于I/O组件、收发机、网络服务器、另一个计算设备、在本公开内容中描述的一个或多个其他组件,或者其组合。
UE通信管理器915可以:接收下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号;基于下行链路控制信号来识别该两个或更多个传输波束;以及发送上行链路控制信号的多个重复,其中,每个重复是基于下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。UE通信管理器915还可以:接收下行链路控制信息(DCI),下行链路控制信息(DCI)指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号以及指示至少一个探测参考信号(SRS)资源指示符;基于该至少一个SRS资源指示符来确定用于上行链路数据信号的传输波束循环方案;以及发送上行链路数据信号的多个重复,其中,每个重复是基于传输波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。UE通信管理器915还可以:接收指示用于上行链路数据传输的资源的授权;确定用于上行链路控制信号的默认波束循环方案;基于用于控制信道的默认波束循环方案来确定用于上行链路数据传输的波束循环方案;以及发送上行链路数据信号的多个重复,其中,每个重复是基于所确定的用于上行链路数据传输的波束循环方案而使用两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。
发射机920可以发送由设备905的其他组件生成的信号。在一些示例中,发射机920可以与接收机910在收发机模块中并置。例如,发射机920可以是参考图12描述的收发机1235的各方面的示例。发射机920可以利用单个天线或一组天线。
图10示出了根据本公开内容各方面的支持上行链路多波束操作的无线设备1005的方框图1000。无线设备1005可以是如参考图9所描述的无线设备905或UE 115的各方面的示例。无线设备1005可以包括接收机1010、UE通信管理器1015和发射机1020。无线设备1005还可以包括处理器。这些组件中的每一个可以彼此通信(例如,经由一条或多条总线)。
接收机1010可以接收诸如与各种信息信道(例如,与上行链路多波束操作相关的控制信道、数据信道及信息等)相关联的分组、用户数据或控制信息的信息。可以将信息传递到设备1005的其他组件。接收机1010可以是参考图12描述的收发机1235的各方面的示例。接收机1010可以利用单个天线或一组天线。
UE通信管理器1015可以是参考图12描述的UE通信管理器1215的各方面的示例。
UE通信管理器1015还可以包括下行链路控制信号处理器1025、传输波束识别器1030、上行链路控制信号调度器1035、DCI处理器1040、波束循环方案确定单元1045、上行链路数据信号生成器1050、授权处理器1055、默认波束循环方案识别器1060和上行链路数据信号调度器1065。
下行链路控制信号处理器1025可以:接收下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号;以及接收无线电资源控制(RRC)信号中的波束循环信息元素,波束循环信息元素指示该两个或更多个传输波束的数量。在一些情况下,波束循环信息元素与以下各项中的一个或多个相关联:上行链路控制信号的上行链路资源或上行链路控制信号的上行链路资源的类型。
传输波束识别器1030可以基于下行链路控制信号来识别该两个或更多个传输波束,并且基于上行链路授权来识别用于上行链路控制信号的不同重复的不同上行链路资源集合,其中,每个上行链路资源集合与该两个或更多个传输波束中的不同的一个传输波束相关联。在一些情况下,上行链路授权包括持久性或半持久性授权。在一些情况下,发送上行链路控制信号的多个重复的顺序是基于接收的空间关系信息元素的顺序的。
上行链路控制信号调度器1035可以发送上行链路控制信号的多个重复,其中,每个重复是基于该下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。在一些情况下,使用该两个或更多个传输波束发送上行链路控制信号的多个重复包括:基于所发送的TTI索引、与上行链路控制信号相关联的绝对TTI索引或者与上行链路控制信号相关联的一组TTI,来循环通过该两个或更多个传输波束。
DCI处理器1040可以接收DCI,该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号以及指示至少一个SRS资源指示符。在一些情况下,DCI包括与波束循环方案相对应的索引。
波束循环方案确定单元1045可以:基于该至少一个SRS资源指示符来确定用于上行链路数据信号的传输波束循环方案;基于该两个或更多个SRS资源指示符来确定循环周期;基于索引来确定波束循环方案,以及基于用于控制信道的默认波束循环方案来确定用于上行链路数据传输的波束循环方案。在一些情况下,用于控制信道的默认波束循环方案是基于用于物理上行链路共享信道的默认波束的。在一些情况下,控制信道包括上行链路控制信道或下行链路控制信道中的一个或多个。
上行链路数据信号生成器1050可以:发送上行链路数据信号的多个重复,其中,每个重复是基于波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。在一些情况下,在由该两个或更多个SRS资源指示符所指示的资源之后的传输机会中发送上行链路数据信号的多个重复。
授权处理器1055可以接收指示用于上行链路数据传输的资源的授权。
默认波束循环方案识别器1060可以确定用于上行链路控制信号的默认波束循环方案,并且识别配置包括识别用于与上行链路数据传输相关联的物理上行链路共享信道的默认波束。
上行链路数据信号调度器1065可以发送上行链路数据信号的多个重复,其中,每个重复是基于所确定的用于上行链路数据传输的波束循环方案而使用两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。
发射机1020可以发送由设备1005的其他组件生成的信号。在一些示例中,发射机1020可以与接收机1010在收发机模块中并置。例如,发射机1020可以是参考图12描述的收发机1235的各方面的示例。发射机1020可以利用单个天线或一组天线。
图11示出了根据本公开内容各方面的支持上行链路多波束操作的UE通信管理器1115的方框图1100。UE通信管理器1115可以是参考图9、10和12描述的UE通信管理器915、UE通信管理器1015或UE通信管理器1215的各方面的示例。UE通信管理器1115可以包括下行链路控制信号处理器1120、传输波束识别器1125、上行链路控制信号调度器1130、DCI处理器1135、波束循环方案确定单元1140、上行链路数据信号生成器1145、授权处理器1150、默认波束循环方案识别器1155、上行链路数据信号调度器1160、空间关系信息元素处理器1165、传输波束选择器1170、介质访问控制(MAC)CE处理器1175、功率控制参数选择器1180、额外SRS资源指示符识别器1185和波束循环集合处理器1190。这些模块中的每一个可以直接或间接地彼此通信(例如,经由一条或多条总线)。
下行链路控制信号处理器1120可以:接收下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号,以及接收RRC信号中的波束循环信息元素,该波束循环信息元素指示该两个或更多个传输波束的数量。在一些情况下,波束循环信息元素与以下各项中的一个或多个相关联:上行链路控制信号的上行链路资源或上行链路控制信号的上行链路资源的类型。
传输波束识别器1125可以:基于下行链路控制信号来识别两个或更多个传输波束,并且基于上行链路授权来识别用于上行链路控制信号的不同重复的不同上行链路资源集合,其中,每个上行链路资源集合与该两个或更多个传输波束中的不同的一个传输波束相关联。在一些情况下,上行链路授权包括持久性或半持久性授权。在一些情况下,发送上行链路控制信号的多个重复的顺序是基于接收的空间关系信息元素的顺序的。
上行链路控制信号调度器1130可以发送上行链路控制信号的多个重复,其中,每个重复是基于该下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。在一些情况下,使用该两个或更多个传输波束发送上行链路控制信号的多个重复包括:基于所发送的TTI索引、与上行链路控制信号相关联的绝对TTI索引或者与上行链路控制信号相关联的一组TTI(即,以每N个TTI为基础),来循环通过该两个或更多个传输波束。
DCI处理器1135可以接收DCI,该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号并且指示至少一个SRS资源指示符。在一些情况下,DCI包括与波束循环方案相对应的索引。
波束循环方案确定单元1140可以:基于该至少一个SRS资源指示符来确定用于上行链路数据信号的传输波束循环方案,基于该两个或更多个SRS资源指示符来确定循环周期,基于索引来确定波束循环方案,以及基于用于控制信道的默认波束循环方案来确定用于上行链路数据传输的波束循环方案。在一些情况下,用于控制信道的默认波束循环方案是基于用于物理上行链路共享信道的默认波束的。在一些情况下,控制信道包括上行链路控制信道或下行链路控制信道中的一个或多个。
上行链路数据信号生成器1145可以发送上行链路数据信号的多个重复,其中,每个重复是基于波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。在一些情况下,在由该两个或更多个SRS资源指示符指示的资源之后的传输机会中发送上行链路数据信号的多个重复。
授权处理器1150可以接收指示用于上行链路数据传输的资源的授权。
默认波束循环方案识别器1155可以确定用于上行链路控制信号的默认波束循环方案,并且识别配置包括:识别用于与上行链路数据传输相关联的物理上行链路共享信道的默认波束。
上行链路数据信号调度器1160可以发送上行链路数据信号的多个重复,其中,每个重复是基于所确定的用于上行链路数据传输的波束循环方案而使用两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。
空间关系信息元素处理器1165可以接收空间关系信息元素集合,每个空间关系信息元素与不同的传输波束相关联,其中,识别两个或更多个传输波束还是基于空间关系信息元素的。
传输波束选择器1170可以选择要被用于发送上行链路控制信号的重复的传输波束。在一些情况下,识别两个或更多个传输波束包括:基于空间关系信息元素的顺序来选择两个或更多个传输波束。
MAC-CE处理器1175可以处理接收到的介质访问控制(MAC)控制元素(CE)。在一些情况下,识别两个或更多个传输波束包括:接收介质访问控制(MAC)控制元素(CE),该MAC-CE指示所接收的空间关系信息元素集合中与该两个或更多个传输波束相对应的空间关系信息元素集合。
功率控制参数选择器1180可以选择用于发送上行链路控制信号的多个重复中的每一个重复的功率控制参数。在一些情况下,用于在第一TTI中传输的第一功率控制参数是基于用于在前一TTI中的传输的前一功率控制参数来选择的。在一些情况下,基于第一TTI来选择用于在该第一TTI中的传输的第一功率控制参数。
额外SRS资源指示符识别器1185可以基于单个SRS资源指示符来识别额外SRS资源指示符的集合。
波束循环集合处理器1190可以接收波束循环方案的集合,每个波束循环方案具有对应的索引。
图12示出了根据本公开内容各方面的包括支持上行链路多波束操作的设备1205的系统1200的图。设备1205可以是如以上例如参考图9和10所描述的无线设备905、无线设备1005或UE 115的组件的示例或包括这些组件。设备1205可以包括用于双向语音和数据通信的组件,包括用于发送和接收通信的组件,包括UE通信管理器1215、处理器1220、存储器1225、软件1230、收发机1235、天线1240和I/O控制器1245。这些组件可以经由一条或多条总线(例如,总线1210)进行电子通信。设备1205可以与一个或多个基站105进行无线通信。
处理器1220可以包括智能硬件设备(例如,通用处理器、DSP、中央处理单元(CPU)、微控制器、ASIC、FPGA、可编程逻辑器件、分立门或者晶体管逻辑组件、分立硬件组件或其任何组合)。在一些情况下,处理器1220可以被配置为使用存储器控制器来操作存储器阵列。在其它情况下,存储器控制器可以被集成到处理器1220中。处理器1220可以被配置为执行存储在存储器中的计算机可读指令以执行各种功能(例如,支持上行链路多波束操作的功能或任务)。
存储器1225可以包括随机存取存储器(RAM)和只读存储器(ROM)。存储器1225可以存储包括指令的计算机可读计算机可执行软件1230,所述指令在被执行时使处理器执行本文所述的各种功能。在一些情况下,存储器1225可以包含基本输入/输出系统(BIOS)等等,BIOS可以控制诸如与外围组件或设备的交互的基本硬件或软件操作。
软件1230可以包括用于实现本公开内容的各方面的代码,包括用于支持上行链路多波束操作的代码。软件1230可以被存储在诸如系统存储器或其他存储器的非暂时性计算机可读介质中。在一些情况下,软件1230可能不能由处理器直接执行,但可以使计算机(例如,当被编译和执行时)执行本文描述的功能。
收发机1235可以经由如本文所述的一个或多个天线、有线或无线链路进行双向通信。例如,收发机1235可以代表无线收发机,并且可以与另一个无线收发机进行双向通信。收发机1235还可以包括调制解调器,用以调制分组并且将调制的分组提供给天线用于传输,并且解调从天线接收到的分组。
在一些情况下,无线设备可以包括单个天线1240。然而,在一些情况下,设备1205可以具有多于一个的天线1240,其能够同时发送或接收多个无线传输。
I/O控制器1245可以管理设备1205的输入和输出信号。I/O控制器1245还可以管理没有被集成到设备1205中的外围设备。在一些情况下,I/O控制器1245可以代表到外部外设组件的物理连接或端口。在一些情况下,I/O控制器1245可以利用诸如
Figure BDA0002716975010000241
Figure BDA0002716975010000242
的操作系统或其他已知操作系统。在其他情况下,I/O控制器1245可以表示调制解调器、键盘、鼠标、触摸屏或类似设备或与其交互。在一些情况下,可以将I/O控制器1245实现为处理器的一部分。在一些情况下,用户可以经由I/O控制器1245或经由I/O控制器1245控制的硬件组件与设备1205交互。
图13示出了根据本公开内容各方面的支持上行链路多波束操作的无线设备1305的方框图1300。无线设备1305可以是如本文所描述的基站105的各方面的示例。无线设备1305可以包括接收机1310、基站通信管理器1315和发射机1320。无线设备1305还可以包括处理器。这些组件中的每一个可以彼此通信(例如,经由一条或多条总线)。
接收机1310可以接收诸如与各种信息信道(例如,与上行链路多波束操作相关的控制信道、数据信道及信息等)相关联的分组、用户数据或控制信息的信息。可以将信息传递到设备1305的其他组件。接收机1310可以是参考图16描述的收发机1635的各方面的示例。接收机1310可以利用单个天线或一组天线。
基站通信管理器1315可以是参考图16描述的基站通信管理器1615的各方面的示例。
基站通信管理器1315和/或其各个子组件中的至少一些可以用硬件、由处理器执行的软件、固件或其任何组合来实现。如果用由处理器执行的软件来实现,则基站通信管理器1315和/或其各个子组件中的至少一些的功能可以由被设计为执行本公开内容中描述的功能的通用处理器、DSP、ASIC、FPGA或其他可编程逻辑器件、分立门或晶体管逻辑、分立硬件组件或其任何组合来执行。基站通信管理器1315和/或其各个子组件中的至少一些可以物理地位于各个位置,包括被分布为使得功能的各部分由一个或多个物理设备在不同的物理位置来实现。在一些示例中,根据本公开内容的各个方面,基站通信管理器1315和/或其各个子组件中的至少一些可以是分离且不同的组件。在其他示例中,根据本公开内容的各个方面,基站通信管理器1315和/或其各个子组件中的至少一些可以与一个或多个其他硬件组件组合,包括但不限于I/O组件、收发机、网络服务器、另一个计算设备、在本公开内容中描述的一个或多个其他组件,或者其组合。
