CN111951362A - 一种基于三维噪声图的三维体积云渲染方法及系统 - Google Patents

一种基于三维噪声图的三维体积云渲染方法及系统 Download PDF

Info

Publication number
CN111951362A
CN111951362A CN202010624723.4A CN202010624723A CN111951362A CN 111951362 A CN111951362 A CN 111951362A CN 202010624723 A CN202010624723 A CN 202010624723A CN 111951362 A CN111951362 A CN 111951362A
Authority
CN
China
Prior art keywords
dimensional
cloud
volume cloud
color
dimensional volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010624723.4A
Other languages
English (en)
Inventor
顾东旭
朱杰
郝利辉
贾磊
房洪臣
王朋
王�华
邹南岳
陈晓燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Lingwei Junrong Technology Co ltd
Original Assignee
Beijing Lingwei Junrong Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Lingwei Junrong Technology Co ltd filed Critical Beijing Lingwei Junrong Technology Co ltd
Priority to CN202010624723.4A priority Critical patent/CN111951362A/zh
Publication of CN111951362A publication Critical patent/CN111951362A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Generation (AREA)

Abstract

本发明提供一种基于三维噪声图的三维体积云渲染方法及系统,其中,方法包括:步骤S1:构建三维噪声纹理空间,并在三维噪声纹理空间中构建三维体积云;步骤S2:构建真实三维空间,将三维体积云映射到真实三维空间;步骤S3:获取像素点的视线方向,确定视线方向上三维体积云的总体密度,基于总体密度确定像素点渲染云的透明度;步骤S4:获取太阳的位置、光照强度、预设颜色,结合总体密度、视线方向,确定像素点渲染云的颜色。本发明的基于三维噪声图的三维体积云渲染方法,只需两组三维噪声纹理图,减少了存储空间,并且可以对层云,积云,层积云进行渲染,通过渲染后显示出云的真实照明效果。

Description

一种基于三维噪声图的三维体积云渲染方法及系统
技术领域
本发明涉及图像处理技术领域,特别涉及一种基于三维噪声图的三维体积云渲染方法及系统。
背景技术
在计算机渲染的虚拟场景中(特别是开发式的场景),丰富而逼真的三维云的渲染能大大提高场景的真实度,例如巨大的乌云会让人望而生畏,浓雾会让人沮丧,日落时被点燃的云彩会让人产生一种惊奇的感觉。
对于云的渲染,常见的实现方式是基于云图像库的,实现简单,但是存在不少缺点。如果只为某种形态的云在某个角度下存储一张图片,当视点移动时,天空中的静止情况下看起来不错的云会撕裂般的散开消失,移动的越远越明显。这个问题可以通过从不同角度存储多个图像,并在视点移动时呈现不同的图像来解决,然而,由于必须存储多个图像(一般是高分辨率的图像),图像纹理将占用大量的存储空间,想要表现云的细节度越高,存储空间越大。并且这种实现方式,一般只能渲染出低空的层云,基本不能实现很厚的柱状层积云或高空积云,云的真实照明效果也表现的很不真实。
发明内容
本发明目的之一在于提供了一种基于三维噪声图的三维体积云渲染方法,只需两组三维噪声纹理图,减少了存储空间,并且可以对层云,积云,层积云进行渲染,通过渲染后显示出云的真实照明效果。
本发明实施例提供的一种基于三维噪声图的三维体积云渲染方法,包括:
步骤S1:构建三维噪声纹理空间,并在三维噪声纹理空间中构建三维体积云;
步骤S2:构建真实三维空间,将三维体积云映射到真实三维空间;
步骤S3:获取像素点的视线方向,确定视线方向上三维体积云的总体密度,基于总体密度确定像素点渲染云的透明度;
步骤S4:获取太阳的位置、光照强度、预设颜色,结合总体密度、视线方向,确定像素点渲染云的颜色。
优选的,步骤S1:构建三维噪声纹理空间,并在三维噪声纹理空间中构建三维体积云;具体包括:
步骤S11:获取一组第一三维噪声纹理图、一组第二三维噪声纹理图和高度-密度函数;
步骤S12:在三维噪声纹理空间中基于第一三维噪声纹理图、第二三维噪声纹理图和高度-密度函数构建三维体积云。
优选的,第一三维噪声纹理图包括:低频perlin-worly噪声;
第二三维噪声纹理图包括:高频的worly噪声。
优选的,步骤S3:获取像素点的视线方向,确定视线方向上三维体积云的总体密度,基于总体密度确定像素点渲染云的透明度,具体包括:
步骤S31:在真实三维空间中提取视线方向上三维体积云各个采样点的密度,
步骤S32:将各个采样点的密度累加作为视线方向上三维体积云的总体密度。
优选的,步骤S4:获取太阳的位置、光照强度、预设颜色,结合总体密度、视线方向,确定像素点渲染云的颜色,具体包括:
步骤S41:获取太阳的位置、光照强度、预设颜色;
步骤S42:基于总体密度、太阳位置、光照强度、预设颜色和实现方向,结合太阳光的散射定律和Henyey-Greenstein相位函数,确定像素的RGB颜色;
步骤S43:采用tonemap算法将RGB颜色转换为高动态范围颜色;将高动态范围颜色作为像素点渲染云的颜色。
本发明还提供一种基于三维噪声图的三维体积云渲染系统,包括:
三维体积云构建模块,用于构建三维噪声纹理空间,并在三维噪声纹理空间中构建三维体积云;
映射模块,用于构建真实三维空间,将三维体积云映射到真实三维空间;
透明度确定模块,用于获取像素点的视线方向,确定视线方向上三维体积云的总体密度,基于总体密度确定像素点渲染云的透明度;
颜色确定模块,用于基于总体密度、视线方向,确定像素点渲染云的颜色。
优选的,三维体积云构建模块包括:
第一参数获取子模块,用于获取一组第一三维噪声纹理图、一组第二三维噪声纹理图和高度-密度函数;
第一构建子模块,用于在三维噪声纹理空间中基于第一三维噪声纹理图、第二三维噪声纹理图和高度-密度函数构建三维体积云。
优选的,第一三维噪声纹理图包括:低频perlin-worly噪声;
第二三维噪声纹理图包括:高频的worly噪声。
优选的,透明度确定模块包括:
采样子模块,用于在真实三维空间中提取视线方向上三维体积云各个采样点的密度,
第一计算模块,用于将各个采样点的密度累加作为视线方向上三维体积云的总体密度。
优选的,颜色确定模块包括:
第二参数获取模块,用于获取太阳的位置、光照强度、预设颜色;
第二计算模块,用于基于总体密度、太阳位置、光照强度、预设颜色和实现方向,结合太阳光的散射定律和Henyey-Greenstein相位函数,确定像素的RGB颜色;
转换模块,用于采用tonemap算法将RGB颜色转换为高动态范围颜色;将高动态范围颜色作为像素点渲染云的颜色。
本发明的有益效果:
一、依赖的纹理资源较少,两组噪声纹理都是预先生成,加载后占用的存储空间不大。
二、充分利用了现代GPU的性能特征,渲染速度快。
三、显示效果逼真,类型丰富,不会因为视点变化产生意想不到的错误,具有真实的光照效果。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明实施例中一种基于三维噪声图的三维体积云渲染方法的示意图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
本发明实施例提供了一种基于三维噪声图的三维体积云渲染方法,如图1所示,包括:
步骤S1:构建三维噪声纹理空间,并在三维噪声纹理空间中构建三维体积云;
步骤S2:构建真实三维空间,将三维体积云映射到真实三维空间;
步骤S3:获取像素点的视线方向,确定视线方向上三维体积云的总体密度,基于总体密度确定像素点渲染云的透明度;
步骤S4:获取太阳的位置、光照强度、预设颜色,结合总体密度、视线方向,确定像素点渲染云的颜色。
上述技术方案的工作原理及有益效果为:
首先,构建三维噪声纹理空间,并在三维噪声纹理空间中构建三维体积云,在构建的三维体积云中各个采样点存在信号值代表三维体积云的对应点的位置的密度。然后,构建真实三维空间,将三维体积云映射到真实三维空间;需要实现真实的云层渲染效果,需要构建包括屏幕空间的像素点的真实三维空间。当构建好真实三维空间时,获取屏幕空间的各个像素点的视线方向,该视线方向为预先设置的;在真实三维空间中以像素点及视线方向的延长线上的三维体积云的总体密度,将总体密度确定像素点渲染云的透明度;最后,获取太阳的位置、光照强度、预设颜色,结合总体密度、视线方向,确定像素点渲染云的颜色。重复步骤S3和步骤S4依次确定所有的预设的显示三维体积云的像素点的透明度和颜色;从而实现显示渲染后的三维体积云。
在一个实施例中,步骤S1:构建三维噪声纹理空间,并在三维噪声纹理空间中构建三维体积云;具体包括:
步骤S11:获取一组第一三维噪声纹理图、一组第二三维噪声纹理图和高度-密度函数;
步骤S12:在三维噪声纹理空间中基于第一三维噪声纹理图、第二三维噪声纹理图和高度-密度函数构建三维体积云。
上述技术方案的工作原理及有益效果为:
一组第一三维噪声纹理图为一组大小为128*128*128的三维噪声纹理图(低频perlin-worly噪声),一组第二三维噪声纹理图一组大小为32*32*32的三维噪声纹理图(高频的worly噪声),噪声图中的某个确定的信号值可以映射到空间中某点的体积云的密度,前者用于描述体积云的基本形状;后者用于描述体积云的蓬松的细节形状。高度-密度函数包括remap函数;此函数的作用是用于偏移或缩放噪声信号,控制不同高度下的体积云的形态---层云,积云,层积云。
首先,建立三维噪声纹理空间,然后采用高度-密度函数对两组三维噪声纹理图中的噪声信号进行处理;然后将处理后的两组三维噪声纹理图带入预先建立的模型中,从而获得三维体积云。因此只需两组三维噪声纹理图即可,从而节约了存储空间。
在一个实施例中,第一三维噪声纹理图包括:低频perlin-worly噪声;
第二三维噪声纹理图包括:高频的worly噪声。
在一个实施例中,步骤S3:获取像素点的视线方向,确定视线方向上三维体积云的总体密度,基于总体密度确定像素点渲染云的透明度,具体包括:
步骤S31:在真实三维空间中提取视线方向上三维体积云各个采样点的密度,
步骤S32:将各个采样点的密度累加作为视线方向上三维体积云的总体密度。
上述技术方案的工作原理及有益效果为:
步骤3主要核心为体积云密度采样;Ray-Match(三维空间射线检测),该算法的作用是将真实三维空间的点映射到三维噪声纹理空间(三维空间坐标映射到三维纹理坐标)。先计算屏幕空间中某个像素点的视线方向,延视线方向计算云底(预设的体积云出现的最低高度,例如1000m)和云顶((预设的体积云出现的最高高度,例如20000m)球壳的两个交点,然后以这两个交点为起点和终点,按照一定的步长,将线段上某点的三维空间坐标运用球体投影算法,归一化映射到三维纹理坐标,采样出该点的云的密度,随着步长递进,累加每个采样点的密度值,形成云在视线方向下的总体密度,作为此像素点渲染云的透明度的参考。其中,像素点的视线方向为预先设置的;总体密度与透明度呈反比,即总体密度越大透明度越低,总体密度越小透明度越高。
在一个实施例中,步骤S4:获取太阳的位置、光照强度、预设颜色,结合总体密度、视线方向,确定像素点渲染云的颜色,具体包括:
步骤S41:获取太阳的位置、光照强度、预设颜色;
步骤S42:基于总体密度、太阳位置、光照强度、预设颜色和实现方向,结合太阳光的散射定律和Henyey-Greenstein相位函数,确定像素的RGB颜色;
步骤S43:采用tonemap算法将RGB颜色转换为高动态范围颜色;将高动态范围颜色作为像素点渲染云的颜色。
上述技术方案的工作原理及有益效果为:
首先计算出RGB图像颜色,主要是体积云在光照下呈现的颜色;利用体积云采样算法得出的确定像素点下的云的总体密度,视线方向,太阳方位,利用Beer散射定律,Henyey-Greenstein相位函数,计算出具有真实物理规律的云的颜色,具体为基于总体密度、太阳位置、光照强度、预设颜色和实现方向,结合太阳光的散射定律和Henyey-Greenstein相位函数,确定像素的RGB颜色。
但是RGB颜色不能更好符合人眼的视觉,需要将其转换为高动态范围颜色值【高斯图像颜色】,因此需要后处理;即利用tonemap算法将前几步计算的颜色值(具有云的本体物理特种)转换成高动态范围颜色值(更好的反映出真实环境中的视觉效果),产生出更容易让人眼接受的画面。通过高动态范围颜色值使显示的三维体积云的照明效果更加真实。
本发明还提供一种基于三维噪声图的三维体积云渲染系统,包括:
三维体积云构建模块,用于构建三维噪声纹理空间,并在三维噪声纹理空间中构建三维体积云;
映射模块,用于构建真实三维空间,将三维体积云映射到真实三维空间;
透明度确定模块,用于获取像素点的视线方向,确定视线方向上三维体积云的总体密度,基于总体密度确定像素点渲染云的透明度;
颜色确定模块,用于基于总体密度、视线方向,确定像素点渲染云的颜色。
上述技术方案的工作原理及有益效果为:
首先,构建三维噪声纹理空间,并在三维噪声纹理空间中构建三维体积云,在构建的三维体积云中各个采样点存在信号值代表三维体积云的对应点的位置的密度。然后,构建真实三维空间,将三维体积云映射到真实三维空间;需要实现真实的云层渲染效果,需要构建包括屏幕空间的像素点的真实三维空间。当构建好真实三维空间时,获取屏幕空间的各个像素点的视线方向,该视线方向为预先设置的;在真实三维空间中以像素点及视线方向的延长线上的三维体积云的总体密度,将总体密度确定像素点渲染云的透明度;最后,获取太阳的位置、光照强度、预设颜色,结合总体密度、视线方向,确定像素点渲染云的颜色。通过透明度确定模块和颜色确定模块依次确定所有的预设的显示三维体积云的像素点的透明度和颜色;从而实现显示渲染后的三维体积云。
在一个实施例中,三维体积云构建模块包括:
第一参数获取子模块,用于获取一组第一三维噪声纹理图、一组第二三维噪声纹理图和高度-密度函数;
第一构建子模块,用于在三维噪声纹理空间中基于第一三维噪声纹理图、第二三维噪声纹理图和高度-密度函数构建三维体积云。
上述技术方案的工作原理及有益效果为:
一组第一三维噪声纹理图为一组大小为128*128*128的三维噪声纹理图(低频perlin-worly噪声),一组第二三维噪声纹理图一组大小为32*32*32的三维噪声纹理图(高频的worly噪声),噪声图中的某个确定的信号值可以映射到空间中某点的体积云的密度,前者用于描述体积云的基本形状;后者用于描述体积云的蓬松的细节形状。高度-密度函数;此函数的作用是用于偏移或缩放噪声信号,控制不同高度下的体积云的形态---层云,积云,层积云。
首先,建立三维噪声纹理空间,然后采用高度-密度函数对两组三维噪声纹理图中的噪声信号进行处理;然后将处理后的两组三维噪声纹理图带入预先建立的模型中,从而获得三维体积云。因此,只需两组三维噪声纹理图即可,从而节约了存储空间。
在一个实施例中,第一三维噪声纹理图包括:低频perlin-worly噪声;
第二三维噪声纹理图包括:高频的worly噪声。
在一个实施例中,透明度确定模块包括:
采样子模块,用于在真实三维空间中提取视线方向上三维体积云各个采样点的密度,
第一计算模块,用于将各个采样点的密度累加作为视线方向上三维体积云的总体密度。
上述技术方案的工作原理及有益效果为:
透明度确定模块主要核心为体积云密度采样;Ray-Match(三维空间射线检测),该算法的作用是将真实三维空间的点映射到三维噪声纹理空间(三维空间坐标映射到三维纹理坐标)。先计算屏幕空间中某个像素点的视线方向,延视线方向计算云底(预设的体积云出现的最低高度,例如1000m)和云顶((预设的体积云出现的最高高度,例如20000m)球壳的两个交点,然后以这两个交点为起点和终点,按照一定的步长,将线段上某点的三维空间坐标运用球体投影算法,归一化映射到三维纹理坐标,采样出该点的云的密度,随着步长递进,累加每个采样点的密度值,形成云在视线方向下的总体密度,作为此像素点渲染云的透明度的参考。其中,像素点的视线方向为预先设置的;总体密度与透明度呈反比,即总体密度越大透明度越低,总体密度越小透明度越高。
在一个实施例中,颜色确定模块包括:
第二参数获取模块,用于获取太阳的位置、光照强度、预设颜色;
第二计算模块,用于基于总体密度、太阳位置、光照强度、预设颜色和实现方向,结合太阳光的散射定律和Henyey-Greenstein相位函数,确定像素的RGB颜色;
转换模块,用于采用tonemap算法将RGB颜色转换为高动态范围颜色;将高动态范围颜色作为像素点渲染云的颜色。
上述技术方案的工作原理及有益效果为:
首先计算出RGB图像颜色,主要是体积云在光照下呈现的颜色;利用体积云采样算法得出的确定像素点下的云的总体密度,视线方向,太阳方位,利用Beer散射定律,Henyey-Greenstein相位函数,计算出具有真实物理规律的云的颜色,具体为基于总体密度、太阳位置、光照强度、预设颜色和实现方向,结合太阳光的散射定律和Henyey-Greenstein相位函数,确定像素的RGB颜色。
但是RGB颜色不能更好符合人眼的视觉,需要将其转换为高动态范围颜色值【高斯图像颜色】,因此需要后处理;即利用tonemap算法将前几步计算的颜色值(具有云的本体物理特种)转换成高动态范围颜色值(更好的反映出真实环境中的视觉效果),产生出更容易让人眼接受的画面。通过高动态范围颜色值使显示的三维体积云的照明效果更加真实。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种基于三维噪声图的三维体积云渲染方法,其特征在于,包括:
步骤S1:构建三维噪声纹理空间,并在所述三维噪声纹理空间中构建三维体积云;
步骤S2:构建真实三维空间,将所述三维体积云映射到所述真实三维空间;
步骤S3:获取像素点的视线方向,确定所述视线方向上所述三维体积云的总体密度,基于所述总体密度确定所述像素点渲染云的透明度;
步骤S4:获取太阳的位置、光照强度、预设颜色,结合所述总体密度、所述视线方向,确定所述像素点渲染云的颜色。
2.如权利要求1所述的基于三维噪声图的三维体积云渲染方法,其特征在于,所述步骤S1:构建三维噪声纹理空间,并在所述三维噪声纹理空间中构建三维体积云;具体包括:
步骤S11:获取一组第一三维噪声纹理图、一组第二三维噪声纹理图和高度-密度函数;
步骤S12:在所述三维噪声纹理空间中基于所述第一三维噪声纹理图、所述第二三维噪声纹理图和所述高度-密度函数构建三维体积云。
3.如权利要求2所述的基于三维噪声图的三维体积云渲染方法,其特征在于,所述第一三维噪声纹理图包括:低频perlin-worly噪声;
所述第二三维噪声纹理图包括:高频的worly噪声。
4.如权利要求1所述的基于三维噪声图的三维体积云渲染方法,其特征在于,所述步骤S3:获取像素点的视线方向,确定所述视线方向上所述三维体积云的总体密度,基于所述总体密度确定所述像素点渲染云的透明度,具体包括:
步骤S31:在所述真实三维空间中提取所述视线方向上所述三维体积云各个采样点的密度,
步骤S32:将各个所述采样点的所述密度累加作为所述视线方向上所述三维体积云的总体密度。
5.如权利要求1所述的基于三维噪声图的三维体积云渲染方法,其特征在于,所述步骤S4:获取太阳的位置、光照强度、预设颜色,结合所述总体密度、所述视线方向,确定所述像素点渲染云的颜色,具体包括:
步骤S41:获取太阳的位置、光照强度、预设颜色;
步骤S42:基于所述总体密度、所述太阳位置、所述光照强度、所述预设颜色和所述实现方向,结合太阳光的散射定律和Henyey-Greenstein相位函数,确定所述像素的RGB颜色;
步骤S43:采用tonemap算法将所述RGB颜色转换为高动态范围颜色;将所述高动态范围颜色作为所述像素点渲染云的颜色。
6.一种基于三维噪声图的三维体积云渲染系统,其特征在于,包括:
三维体积云构建模块,用于构建三维噪声纹理空间,并在所述三维噪声纹理空间中构建三维体积云;
映射模块,用于构建真实三维空间,将所述三维体积云映射到所述真实三维空间;
透明度确定模块,用于获取像素点的视线方向,确定所述视线方向上所述三维体积云的总体密度,基于所述总体密度确定所述像素点渲染云的透明度;
颜色确定模块,用于基于所述总体密度、所述视线方向,确定所述像素点渲染云的颜色。
7.如权利要求6所述的基于三维噪声图的三维体积云渲染系统,其特征在于,所述三维体积云构建模块包括:
第一参数获取子模块,用于获取一组第一三维噪声纹理图、一组第二三维噪声纹理图和高度-密度函数;
第一构建子模块,用于在所述三维噪声纹理空间中基于所述第一三维噪声纹理图、所述第二三维噪声纹理图和所述高度-密度函数构建三维体积云。
8.如权利要求7所述的基于三维噪声图的三维体积云渲染系统,其特征在于,所述第一三维噪声纹理图包括:低频perlin-worly噪声;
所述第二三维噪声纹理图包括:高频的worly噪声。
9.如权利要求6所述的基于三维噪声图的三维体积云渲染系统,其特征在于,所述透明度确定模块包括:
采样子模块,用于在所述真实三维空间中提取所述视线方向上所述三维体积云各个采样点的密度,
第一计算模块,用于将各个所述采样点的所述密度累加作为所述视线方向上所述三维体积云的总体密度。
10.如权利要求6所述的基于三维噪声图的三维体积云渲染系统,其特征在于,所述颜色确定模块包括:
第二参数获取模块,用于获取太阳的位置、光照强度、预设颜色;
第二计算模块,用于基于所述总体密度、所述太阳位置、所述光照强度、所述预设颜色和所述实现方向,结合太阳光的散射定律和Henyey-Greenstein相位函数,确定所述像素的RGB颜色;
转换模块,用于采用tonemap算法将所述RGB颜色转换为高动态范围颜色;将所述高动态范围颜色作为所述像素点渲染云的颜色。
CN202010624723.4A 2020-07-01 2020-07-01 一种基于三维噪声图的三维体积云渲染方法及系统 Pending CN111951362A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010624723.4A CN111951362A (zh) 2020-07-01 2020-07-01 一种基于三维噪声图的三维体积云渲染方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010624723.4A CN111951362A (zh) 2020-07-01 2020-07-01 一种基于三维噪声图的三维体积云渲染方法及系统

Publications (1)

Publication Number Publication Date
CN111951362A true CN111951362A (zh) 2020-11-17

Family

ID=73337337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010624723.4A Pending CN111951362A (zh) 2020-07-01 2020-07-01 一种基于三维噪声图的三维体积云渲染方法及系统

Country Status (1)

Country Link
CN (1) CN111951362A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113144613A (zh) * 2021-05-08 2021-07-23 成都乘天游互娱网络科技有限公司 基于模型的体积云生成的方法
CN114708411A (zh) * 2022-05-09 2022-07-05 北京领为军融科技有限公司 一种基于观察空间的菲涅尔透镜可视角度仿真方法
CN115049532A (zh) * 2022-08-15 2022-09-13 南京砺算科技有限公司 图形处理器、纹理坐标采样方法、编译方法及装置、介质
CN117710557A (zh) * 2024-02-05 2024-03-15 杭州经纬信息技术股份有限公司 一种真实感体积云的构建方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014384A2 (en) * 2006-07-26 2008-01-31 Soundspectrum, Inc. Real-time scenery and animation
CN104091363A (zh) * 2014-07-09 2014-10-08 无锡梵天信息技术股份有限公司 一种基于屏幕空间实时的体积云计算方法
CN106570929A (zh) * 2016-11-07 2017-04-19 北京大学(天津滨海)新代信息技术研究院 一种动态体积云的构建与绘制方法
CN109035383A (zh) * 2018-06-26 2018-12-18 苏州蜗牛数字科技股份有限公司 一种体积云的绘制方法、装置及计算机可读存储介质
CN109461197A (zh) * 2017-08-23 2019-03-12 当家移动绿色互联网技术集团有限公司 一种基于球面uv和重投影的云实时绘制优化算法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014384A2 (en) * 2006-07-26 2008-01-31 Soundspectrum, Inc. Real-time scenery and animation
CN104091363A (zh) * 2014-07-09 2014-10-08 无锡梵天信息技术股份有限公司 一种基于屏幕空间实时的体积云计算方法
CN106570929A (zh) * 2016-11-07 2017-04-19 北京大学(天津滨海)新代信息技术研究院 一种动态体积云的构建与绘制方法
CN109461197A (zh) * 2017-08-23 2019-03-12 当家移动绿色互联网技术集团有限公司 一种基于球面uv和重投影的云实时绘制优化算法
CN109035383A (zh) * 2018-06-26 2018-12-18 苏州蜗牛数字科技股份有限公司 一种体积云的绘制方法、装置及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐勇: "多噪声体积云实时模拟研究", 小型微型计算机系统, vol. 40, no. 11, pages 2461 - 2465 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113144613A (zh) * 2021-05-08 2021-07-23 成都乘天游互娱网络科技有限公司 基于模型的体积云生成的方法
CN113144613B (zh) * 2021-05-08 2024-06-21 成都乘天游互娱网络科技有限公司 基于模型的体积云生成的方法
CN114708411A (zh) * 2022-05-09 2022-07-05 北京领为军融科技有限公司 一种基于观察空间的菲涅尔透镜可视角度仿真方法
CN115049532A (zh) * 2022-08-15 2022-09-13 南京砺算科技有限公司 图形处理器、纹理坐标采样方法、编译方法及装置、介质
CN115049532B (zh) * 2022-08-15 2022-11-22 南京砺算科技有限公司 图形处理器、纹理坐标采样方法、编译方法及装置、介质
CN117710557A (zh) * 2024-02-05 2024-03-15 杭州经纬信息技术股份有限公司 一种真实感体积云的构建方法、装置、设备及介质
CN117710557B (zh) * 2024-02-05 2024-05-03 杭州经纬信息技术股份有限公司 一种真实感体积云的构建方法、装置、设备及介质

Similar Documents

Publication Publication Date Title
CN111951362A (zh) 一种基于三维噪声图的三维体积云渲染方法及系统
US9384596B2 (en) Visualization of obscured objects in 3D space
WO2022116659A1 (zh) 一种体积云渲染方法、装置、程序和可读介质
US10535180B2 (en) Method and system for efficient rendering of cloud weather effect graphics in three-dimensional maps
US10002456B2 (en) Water surface rendering in virtual environment
CN106652007B (zh) 虚拟海面渲染方法及系统
US10242481B2 (en) Visibility-based state updates in graphical processing units
US20070139408A1 (en) Reflective image objects
CN112370784B (zh) 虚拟场景显示方法、装置、设备以及存储介质
CN112233214B (zh) 一种大场景的雪景渲染方法、装置、设备及存储介质
WO2018038887A1 (en) Quadrangulated layered depth images
CN116485984B (zh) 全景影像车辆模型全局光照模拟方法、装置、设备及介质
WO2019089121A1 (en) High quality layered depth image texture rasterization
CN103544731B (zh) 一种基于多相机的快速反射绘制方法
Yang et al. Nonlinear perspective projections and magic lenses: 3D view deformation
KR20040024550A (ko) 묘화 처리 방법
CN110400366B (zh) 一种基于OpenGL的实时洪水灾害可视化仿真方法
CN114375464A (zh) 使用边界体积表示对虚拟空间中的动态单元进行光线追踪
CN103077497A (zh) 对层次细节模型中的图像进行缩放的方法和装置
CN116672706B (zh) 光照渲染方法、装置、终端和存储介质
CN116402931A (zh) 体积渲染方法、装置、计算机设备和计算机可读存储介质
CN113516751B (zh) 游戏中云的显示方法、装置以及电子终端
KR101428577B1 (ko) 적외선 동작 인식 카메라를 사용하여 화면상에 네추럴 유저 인터페이스 기반 입체 지구본을 제공하는 방법
CN115035231A (zh) 阴影烘焙方法、装置、电子设备和存储介质
CN111563947B (zh) 全球三维云的互动实时体渲染方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination