CN111943275A - 一种磁性Fe3S4纳米晶材料的制备方法 - Google Patents

一种磁性Fe3S4纳米晶材料的制备方法 Download PDF

Info

Publication number
CN111943275A
CN111943275A CN202010891949.0A CN202010891949A CN111943275A CN 111943275 A CN111943275 A CN 111943275A CN 202010891949 A CN202010891949 A CN 202010891949A CN 111943275 A CN111943275 A CN 111943275A
Authority
CN
China
Prior art keywords
solution
magnetic
nanocrystalline material
preparation
ultrapure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010891949.0A
Other languages
English (en)
Inventor
苏博
塞卡特·高希
杨宁柯
董蕙
何南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202010891949.0A priority Critical patent/CN111943275A/zh
Publication of CN111943275A publication Critical patent/CN111943275A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种磁性Fe3S4纳米晶材料的制备方法,包括前体溶液配制、pH调节以及后处理步骤。本发明操作简单,不采用高毒性溶剂和其他有机表面活性剂,制成品的粒径在100 nm以下,无其它杂质,质量稳定且纯度高,有良好的生物相容性;本发明所采用的原料价格低,大大降低了生产成,可规模化生产;采用本发明方法获得的产品在低温保存下,经12个月后仍然稳定存在,适合长期存储。

Description

一种磁性Fe3S4纳米晶材料的制备方法
技术领域
本发明属于纳米材料制备技术领域,具体涉及一种磁性Fe3S4纳米晶材料的制备方法。
背景技术
近些年来Fe3S4磁性纳米粒子由于其独特的物理化学性质,如量子尺寸效应、电磁学特性,在环境治理、能源储存、催化剂、生物医学应用等方面展示出了其巨大的潜力。Fe3S4纳米粒子的制备方法主要有共沉淀法、水热法(溶液热法)、热分解法和模板法。其中水热法、热解法等由于操作复杂,生产成本高等缺点,不适用于工业生产。而共沉淀法由于其制备过程简单、消耗低、粒径小等优点,适合于工业规模生产。
Fe3S4与Fe3O4同作为磁小体,具有相似的晶格结构,最早被Skinner等人作为一种矿物报道出来。但与Fe3O4纳米材料相比,对Fe3S4的研究了解还比较少,由于Fe3S4的亚稳态性质,导致对成功合成出Fe3S4纳米材料的报道较少,合成出相对稳定、结晶度高的Fe3S4纯相纳米材料较困难。
沉淀法是一种操作简单的制备金属纳米颗粒的一种方法。根据溶液中含有的化合物离子的价态,沉淀法可以分为共沉淀法、氧化还原沉淀法。由于Fe3S4的亚稳态性质,利用沉淀法制备Fe3S4纳米材料比较困难。为此,研发一种制备简单、质量稳定的磁性Fe3S4纳米晶材料的制备方法是非常必要的。
发明内容
本发明的目的在于提供一种磁性Fe3S4纳米晶材料的制备方法。
本发明的目的是这样实现的,包括以下步骤:
S1、在N2保护的条件下,将铁源FeSO4·7H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.1~0.5mol·L-1的溶液,将铁源Na2S·9H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.1~0.5mol·L-1的溶液;
S2、在N2保护的条件下,将S1步骤得到的两种溶液等体积混合均匀,得到前体溶液;
S3、对前体溶液逐滴滴加冰醋酸,调节溶液pH至2.9~3.1;
S4、将S3步骤调节pH后的溶液强力搅拌4~6min,再离心4~6min,移除多余液体,再经冻干处理除去水分,得到直径在20~100 nm磁性Fe3S4纳米晶材料。
与现有技术相比,本发明具有以下技术效果:
1、本发明操作简单,不采用高毒性溶剂和其他有机表面活性剂,制成品的粒径在100nm以下,无其它杂质,质量稳定且纯度高,有良好的生物相容性;
2、本发明所采用的原料价格低,大大降低了生产成,可规模化生产;
3、采用本发明方法获得的产品在低温保存下,经12个月后仍然稳定存在,适合长期存储。
附图说明
图1为本发明实施例1制得的磁性Fe3S4纳米晶材料的X射线衍射图谱。
图2为本发明实施例1制得的磁性Fe3S4纳米晶材料的磁铁测试图。
图3为本发明实施例1制得的磁性Fe3S4纳米晶材料的投射电镜图。
图4为本发明实施例1制得的磁性Fe3S4纳米晶材料的高倍扫描电镜图。
具体实施方式
下面结合附图对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。
如附图1~图4所示本发明包括以下步骤:
S1、在N2保护的条件下,将铁源FeSO4·7H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.1~0.5mol·L-1的溶液,将铁源Na2S·9H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.1~0.5mol·L-1的溶液;
S2、在N2保护的条件下,将S1步骤得到的两种溶液等体积混合均匀,得到前体溶液;
S3、对前体溶液逐滴滴加冰醋酸,调节溶液pH至2.9~3.1;
S4、将S3步骤调节pH后的溶液强力搅拌4~6min,再离心4~6min,移除多余液体,再经冻干处理除去水分,得到直径在20~100 nm磁性Fe3S4纳米晶材料。
本发明用共沉淀法,将Fe2+、Fe3+与S2-按比例混合,调节pH进行反应,然后经搅拌、离心、冻干处理,其反应原理为:
Figure DEST_PATH_IMAGE001
最后得到制得Fe3S4纳米晶材料。
优选地,S1步骤的无氧超纯水是先将超纯水煮沸,然后通入N2,去除超纯水中的氧,即可。
优选地,S3步骤调节溶液pH至3.0。
优选地,S4步骤离心是在5000~8000 rpm下条件下离心。
优选地,S4步骤强力搅拌5min,再离心5min。
下面结合实施例1~实施例4对本发明作进一步说明。
实施例1
磁性Fe3S4纳米晶材料的制备方法,包括以下步骤:
S1、在N2保护的条件下,将铁源FeSO4·7H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.1mol·L-1的溶液,将铁源Na2S·9H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.1mol·L-1的溶液;
S2、在N2保护的条件下,将S1步骤得到的两种溶液等体积混合均匀,得到前体溶液;
S3、对前体溶液逐滴滴加冰醋酸,调节溶液pH至3.0;
S4、将S3步骤调节pH后的溶液强力搅拌5min,再在7000rpm条件下离心5min,移除多余液体,再经冻干处理除去水分,得到直径在20nm磁性Fe3S4纳米晶材料。
实施例2
磁性Fe3S4纳米晶材料的制备方法,包括以下步骤:
S1、在N2保护的条件下,将铁源FeSO4·7H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.1mol·L-1的溶液,将铁源Na2S·9H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.1mol·L-1的溶液;
S2、在N2保护的条件下,将S1步骤得到的两种溶液等体积混合均匀,得到前体溶液;
S3、对前体溶液逐滴滴加冰醋酸,调节溶液pH至2.9;
S4、将S3步骤调节pH后的溶液强力搅拌4min,再在5000 rpm条件下离心4min,移除多余液体,再经冻干处理除去水分,得到直径在100nm磁性Fe3S4纳米晶材料。
实施例3
磁性Fe3S4纳米晶材料的制备方法,包括以下步骤:
S1、在N2保护的条件下,将铁源FeSO4·7H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.5mol·L-1的溶液,将铁源Na2S·9H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.5mol·L-1的溶液;
S2、在N2保护的条件下,将S1步骤得到的两种溶液等体积混合均匀,得到前体溶液;
S3、对前体溶液逐滴滴加冰醋酸,调节溶液pH至3.1;
S4、将S3步骤调节pH后的溶液强力搅拌6min,再在8000 rpm条件下离心6min,移除多余液体,再经冻干处理除去水分,得到直径在50 nm磁性Fe3S4纳米晶材料。
实施例4
磁性Fe3S4纳米晶材料的制备方法,包括以下步骤:
S1、在N2保护的条件下,将铁源FeSO4·7H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.3mol·L-1的溶液,将铁源Na2S·9H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.3mol·L-1的溶液;
S2、在N2保护的条件下,将S1步骤得到的两种溶液等体积混合均匀,得到前体溶液;
S3、对前体溶液逐滴滴加冰醋酸,调节溶液pH至3.0;
S4、将S3步骤调节pH后的溶液强力搅拌5min,再在6500rpm条件下离心5min,移除多余液体,再经冻干处理除去水分,得到直径在60nm磁性Fe3S4纳米晶材料。

Claims (5)

1.一种磁性Fe3S4纳米晶材料的制备方法,其特征在于包括以下步骤:
S1、在N2保护的条件下,将铁源FeSO4·7H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.1~0.5mol·L-1的溶液,将铁源Na2S·9H2O按1:1摩尔比溶解在无氧超纯水中,得到浓度为0.1~0.5mol·L-1的溶液;
S2、在N2保护的条件下,将S1步骤得到的两种溶液等体积混合均匀,得到前体溶液;
S3、对前体溶液逐滴滴加冰醋酸,调节溶液pH至2.9~3.1;
S4、将S3步骤调节pH后的溶液强力搅拌4~6min,再离心4~6min,移除多余液体,再经冻干处理除去水分,得到直径在20~100 nm磁性Fe3S4纳米晶材料。
2.根据权利要求1所述的磁性Fe3S4纳米晶材料的制备方法,其特征在于S1步骤的无氧超纯水是先将超纯水煮沸,然后通入N2,去除超纯水中的氧,即可。
3.根据权利要求1所述的磁性Fe3S4纳米晶材料的制备方法,其特征在于S3步骤调节溶液pH至3.0。
4.根据权利要求1所述的磁性Fe3S4纳米晶材料的制备方法,其特征在于S4步骤离心是在5000~8000 rpm下条件下离心。
5.根据权利要求1所述的磁性Fe3S4纳米晶材料的制备方法,其特征在于S4步骤强力搅拌5min,再离心5min。
CN202010891949.0A 2020-08-31 2020-08-31 一种磁性Fe3S4纳米晶材料的制备方法 Pending CN111943275A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010891949.0A CN111943275A (zh) 2020-08-31 2020-08-31 一种磁性Fe3S4纳米晶材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010891949.0A CN111943275A (zh) 2020-08-31 2020-08-31 一种磁性Fe3S4纳米晶材料的制备方法

Publications (1)

Publication Number Publication Date
CN111943275A true CN111943275A (zh) 2020-11-17

Family

ID=73368083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010891949.0A Pending CN111943275A (zh) 2020-08-31 2020-08-31 一种磁性Fe3S4纳米晶材料的制备方法

Country Status (1)

Country Link
CN (1) CN111943275A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102817081A (zh) * 2012-08-22 2012-12-12 兰州大学 一种片状四硫化三铁纳米单晶的制备方法
CN102874879A (zh) * 2012-10-12 2013-01-16 中国科学技术大学 一种Fe3S4纳米晶材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102817081A (zh) * 2012-08-22 2012-12-12 兰州大学 一种片状四硫化三铁纳米单晶的制备方法
CN102874879A (zh) * 2012-10-12 2013-01-16 中国科学技术大学 一种Fe3S4纳米晶材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YO-SHENG CHANG等: "Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *

Similar Documents

Publication Publication Date Title
Gupta et al. Hydrothermal synthesis of TiO2 nanorods: formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities
Chen et al. Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight
Zou et al. Facile preparation and photocatalytic activity of oxygen vacancy rich BiOCl with {0 0 1} exposed reactive facets
Wang et al. Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation
Sreelekha et al. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles
Mohammadikish Hydrothermal synthesis, characterization and optical properties of ellipsoid shape α-Fe2O3 nanocrystals
Liu et al. Activating peroxydisulfate by morphology-dependent NiO catalysts: Structural origin of different catalytic properties
Sordello et al. Tuning TiO 2 nanoparticle morphology in graphene–TiO 2 hybrids by graphene surface modification
KR101414539B1 (ko) 그래핀/TiO2 복합체의 제조방법
Mataji et al. Structural, optical and magnetic properties of novel ZnFe2O4/ZrO2 mixed metal oxide nanocomposite synthesized by hydrothermal technique
Chang et al. Preparation of Fe 3 O 4/TiO 2 magnetic photocatalyst for photocatalytic degradation of phenol
Yu et al. Coating MWNTs with Cu2O of different morphology by a polyol process
Mandal et al. Facile route to the synthesis of porous α-Fe2O3 nanorods
Peng et al. Controllable synthesis of self-assembled Cu2S nanostructures through a template-free polyol process for the degradation of organic pollutant under visible light
Zhang et al. Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal treatment
Yin et al. Controlled synthesis of hollow α-Fe2O3 microspheres assembled with ionic liquid for enhanced visible-light photocatalytic activity
Sun et al. Photocatalytic properties of exposed crystal surface-controlled rutile TiO2 nanorod assembled microspheres
Mohammadi et al. Synthesis and characterization of α-Fe2O3 nanoparticles by microwave method
Yang et al. Monodispersed colloidal zinc oxide nanospheres with various size scales: synthesis, formation mechanism, and enhanced photocatalytic activity
Yao et al. Preparation and hydrogenation of urchin-like titania using a one-step hydrothermal method
Zhang et al. Solvothermal synthesis of manganese sulfides and control of their phase and morphology
Namratha et al. Hydrothermal processing and in situ surface modification of metal oxide nanomaterials
Zheng et al. Synthesis of single-crystal-like TiO2 hierarchical spheres with exposed {1 0 1} and {1 1 1} facets via lysine-inspired method
CN111943275A (zh) 一种磁性Fe3S4纳米晶材料的制备方法
Kobayashi et al. Synthesis of spindle and square bipyramid-shaped anatase-type titanium dioxide crystals by a solvothermal method using ethylenediamine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201117

RJ01 Rejection of invention patent application after publication