基站通信管理器1315可以:识别用于从UE 115接收上行链路控制信号的两个或更多个传输波束;向UE 115发送下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用该两个或更多个传输波束来发送上行链路控制信号;以及从UE115接收上行链路控制信号的多个重复,其中,每个重复是基于下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。基站通信管理器1315还可以发送DCI,该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号并且指示对至少一个SRS资源指示符的指示;基于该至少一个SRS资源指示符来确定用于上行链路数据信号的波束循环方案;以及接收上行链路数据信号的多个重复,其中,每个重复是基于波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
发射机1320可以发送由设备1305的其他组件生成的信号。在一些示例中,发射机1320可以与接收机1310在收发机模块中并置。例如,发射机1320可以是参考图16描述的收发机1635的各方面的示例。发射机1320可以利用单个天线或一组天线。
图14示出了根据本公开内容各方面的支持上行链路多波束操作的无线设备1405的方框图1400。无线设备1405可以是如参考图13所描述的无线设备905或基站105的各方面的示例。无线设备1405可以包括接收机1410、基站通信管理器1415和发射机1420。无线设备1405还可以包括处理器。这些组件中的每一个可以彼此通信(例如,经由一条或多条总线)。
接收机1410可以接收诸如与各种信息信道(例如,与上行链路多波束操作相关的控制信道、数据信道及信息等)相关联的分组、用户数据或控制信息的信息。可以将信息传递到设备1405的其他组件。接收机1410可以是参考图16描述的收发机1635的各方面的示例。接收机1410可以利用单个天线或一组天线。
基站通信管理器1415可以是参考图16描述的基站通信管理器1615的各方面的示例。
基站通信管理器1415还可以包括传输波束识别器1425、下行链路控制信号生成器1430、上行链路控制信号处理器1435、DCI生成器1440、波束循环方案确定单元1445和上行链路数据信号处理器1450。
传输波束识别器1425可以识别用于从UE 115接收上行链路控制信号的两个或更多个传输波束。
下行链路控制信号生成器1430可以:向UE 115发送下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号,并且在RRC信号中包括波束循环信息元素,该波束循环信息元素指示该两个或更多个传输波束的数量。在一些情况下,下行链路控制信号包括要被用于发送上行链路控制信号的传输波束的列表。在一些情况下,下行链路控制信号包括针对上行链路控制信号的上行链路授权,上行链路授权标识用于上行链路控制信号的不同重复的不同上行链路资源集合,其中,每个上行链路资源集合与该两个或更多个传输波束中的不同的一个传输波束相关联。
上行链路控制信号处理器1435可以从UE 115接收上行链路控制信号的多个重复,其中,每个重复是基于下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
DCI生成器1440可以发送DCI,该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号并且指示对至少一个SRS资源指示符的指示。在一些情况下,对至少一个SRS资源指示符的指示包括两个或更多个SRS资源指示符。在一些情况下,对至少一个SRS资源指示符的指示包括单个SRS资源指示符。在一些情况下,对至少一个SRS资源指示符的指示包括与波束循环方案相对应的索引。
波束循环方案确定单元1445可以基于该至少一个SRS资源指示符来确定用于上行链路数据信号的波束循环方案。
上行链路数据信号处理器1450可以接收上行链路数据信号的多个重复,其中,每个重复是基于波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
发射机1420可以发送由设备1405的其他组件生成的信号。在一些示例中,发射机1420可以与接收机1410在收发机模块中并置。例如,发射机1420可以是参考图16描述的收发机1635的各方面的示例。发射机1420可以利用单个天线或一组天线。
图15示出了根据本公开内容各方面的支持上行链路多波束操作的基站通信管理器1515的方框图1500。基站通信管理器1515可以是参考图13、14和16描述的基站通信管理器1315、1415和1615的各方面的示例。基站通信管理器1515可以包括传输波束识别器1520、下行链路控制信号生成器1525、上行链路控制信号处理器1530、DCI生成器1535、波束循环方案确定单元1540、上行链路数据信号处理器1545、MAC-CE生成器1550和波束循环集合生成器1555。这些模块中的每一个可以直接或间接地彼此通信(例如,经由一条或多条总线)。
传输波束识别器1520可以识别用于从UE 115接收上行链路控制信号的两个或更多个传输波束。
下行链路控制信号生成器1525可以:向UE 115发送下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号,并且在RRC信号中包括波束循环信息元素,该波束循环信息元素指示该两个或更多个传输波束的数量。在一些情况下,下行链路控制信号包括要被用于发送上行链路控制信号的传输波束的列表。在一些情况下,下行链路控制信号包括针对上行链路控制信号的上行链路授权,上行链路授权标识用于上行链路控制信号的不同重复的不同上行链路资源集合,其中,每个上行链路资源集合与该两个或更多个传输波束中的不同的一个传输波束相关联。
上行链路控制信号处理器1530可以从UE 115接收上行链路控制信号的多个重复,其中,每个重复是基于下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
DCI生成器1535可以发送DCI,该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号,并且指示对至少一个SRS资源指示符的指示。在一些情况下,对至少一个SRS资源指示符的指示包括两个或更多个SRS资源指示符。在一些情况下,对至少一个SRS资源指示符的指示包括单个SRS资源指示符。在一些情况下,对至少一个SRS资源指示符的指示包括与波束循环方案相对应的索引。
波束循环方案确定单元1540可以基于该至少一个SRS资源指示符来确定用于上行链路数据信号的波束循环方案。
上行链路数据信号处理器1545可以接收上行链路数据信号的多个重复,其中,每个重复是基于波束循环方案而使用两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。
MAC-CE生成器1550可以发送介质访问控制(MAC)控制元素(CE),其中,MAC-CE包括两个或更多个空间关系信息元素的列表。在一些情况下,该两个或更多个空间关系信息元素是按照要被用于波束循环的顺序列出的。
波束循环集合生成器1555可以发送波束循环方案的集合,每个波束循环方案具有对应的索引。
图16示出了根据本公开内容各方面的包括支持上行链路多波束操作的设备1605的系统1600的图。设备1605可以是如以上例如参考图1所描述的基站105的组件的示例或包括这些组件。设备1605可以包括用于双向语音和数据通信的组件,包括用于发送和接收通信的组件,包括基站通信管理器1615、处理器1620、存储器1625、软件1630、收发机1635、天线1640、网络通信管理器1645和站间通信管理器1650。这些组件可以经由一条或多条总线(例如,总线1610)进行电子通信。设备1605可以与一个或多个UE 115进行无线通信。
处理器1620可以包括智能硬件设备(例如,通用处理器、DSP、CPU、微控制器、ASIC、FPGA、可编程逻辑器件、分立门或者晶体管逻辑组件、分立硬件组件或其任何组合)。在一些情况下,处理器1620可以被配置为使用存储器控制器来操作存储器阵列。在其它情况下,存储器控制器可以被集成到处理器1620中。处理器1620可以被配置为执行存储在存储器中的计算机可读指令以执行各种功能(例如,支持上行链路多波束操作的功能或任务)。
存储器1625可以包括RAM和ROM。存储器1625可以存储包括指令的计算机可读计算机可执行软件1630,所述指令在被执行时使得处理器执行本文描述的各种功能。在一些情况下,存储器1625可以包含可以控制诸如与外围组件或设备的交互的基本硬件或软件操作的BIOS等等。
软件1630可以包括用于实现本公开内容的各方面的代码,包括用于支持上行链路多波束操作的代码。软件1630可以被存储在诸如系统存储器或其他存储器的非暂时性计算机可读介质中。在一些情况下,软件1630可能不能由处理器直接执行,但可以使计算机(例如,当被编译和执行时)执行本文描述的功能。
收发机1635可以经由如本文所述的一个或多个天线、有线或无线链路进行双向通信。例如,收发机1635可以代表无线收发机,并且可以与另一个无线收发机进行双向通信。收发机1635还可以包括调制解调器,用以调制分组并且将调制的分组提供给天线用于传输,并且解调从天线接收到的分组。
在一些情况下,无线设备1605可以包括单个天线1640。然而,在一些情况下,设备1605可以具有多于一个的天线1640,其能够同时发送或接收多个无线传输。
网络通信管理器1645可以可以管理与核心网络的通信(例如,经由一个或多个有线回程链路)。例如,网络通信管理器1645可以管理客户端设备(例如一个或多个UE 115)的数据通信的传输。
站间通信管理器1650可以管理与其他基站105的通信,并且可以包括控制器或调度器,用于与其他基站105协作地控制与UE 115的通信。例如,站间通信管理器1650可以针对诸如波束成形或联合传输的各种干扰减轻技术协调向UE 115的传输的调度。在一些示例中,站间通信管理器1650可以在长期演进(LTE)/LTE-A无线通信网络技术内提供X2接口以提供基站105之间的通信。
图17示出了根据本公开内容各方面的用于上行链路多波束操作的方法1700的流程图。方法1700的操作可以由本文所述的UE 115或其组件来实施。例如,方法1700的操作可以由如参考图9至12所描述的UE通信管理器执行。在一些示例中,UE 115可以执行代码集以控制设备的功能元件执行下面描述的功能。另外或可替换地,UE 115可以使用专用硬件来执行下面描述的功能的各方面。
在1705处,UE 115可以接收下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号。1705的操作可以根据本文描述的方法来执行。在某些示例中,1705的操作的各方面可以由参考图9至12所描述的下行链路控制信号处理器来执行。
在1710处,UE 115可以至少部分地基于下行链路控制信号来识别该两个或更多个传输波束。1710的操作可以根据本文描述的方法来执行。在某些示例中,1710的操作的各方面可以由参考图9至12所描述的传输波束识别器来执行。
在1715处,UE 115可以发送上行链路控制信号的多个重复,其中,每个重复是至少部分地基于该下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。1715的操作可以根据本文描述的方法来执行。在某些示例中,1715的操作的各方面可以由参考图9至12所描述的上行链路控制信号调度器来执行。
图18示出了根据本公开内容各方面的用于上行链路多波束操作的方法1800的流程图。方法1800的操作可以由本文所述的UE 115或其组件来实施。例如,方法1800的操作可以由如参考图9至12所描述的UE通信管理器执行。在一些示例中,UE 115可以执行代码集以控制设备的功能元件执行下面描述的功能。另外或可替换地,UE 115可以使用专用硬件来执行下面描述的功能的各方面。
在1805处,UE 115可以接收无线电资源控制(RRC)信号,该RRC信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号。RRC信号可以包括指示该两个或更多个传输波束的数量的波束循环信息元素。1805的操作可以根据本文描述的方法来执行。在某些示例中,1805的操作的各方面可以由参考图9至12所描述的下行链路控制信号处理器来执行。
在1810处,UE 115可以至少部分地基于RRC信号来识别该两个或更多个传输波束。可以至少部分地基于在波束循环信息元素中指示的两个或更多个传输波束的数量来识别该两个或更多个传输波束。1810的操作可以根据本文描述的方法来执行。在某些示例中,1810的操作的各方面可以由参考图9至12所描述的传输波束识别器来执行。
在1815处,UE 115可以发送上行链路控制信号的多个重复,其中,每个重复是至少部分地基于RRC信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。1815的操作可以根据本文描述的方法来执行。在某些示例中,1815的操作的各方面可以由参考图9至12所描述的上行链路控制信号调度器来执行。
图19示出了根据本公开内容各方面的用于上行链路多波束操作的方法1900的流程图。方法1900的操作可以由本文所述的UE 115或其组件来实施。例如,方法1900的操作可以由如参考图9至12所描述的UE通信管理器执行。在一些示例中,UE 115可以执行代码集以控制设备的功能元件执行下面描述的功能。另外或可替换地,UE 115可以使用专用硬件来执行下面描述的功能的各方面。
在1905处,UE 115可以接收上行链路授权,该上行链路授权指示将在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号。1905的操作可以根据本文描述的方法来执行。在某些示例中,1905的操作的各方面可以由参考图9至12所描述的下行链路控制信号处理器来执行。
在1910处,UE 115可以至少部分地基于上行链路授权来识别用于上行链路控制信号的不同重复的不同上行链路资源集合,其中,每个上行链路资源集合与该两个或更多个传输波束中的不同的一个传输波束相关联。1910的操作可以根据本文描述的方法来执行。在某些示例中,1910的操作的各方面可以由参考图9至12所描述的传输波束识别器来执行。
在1915处,UE 115可以至少部分地基于上行链路授权来识别该两个或更多个传输波束。1915的操作可以根据本文描述的方法来执行。在某些示例中,1915的操作的各方面可以由参考图9至12所描述的传输波束识别器来执行。
在1920处,UE 115可以发送上行链路控制信号的多个重复,其中,每个重复是至少部分地基于上行链路授权而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。1920的操作可以根据本文描述的方法来执行。在某些示例中,1920的操作的各方面可以由参考图9至12所描述的上行链路控制信号调度器来执行。
图20示出了根据本公开内容各方面的用于上行链路多波束操作的方法2000的流程图。方法2000的操作可以由本文所述的基站105或其组件来实施。例如,方法2000的操作可以由如参考图13至16所描述的基站通信管理器执行。在一些示例中,基站105可以执行代码集以控制设备的功能元件执行下面描述的功能。另外或可替换地,基站105可以使用专用硬件来执行下面描述的功能的各方面。
在2005处,基站105可以识别用于从用户设备(UE)115接收上行链路控制信号的两个或更多个传输波束。2005的操作可以根据本文描述的方法来执行。在某些示例中,2005的操作的各方面可以由参考图13到16所描述的传输波束识别器来执行。
在2010处,基站105可以向UE 115发送下行链路控制信号,该下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用该两个或更多个传输波束来发送上行链路控制信号。2010的操作可以根据本文描述的方法来执行。在某些示例中,2010的操作的各方面可以由参考图13到16所描述的下行链路控制信号生成器来执行。
在2015处,基站105可以从UE 115接收上行链路控制信号的多个重复,其中,每个重复是至少部分地基于下行链路控制信号而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。2015的操作可以根据本文描述的方法来执行。在某些示例中,2015的操作的各方面可以由参考图13到16所描述的上行链路控制信号处理器来执行。
图21示出了根据本公开内容各方面的用于上行链路多波束操作的方法2100的流程图。方法2100的操作可以由本文所述的UE 115或其组件来实施。例如,方法2100的操作可以由如参考图9至12所描述的UE通信管理器执行。在一些示例中,UE 115可以执行代码集以控制设备的功能元件执行下面描述的功能。另外或可替换地,UE 115可以使用专用硬件来执行下面描述的功能的各方面。
在2105处,UE 115可以接收下行链路控制信息(DCI),该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号以及指示至少一个探测参考信号(SRS)资源指示符。2105的操作可以根据本文描述的方法来执行。在某些示例中,2105的操作的各方面可以由参考图9至12所描述的DCI处理器来执行。
在2110处,UE 115可以至少部分地基于该至少一个SRS资源指示符来确定用于上行链路数据信号的传输波束循环方案。2110的操作可以根据本文描述的方法来执行。在某些示例中,2110的操作的各方面可以由参考图9至12所描述的波束循环方案确定单元来执行。
在2115处,UE 115可以发送上行链路数据信号的多个重复,其中,每个重复是至少部分地基于该传输波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。2115的操作可以根据本文描述的方法来执行。在某些示例中,2115的操作的各方面可以由参考图9至12所描述的上行链路数据信号生成器来执行。
图22示出了根据本公开内容各方面的用于上行链路多波束操作的方法2200的流程图。方法2200的操作可以由本文所述的UE 115或其组件来实施。例如,方法2200的操作可以由如参考图9至12所描述的UE通信管理器执行。在一些示例中,UE 115可以执行代码集以控制设备的功能元件执行下面描述的功能。另外或可替换地,UE 115可以使用专用硬件来执行下面描述的功能的各方面。
在2205处,UE 115可以接收下行链路控制信息(DCI),该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号并且指示两个或更多个探测参考信号(SRS)资源指示符。2205的操作可以根据本文描述的方法来执行。在某些示例中,2205的操作的各方面可以由参考图9至12所描述的DCI处理器来执行。
在2210处,UE 115可以至少部分地基于该两个或更多个SRS资源指示符来确定用于上行链路数据信号的传输波束循环方案。2210的操作可以根据本文描述的方法来执行。在某些示例中,2210的操作的各方面可以由参考图9至12所描述的波束循环方案确定单元来执行。
在2215处,UE 115可以至少部分地基于该两个或更多个SRS资源指示符来确定循环周期。2215的操作可以根据本文描述的方法来执行。在某些示例中,2215的操作的各方面可以由参考图9至12所描述的波束循环方案确定单元来执行。
在2220处,UE 115可以发送上行链路数据信号的多个重复,其中,每个重复是至少部分地基于该传输波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。2220的操作可以根据本文描述的方法来执行。在某些示例中,2220的操作的各方面可以由参考图9至12所描述的上行链路数据信号生成器来执行。
图23示出了根据本公开内容各方面的用于上行链路多波束操作的方法2300的流程图。方法2300的操作可以由本文所述的UE 115或其组件来实施。例如,方法2300的操作可以由如参考图9至12所描述的UE通信管理器执行。在一些示例中,UE 115可以执行代码集以控制设备的功能元件执行下面描述的功能。另外或可替换地,UE 115可以使用专用硬件来执行下面描述的功能的各方面。
在2305处,UE 115可以接收下行链路控制信息(DCI),该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号以及指示单个探测参考信号(SRS)资源指示符。2305的操作可以根据本文描述的方法来执行。在某些示例中,2305的操作的各方面可以由参考图9至12所描述的DCI处理器来执行。
在2310处,UE 115可以至少部分地基于单个SRS资源指示符来识别额外SRS资源指示符的集合。2310的操作可以根据本文描述的方法来执行。在某些示例中,2310的操作的各方面可以由参考图9至12所描述的额外SRS资源指示符识别器来执行。
在2315处,UE 115可以至少部分地基于单个SRS资源指示符和额外SRS资源指示符,来确定用于上行链路数据信号的传输波束循环方案。2315的操作可以根据本文描述的方法来执行。在某些示例中,2315的操作的各方面可以由参考图9至12所描述的波束循环方案确定单元来执行。
在2320处,UE 115可以发送上行链路数据信号的多个重复,其中,每个重复是至少部分地基于该传输波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。2320的操作可以根据本文描述的方法来执行。在某些示例中,2320的操作的各方面可以由参考图9至12所描述的上行链路数据信号生成器来执行。
图24示出了根据本公开内容各方面的用于上行链路多波束操作的方法2400的流程图。方法2400的操作可以由本文所述的UE 115或其组件来实施。例如,方法2400的操作可以由如参考图9至12所描述的UE通信管理器执行。在一些示例中,UE 115可以执行代码集以控制设备的功能元件执行下面描述的功能。另外或可替换地,UE 115可以使用专用硬件来执行下面描述的功能的各方面。
在2405处,UE 115可以接收波束循环方案的集合,每个波束循环方案具有对应的索引。2405的操作可以根据本文描述的方法来执行。在某些示例中,2405的操作的各方面可以由参考图9至12所描述的波束循环集合处理器来执行。
在2410处,UE 115可以接收下行链路控制信息(DCI),该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号并且指示与波束循环方案相对应的索引。2410的操作可以根据本文描述的方法来执行。在某些示例中,2410的操作的各方面可以由参考图9至12所描述的DCI处理器来执行。
在2415处,UE 115可以至少部分地基于该索引和波束循环方案的集合来确定用于上行链路数据信号的传输波束循环方案。2415的操作可以根据本文描述的方法来执行。在某些示例中,2415的操作的各方面可以由参考图9至12所描述的波束循环方案确定单元来执行。
在2420处,UE 115可以发送上行链路数据信号的多个重复,其中,每个重复是至少部分地基于该传输波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。2420的操作可以根据本文描述的方法来执行。在某些示例中,2420的操作的各方面可以由参考图9至12所描述的上行链路数据信号生成器来执行。
图25示出了根据本公开内容各方面的用于上行链路多波束操作的方法2500的流程图。方法2500的操作可以由本文所述的基站105或其组件来实施。例如,方法2500的操作可以由如参考图13至16所描述的基站通信管理器执行。在一些示例中,基站105可以执行代码集以控制设备的功能元件执行下面描述的功能。另外或可替换地,基站105可以使用专用硬件来执行下面描述的功能的各方面。
在2005处,基站105可以发送下行链路控制信息(DCI),该DCI指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号以及指示对至少一个SRS资源指示符的指示。2505的操作可以根据本文描述的方法来执行。在某些示例中,2505的操作的各方面可以由参考图13至16所描述的DCI生成器来执行。
在2510处,基站105可以至少部分地基于该至少一个SRS资源指示符来确定用于上行链路数据信号的波束循环方案。2510的操作可以根据本文描述的方法来执行。在某些示例中,2510的操作的各方面可以由参考图13至16所描述的波束循环方案确定单元来执行。
在2515处,基站105可以接收上行链路数据信号的多个重复,其中,每个重复是至少部分地基于该波束循环方案而使用该两个或更多个传输波束中的不同的一个传输波束在不同的TTI上接收的。2515的操作可以根据本文描述的方法来执行。在某些示例中,2515的操作的各方面可以由参考图13至16所描述的上行链路数据信号处理器来执行。
图26示出了根据本公开内容各方面的用于上行链路多波束操作的方法2600的流程图。方法2600的操作可以由本文所述的UE 115或其组件来实施。例如,方法2600的操作可以由如参考图9至12所描述的UE通信管理器执行。在一些示例中,UE 115可以执行代码集以控制设备的功能元件执行下面描述的功能。另外或可替换地,UE 115可以使用专用硬件来执行下面描述的功能的各方面。
在2605处,UE 115可以接收指示用于上行链路数据传输的资源的授权。2605的操作可以根据本文描述的方法来执行。在某些示例中,2605的操作的各方面可以由参考图9至12所描述的授权处理器来执行。
在2610处,UE 115可以确定用于上行链路控制信号的默认波束循环方案。2610的操作可以根据本文描述的方法来执行。在某些示例中,2610的操作的各方面可以由参考图9至12所描述的默认波束循环方案识别器来执行。
在2615处,UE 115可以至少部分地基于用于控制信道的默认波束循环方案来确定用于上行链路数据传输的波束循环方案。2615的操作可以根据本文描述的方法来执行。在某些示例中,2615的操作的各方面可以由参考图9至12所描述的波束循环方案确定单元来执行。
在2620处,UE 115可以发送上行链路数据信号的多个重复,其中,每个重复是至少部分地基于所确定的用于上行链路数据传输的波束循环方案而使用两个或更多个传输波束中的不同的一个传输波束在不同的传输时间间隔(TTI)上发送的。2620的操作可以根据本文描述的方法来执行。在某些示例中,2620的操作的各方面可以由参考图9至12所描述的上行链路数据信号调度器来执行。
应该注意,上述方法描述了可能的实施方式,并且操作和步骤可以被重新安排或以其他方式修改,并且其他实施方式也是可能的。此外,可以组合来自两种或更多种方法的各方面。
本文描述的技术可用于各种无线通信系统,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)、以及其他系统。CDMA系统可以实现诸如CDMA2000、通用陆地无线电接入(UTRA)等等的无线电技术。CDMA2000涵盖IS-2000、IS-95和IS-856标准。IS-2000版本可以通常被称为CDMA2000 1X、1X等等。IS-856(TIA-856)通常被称为CDMA2000 1xEV-DO、高速分组数据(HRPD)等等。UTRA包括宽带CDMA(WCDMA)和CDMA的其他变体。TDMA系统可以实现诸如全球移动通信系统(GSM)的无线电技术。
OFDMA系统可以实现诸如超移动宽带(UMB)、演进UTRA(E-UTRA)、电气和电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等的无线电技术。UTRA和E-UTRA是通用移动电信系统(UMTS)的一部分。LTE、LTE-A和LTE-A Pro是使用E-UTRA的UMTS的版本。在名为“第三代合作伙伴计划”(3GPP)的组织的文献中描述了UTRA、E-UTRA、UMTS、LTE、LTE-A、LTE-A Pro、NR和GSM。在名为“第三代合作伙伴计划2”(3GPP2)的组织的文献中描述了CDMA 2000和UMB。本文描述的技术可以用于上面提到的系统和无线电技术以及其他系统和无线电技术。虽然可以出于示例的目的描述了LTE、LTE-A、LTE-A Pro或NR系统的各个方面,并且在大部分描述中可以使用LTE、LTE-A、LTE-A Pro或NR术语,但是本文描述的技术可以应用于LTE、LTE-A、LTE-A Pro或NR应用之外。
宏小区通常覆盖相对较大的地理区域(例如,半径几公里),并且可以允许具有与网络提供商的服务订阅的UE 115的不受限接入。与宏小区相比,小型小区可以与较低功率的基站105相关联,并且小型小区可以在与宏小区相同或不同(例如,已许可、免许可等)的频带中操作。根据各种示例,小型小区可以包括微微小区、毫微微小区和微小区。例如,微微小区可以覆盖较小的地理区域,并且可以允许具有与网络提供商的服务订阅的UE 115的不受限接入。毫微微小区也可以覆盖较小的地理区域(例如,家庭),并且可以提供与毫微微小区具有关联的UE 115(例如,封闭用户组(CSG)中的UE 115、用于家庭中的用户的UE 115等等)的受限接入。用于宏小区的eNB可以被称为宏eNB。用于小型小区的eNB可以被称为小型小区eNB、微微eNB、毫微微eNB或家庭eNB。eNB可以支持一个或多个(例如两个、三个、四个等等)小区,并且还可以支持使用一个或多个分量载波的通信。
本文所述的无线通信系统100或系统可以支持同步操作或异步操作。对于同步操作,基站105可以具有类似的帧定时,来自不同基站105的传输可以在时间上近似对准。对于异步操作,基站105可以具有不同的帧定时,来自不同基站105的传输可以不在时间上对准。本文描述的技术可以用于同步操作或异步操作。
可以使用多种不同的技术和方法的任意一种来表示本文所述的信息和信号。例如,在以上全部说明中提及的数据、指令、命令、信息、信号、比特、符号和码片可以用电压、电流、电磁波、磁场或磁性粒子、光场或光学粒子或者其任意组合来表示。
结合本文公开内容说明的各种说明性框和模块可以用被设计为执行本文所述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件(PLD)、分立门或晶体管逻辑、分立硬件组件或其任何组合来实施或执行。通用处理器可以是微处理器,但是在可替换方案中,处理器可以是任何常规的处理器、控制器、微控制器或状态机。处理器还可以实施为计算器件的组合(例如DSP和微处理器的组合、多个微处理器、一个或多个微处理器结合DSP内核或任何其他这样的配置)。
本文所述的功能可以以硬件、由处理器执行的软件、固件或其任何组合来实施。如果在由处理器执行的软件中实施,则所述功能可以作为计算机可读介质上的一个或多个指令或代码来存储或发送。其他示例和实施方式在本公开内容和所附权利要求的范围内。例如,由于软件的性质,上述功能可以使用由处理器执行的软件、硬件、固件、硬连线或这些中的任何的组合来实施。实施功能的特征还可以物理地位于多个位置,包括被分布以使得在不同的物理位置实施功能的各部分。
计算机可读介质包括非暂时性计算机储存介质和通信介质,包括有助于将计算机程序从一个地方传递到另一个地方的任何介质。非暂时性储存介质可以是可由通用或专用计算机访问的任何可用介质。示例性而非限制性地,非暂时性计算机可读介质可以包括随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、闪存、压缩光盘(CD)ROM或其他光盘储存、磁盘储存或其他磁储存设备或能够用于以指令或数据结构的形式携带或存储所需程序代码单元并且能够被通用或专用计算机或者通用或专用处理器访问的任何其他非暂时性介质。此外,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆、光纤电缆、双绞线、数字用户线(DSL)或诸如红外、无线电和微波的无线技术从网站、服务器或其他远程源发送软件,则同轴电缆、光纤电缆、双绞线、DSL或诸如红外、无线电和微波的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括CD、激光盘、光盘、数字通用盘(DVD)、软盘和蓝光盘,其中,磁盘通常磁性地再现数据,而光盘用激光光学地再现数据。上述的组合也包括在计算机可读介质的范围内。
如本文中所使用的,包括在权利要求中,如项目列表(例如,由短语诸如“至少一个”或“一个或多个”开头的项目列表)中使用的“或”指示包含性列表,使得例如A、B或C中的至少一个的列表表示A或B或C或AB或AC或BC或ABC(即,A和B和C)。而且,如本文所使用的,短语“基于”不应被解释为对条件的闭集的引用。例如,在不脱离本公开内容的范围的情况下,被描述为“基于条件A”的示例性步骤可以基于条件A和条件B。即,如本文所使用的,短语“基于”将以与短语“至少部分地基于”相同的方式来解释。
在附图中,类似的组件或特征可以具有相同的附图标记。此外,相同类型的多个组件可以通过在附图标记之后用破折号和区分相似组件的第二标记来区分。如果在说明书中仅使用第一附图标记,则该说明适用于具有相同第一附图标记的任何一个类似组件,而与第二附图标记或其他后续附图标记无关。
本文结合附图阐述的说明描述了示例性配置,但不代表可以实施的或在权利要求的范围内的所有示例。本文使用的术语“示例性的”意味着“用作示例、实例或举例说明”,而不是“优选的”或“优于其他示例”。具体实施方式包括为了提供对所述技术的理解的具体细节。然而,这些技术可以在没有这些具体细节的情况下实施。在一些情况下,以方框图形式示出了公知的结构和设备,以避免使得所述示例的概念难以理解。
提供本文的说明以使本领域技术人员能够实行或使用本公开内容。对本公开内容的各种修改对于本领域技术人员将是显而易见的,并且在不脱离本公开内容的范围的情况下,本文定义的一般原理可以应用于其他变型。因此,本公开内容不限于本文所述的示例和设计,而是应被赋予与本文公开的原理和新颖特征一致的最宽范围。

Claims (30)

1.一种用于无线通信的方法,包括:
由用户设备(UE)接收下行链路控制信号,所述下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号;
至少部分地基于所述下行链路控制信号来识别所述两个或更多个传输波束;以及
发送所述上行链路控制信号的多个重复,其中,每个重复是至少部分地基于所述下行链路控制信号而使用所述两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。
2.根据权利要求1所述的方法,其中,所述下行链路控制信号是无线电资源控制(RRC)信号,并且所述方法还包括:
接收所述RRC信号中的波束循环信息元素,所述波束循环信息元素指示所述两个或更多个传输波束的数量。
3.根据权利要求2所述的方法,其中,所述波束循环信息元素与以下各项中的一个或多个相关联:所述上行链路控制信号的上行链路资源或所述上行链路控制信号的上行链路资源的类型。
4.根据权利要求1所述的方法,其中,所述下行链路控制信号包括针对所述上行链路控制信号的上行链路授权,并且所述方法还包括:
至少部分地基于所述上行链路授权来识别用于所述上行链路控制信号的不同重复的不同上行链路资源集合,其中,每个上行链路资源集合与所述两个或更多个传输波束中的不同的一个传输波束相关联。
5.根据权利要求4所述的方法,其中,所述上行链路授权包括持久性或半持久性授权。
6.根据权利要求1所述的方法,还包括:
接收多个空间关系信息元素,每个空间关系信息元素与不同的传输波束相关联,其中,识别所述两个或更多个传输波束还至少部分地基于所述多个空间关系信息元素。
7.根据权利要求6所述的方法,其中,识别所述两个或更多个传输波束包括:
至少部分地基于所述多个空间关系信息元素的顺序来选择所述两个或更多个传输波束。
8.根据权利要求6所述的方法,其中,识别所述两个或更多个传输波束包括:
接收介质访问控制(MAC)控制元素(CE),所述介质访问控制(MAC)控制元素(CE)指示在接收到的所述多个空间关系信息元素中与所述两个或更多个传输波束相对应的空间关系信息元素的集合。
9.根据权利要求6所述的方法,其中,发送所述上行链路控制信号的所述多个重复的顺序是至少部分地基于所接收的空间关系信息元素的顺序的。
10.根据权利要求1所述的方法,其中,使用所述两个或更多个传输波束发送所述上行链路控制信号的所述多个重复包括:
至少部分地基于发送的TTI索引、与所述上行链路控制信号相关联的绝对TTI索引或者与所述上行链路控制信号相关联的一组TTI(即,以每N个TTI为基础)来循环通过所述两个或更多个传输波束。
11.根据权利要求1所述的方法,还包括:
选择用于发送所述上行链路控制信号的所述多个重复中的每一个重复的功率控制参数。
12.根据权利要求11所述的方法,其中,用于在第一TTI中的传输的第一功率控制参数是至少部分地基于用于在前一TTI中的传输的前一功率控制参数来选择的。
13.根据权利要求12所述的方法,其中,用于在所述第一TTI中的传输的所述第一功率控制参数是至少部分地基于所述第一TTI来选择的。
14.一种用于无线通信的方法,包括:
由用户设备(UE)接收下行链路控制信息(DCI),所述下行链路控制信息(DCI)指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路数据信号并且指示至少一个探测参考信号(SRS)资源指示符;
至少部分地基于所述至少一个SRS资源指示符来确定用于所述上行链路数据信号的传输波束循环方案;以及
发送所述上行链路数据信号的多个重复,其中,每个重复是至少部分地基于所述传输波束循环方案而使用所述两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。
15.根据权利要求14所述的方法,其中,所述DCI包括两个或更多个资源指示符,并且所述方法还包括:
至少部分地基于所述两个或更多个SRS资源指示符来确定循环周期。
16.根据权利要求15所述的方法,其中,所述上行链路数据信号的所述多个重复是在由所述两个或更多个SRS资源指示符指示的资源之后的传输机会中发送的。
17.根据权利要求14所述的方法,其中,所述DCI包括单个SRS资源指示符,并且所述方法还包括:
至少部分地基于所述单个SRS资源指示符来识别额外SRS资源指示符的集合。
18.根据权利要求14所述的方法,其中,所述DCI包括与所述传输波束循环方案相对应的索引。
19.根据权利要求18所述的方法,还包括:
接收波束循环方案的集合,每个波束循环方案具有对应的索引。
20.根据权利要求19所述的方法,还包括:
至少部分地基于所述索引来确定所述波束循环方案。
21.一种用于无线通信的方法,包括:
接收指示用于上行链路数据传输的资源的授权;
确定用于上行链路控制信号的默认波束循环方案;
至少部分地基于用于控制信道的所述默认波束循环方案来确定用于所述上行链路数据传输的波束循环方案;以及
发送所述上行链路数据信号的多个重复,其中,每个重复是至少部分地基于所确定的用于所述上行链路数据传输的波束循环方案而使用两个或更多个传输波束中的不同的一个传输波束在不同的传输时间间隔(TTI)上发送的。
22.根据权利要求21所述的方法,还包括:
识别配置包括:识别用于与所述上行链路数据传输相关联的物理上行链路共享信道的默认波束;以及
用于所述控制信道的所述默认波束循环方案是至少部分地基于用于所述物理上行链路共享信道的所述默认波束的。
23.根据权利要求21所述的方法,其中,所述控制信道包括上行链路控制信道或下行链路控制信道中的一个或多个。
24.一种用于在用户设备(UE)处进行无线通信的装置,包括:
用于接收下行链路控制信号的单元,所述下行链路控制信号指示要在不同的传输时间间隔(TTI)期间使用两个或更多个传输波束来发送上行链路控制信号;
用于至少部分地基于所述下行链路控制信号来识别所述两个或更多个传输波束的单元;以及
用于发送所述上行链路控制信号的多个重复的单元,其中,每个重复是至少部分地基于所述下行链路控制信号而使用所述两个或更多个传输波束中的不同的一个传输波束在不同的TTI上发送的。
25.根据权利要求24所述的装置,其中,所述下行链路控制信号是无线电资源控制(RRC)信号,并且所述装置还包括:
用于接收所述RRC信号中的波束循环信息元素的单元,所述波束循环信息元素指示所述两个或更多个传输波束的数量,其中,所述波束循环信息元素与以下各项中的一个或多个相关联:所述上行链路控制信号的上行链路资源或所述上行链路控制信号的上行链路资源的类型。
26.根据权利要求24所述的装置,其中,所述下行链路控制信号包括针对所述上行链路控制信号的上行链路授权,并且所述装置还包括:
用于至少部分地基于所述上行链路授权来识别用于所述上行链路控制信号的不同重复的不同上行链路资源集合的单元,其中,每个上行链路资源集合与所述两个或更多个传输波束中的不同的一个传输波束相关联,其中,所述上行链路授权包括持久性或半持久性授权。
27.根据权利要求24所述的装置,还包括:
用于接收多个空间关系信息元素的单元,每个空间关系信息元素与不同的传输波束相关联,其中,识别所述两个或更多个传输波束还至少部分地基于所述空间关系信息元素,并且其中,用于识别所述两个或更多个传输波束的单元包括:
用于至少部分地基于所述空间关系信息元素的顺序来选择所述两个或更多个传输波束的单元;以及
用于接收介质访问控制(MAC)控制元素(CE)的单元,所述介质访问控制(MAC)控制元素(CE)指示在接收到的所述多个空间关系信息元素中与所述两个或更多个传输波束相对应的空间关系信息元素的集合。
28.根据权利要求27所述的装置,其中,发送所述上行链路控制信号的所述多个重复的顺序是至少部分地基于所接收的空间关系信息元素的顺序的。
29.根据权利要求24所述的装置,其中,用于使用所述两个或更多个传输波束发送所述上行链路控制信号的所述多个重复的单元包括:
用于至少部分地基于发送的TTI索引、与所述上行链路控制信号相关联的绝对TTI索引、或者与所述上行链路控制信号相关联的一组TTI(即,以每N个TTI为基础)来循环通过所述两个或更多个传输波束的单元。
30.根据权利要求24所述的装置,还包括:
用于选择用于发送所述上行链路控制信号的所述多个重复中的每一个重复的功率控制参数的单元。
CN201980025129.9A 2018-04-13 2019-04-12 用于上行链路多波束操作的方法和装置 Active CN111954986B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862657583P 2018-04-13 2018-04-13
US62/657,583 2018-04-13
US16/381,723 2019-04-11
US16/381,723 US11115242B2 (en) 2018-04-13 2019-04-11 Uplink multi-beam operation
PCT/US2019/027313 WO2019200313A1 (en) 2018-04-13 2019-04-12 Methods and apparatus for uplink multi-beam operation

Publications (2)

Publication Number Publication Date
CN111954986A true CN111954986A (zh) 2020-11-17
CN111954986B CN111954986B (zh) 2023-10-27

Family

ID=68160573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980025129.9A Active CN111954986B (zh) 2018-04-13 2019-04-12 用于上行链路多波束操作的方法和装置

Country Status (4)

Country Link
US (1) US11115242B2 (zh)
EP (1) EP3776885B1 (zh)
CN (1) CN111954986B (zh)
WO (1) WO2019200313A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147714A1 (zh) * 2021-01-07 2022-07-14 Oppo广东移动通信有限公司 传输方法、终端设备、网络设备及通信系统
WO2022193223A1 (en) * 2021-03-18 2022-09-22 Zte Corporation Scheduling network communication services using semi-persistent scheduling

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11277883B2 (en) * 2018-05-11 2022-03-15 Intel Corporation Scheduling enhancements and hybrid automatic repeat request (HARQ) timing procedure for new radio (NR) unlicensed
US11502791B2 (en) * 2018-06-15 2022-11-15 Ntt Docomo, Inc. Terminal, radio communication method, base station, and system
WO2020006025A1 (en) * 2018-06-29 2020-01-02 Sharp Laboratories Of America, Inc. Power control for enhancement of physical uplink control channel (pucch) reliability for 5th generation (5g) new radio (nr)
US11159956B2 (en) * 2019-03-28 2021-10-26 Ofinno, Llc Uplink beam management in wireless communication system
US11304201B2 (en) * 2019-03-29 2022-04-12 Qualcomm Incorporated Beam indication set determination
CN113839761A (zh) * 2019-04-25 2021-12-24 上海朗桦通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
EP3820051A1 (en) * 2019-11-07 2021-05-12 Comcast Cable Communications LLC Transmission repetition for wireless communication
WO2021087856A1 (en) 2019-11-07 2021-05-14 Zte Corporation System and method for transmission repetition mode indicators
CN115665872A (zh) * 2020-01-02 2023-01-31 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021142659A1 (en) * 2020-01-15 2021-07-22 Qualcomm Incorporated Pucch transmission with multiple spatial relations based on pdcch and pucch resource parameters
US11496968B2 (en) 2020-01-16 2022-11-08 Qualcomm Incorporated Uplink power control parameters for repetitions of physical uplink shared channel transmissions
WO2021155572A1 (en) * 2020-02-07 2021-08-12 Lenovo (Beijing) Limited Default spatial relation for srs resource transmission
US20210203397A1 (en) * 2020-02-13 2021-07-01 Intel Corporation Systems and methods for multiple-beam uplink transmission
US11317356B2 (en) * 2020-02-21 2022-04-26 Qualcomm Incorporated Techniques for resource-specific transmit power control configuration
US20230059757A1 (en) * 2020-02-28 2023-02-23 Ntt Docomo, Inc. Terminal, radio communication method, and base station
EP4115680A4 (en) * 2020-03-04 2023-11-22 Qualcomm Incorporated MULTIPLEXING FOR PHYSICAL UPLINK CHANNELS WITH DIFFERENT DIRECTED BEAMS
US20230098912A1 (en) * 2020-03-13 2023-03-30 Ntt Docomo, Inc. Terminal, radio communication method, and base station
US20230171045A1 (en) * 2020-03-13 2023-06-01 Ntt Docomo, Inc. Terminal, radio communication method, and base station
CN113473607B (zh) * 2020-03-31 2024-01-09 大唐移动通信设备有限公司 Pucch传输方法、装置、终端、网络侧和存储介质
US20220053526A1 (en) * 2020-04-09 2022-02-17 Lg Electronics Inc. Method and apparatus for non-codebook based uplink transmission and reception in wireless communication system
CN115299122A (zh) * 2020-04-22 2022-11-04 联想(北京)有限公司 用于pusch重复的功率控制的方法及设备
US20210337534A1 (en) * 2020-05-13 2021-10-28 Intel Corporation Ue configured for pusch repetition based on tpmi index and sri
WO2021229525A2 (en) * 2020-05-14 2021-11-18 Nokia Technologies Oy Enabling beam diversity for uplink control information transmission on a physical uplink control channel
US11723032B2 (en) 2020-05-18 2023-08-08 Comcast Cable Communications, Llc Transmission using a plurality of wireless resources
EP4154616A4 (en) * 2020-05-22 2024-02-28 Lenovo Beijing Ltd METHOD AND DEVICE FOR POWER CONTROL OF A PUSH REPEAT WITH CONFIGURED AUTHORIZATION
EP4173204A4 (en) * 2020-06-28 2024-03-20 Lenovo Beijing Ltd METHOD AND DEVICE FOR IMAGING PUSH REPEATS
WO2022000431A1 (en) * 2020-07-02 2022-01-06 Lenovo (Beijing) Limited Method and apparatus for frequency hopping with multiple beams
CN113950112A (zh) * 2020-07-17 2022-01-18 华为技术有限公司 一种无线通信的方法及装置
WO2022026788A1 (en) * 2020-07-30 2022-02-03 Ofinno, Llc Frequency hopping in multiple transmission and reception points
KR20230043967A (ko) 2020-08-07 2023-03-31 에프쥐 이노베이션 컴퍼니 리미티드 Ul 송신 오케이션들에 대한 공간 관계들의 적용
CN116326143A (zh) * 2020-10-14 2023-06-23 苹果公司 针对能力降低用户装备的随机接入消息传输
EP4231690A4 (en) * 2020-10-15 2024-04-24 Sony Group Corp BASE STATION DEVICE, TERMINAL DEVICE, COMMUNICATION SYSTEM AND COMMUNICATION METHOD
US20220304035A1 (en) * 2020-10-19 2022-09-22 Apple Inc. Physical uplink shared channel repetition with different configurations
CA3204348A1 (en) 2020-12-15 2022-06-23 Ofinno, Llc Pathloss reference signal determination in uplink channel repetition
JP2024500749A (ja) 2020-12-17 2024-01-10 オフィノ, エルエルシー アップリンクチャネルの繰り返しにおける電力制御パラメータの決定
EP4021096A1 (en) * 2020-12-23 2022-06-29 Kamstrup A/S Link management in a meter reading system
CN116711427A (zh) * 2021-01-15 2023-09-05 高通股份有限公司 针对共享信道重复的空间域传输关系考虑
WO2022165209A1 (en) * 2021-01-29 2022-08-04 Qualcomm Incorporated Demodulation reference signal bundling and frequency hopping
US20220312382A1 (en) * 2021-03-29 2022-09-29 Qualcomm Incorporated Identifying a default beam for communications on a physical downlink shared channel (pdsch)
US11785478B2 (en) * 2021-04-29 2023-10-10 Qualcomm Incorporated Uplink demodulation reference signal bundling with beam sweeping
WO2022240862A1 (en) * 2021-05-10 2022-11-17 Intel Corporation Default beam operations for uplink transmissions
US11831387B2 (en) * 2021-06-24 2023-11-28 Qualcomm Incorporated Full duplex default beam for wireless communication
WO2023077414A1 (en) * 2021-11-05 2023-05-11 Apple Inc. Method for uplink multiple transmission reception point operation with uplink coverage enhancement
US20230189266A1 (en) * 2021-12-10 2023-06-15 Qualcomm Incorporated Physical uplink control channel resource allocation techniques

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205708A (zh) * 2012-03-23 2014-12-10 高通股份有限公司 用于发信令通知和确定传输时间区间集束参数的系统和方法
CN105122676A (zh) * 2013-04-05 2015-12-02 Lg电子株式会社 在无线接入系统中发送上行链路控制信息的方法及其设备
CN105493433A (zh) * 2013-08-29 2016-04-13 Lg电子株式会社 在支持机器型通信的无线接入系统中发送信道状态信息的方法和装置
CN105594150A (zh) * 2013-10-07 2016-05-18 高通股份有限公司 Lte tdd中的tti集束和半持久调度操作
CN106797282A (zh) * 2014-09-26 2017-05-31 高通股份有限公司 超低延迟lte上行链路帧结构
US20170366311A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Upload Control Signaling For New Radio

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI720052B (zh) * 2015-11-10 2021-03-01 美商Idac控股公司 無線傳輸/接收單元和無線通訊方法
US10797837B2 (en) 2016-03-25 2020-10-06 Ntt Docomo, Inc. User terminal, radio base station and radio communication method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205708A (zh) * 2012-03-23 2014-12-10 高通股份有限公司 用于发信令通知和确定传输时间区间集束参数的系统和方法
CN105122676A (zh) * 2013-04-05 2015-12-02 Lg电子株式会社 在无线接入系统中发送上行链路控制信息的方法及其设备
CN105493433A (zh) * 2013-08-29 2016-04-13 Lg电子株式会社 在支持机器型通信的无线接入系统中发送信道状态信息的方法和装置
CN105594150A (zh) * 2013-10-07 2016-05-18 高通股份有限公司 Lte tdd中的tti集束和半持久调度操作
CN106797282A (zh) * 2014-09-26 2017-05-31 高通股份有限公司 超低延迟lte上行链路帧结构
US20170366311A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Upload Control Signaling For New Radio

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147714A1 (zh) * 2021-01-07 2022-07-14 Oppo广东移动通信有限公司 传输方法、终端设备、网络设备及通信系统
EP4243532A4 (en) * 2021-01-07 2023-12-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. TRANSMISSION METHOD, TERMINAL DEVICE, NETWORK DEVICE AND COMMUNICATION SYSTEM
WO2022193223A1 (en) * 2021-03-18 2022-09-22 Zte Corporation Scheduling network communication services using semi-persistent scheduling

Also Published As

Publication number Publication date
EP3776885B1 (en) 2023-05-03
WO2019200313A1 (en) 2019-10-17
US20190319823A1 (en) 2019-10-17
CN111954986B (zh) 2023-10-27
US11115242B2 (en) 2021-09-07
EP3776885A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
CN111954986B (zh) 用于上行链路多波束操作的方法和装置
US11071098B2 (en) Techniques to jointly configure demodulation reference signals
US10616737B2 (en) Enhanced machine type communications physical uplink control channel design
CN111386669B (zh) 用于无线通信的方法、装置和计算机可读介质
US11310651B2 (en) Discovery preamble content for a device discovery procedure
US10880914B2 (en) Grant free uplink transmission techniques
US11349543B2 (en) Beam switch count in beamformed wireless communications
CN111727583A (zh) 用于关于准共址组的传输配置指示状态的方法和装置
US11477809B2 (en) Techniques for channel estimation
CN111699634A (zh) 上行链路波束指派
US11658780B2 (en) Demodulation reference signal multiplexing scheme selection for uplink transmission
CN113748696A (zh) 信道带宽属性每频带用户设备能力报告
CN112970305A (zh) 基于用户设备(ue)的活动准共址假设能力的控制资源集合监测规则
US10993215B2 (en) SPDCCH reuse indication constraint under DMRS sharing
US11330620B2 (en) Beam determination for a slot aggregation
US10554448B2 (en) Dynamic scheduling of data patterns for shortened transmission time intervals
CN110999422A (zh) 基于规程的上行链路功率控制
CN113924754A (zh) 非均匀解调参考信号捆绑
CN113678543A (zh) 较高调制阶数基带能力的信令
EP3679751A1 (en) Search space-based reuse exception rules
WO2020042016A1 (en) Single and multi-stage downlink control information design for multiple transceiver nodes
US11503628B2 (en) Communication of a reference signal count indication
CN112088517A (zh) 参考信号频调位置移位
CN111713125A (zh) 用于激活或去激活针对信道状态指示符资源集的半持久配置的技术

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant