CN111937428A - 用于无线通信系统中的测量的装置和方法 - Google Patents

用于无线通信系统中的测量的装置和方法 Download PDF

Info

Publication number
CN111937428A
CN111937428A CN201980022709.2A CN201980022709A CN111937428A CN 111937428 A CN111937428 A CN 111937428A CN 201980022709 A CN201980022709 A CN 201980022709A CN 111937428 A CN111937428 A CN 111937428A
Authority
CN
China
Prior art keywords
state
scell
mac
rrc
enb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980022709.2A
Other languages
English (en)
Other versions
CN111937428B (zh
Inventor
金东建
金成勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority claimed from PCT/KR2019/003672 external-priority patent/WO2019190245A1/en
Publication of CN111937428A publication Critical patent/CN111937428A/zh
Application granted granted Critical
Publication of CN111937428B publication Critical patent/CN111937428B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种在无线通信系统中操作用户设备(UE)的方法,一种在无线通信系统中操作演进型节点B(eNB)的方法,一种在无线通信系统中的UE的装置以及一种用于在无线通信系统中操作eNB的装置。操作UE的方法包括:从演进节点B(eNB)接收频率测量配置信息;基于频率测量配置信息,在无线电资源控制(RRC)空闲模式或RRC非活动模式下进行频率测量;以及将频率测量结果发送给eNB。

Description

用于无线通信系统中的测量的装置和方法
技术领域
本公开通常涉及一种无线通信系统,并且更具体地涉及一种用于无线通信系统中的测量的装置和方法。
背景技术
为了满足自第四代(4G)通信系统商业化以来不断增长的无线数据流量需求,已经做出了开发改进的第五代(5G)通信系统或5G前(pre-5G)通信系统的努力。因此,将5G通信系统或5G前通信系统称为超4G网络通信系统或后LTE系统。
为了实现高数据传输速率,正在考虑在毫米波频带(例如,60GHz频带)中实现5G通信系统。在5G通信系统中,正在讨论诸如波束成形、大规模多输入多输出(MIMO)、全维度MIMO(FD-MIMO)、阵列天线、模拟波束成形和大规模天线技术的技术,作为减轻超高频带中的传播路径损耗并增加传播传输距离的手段。
此外,为了改善5G通信系统中的系统网络,已经开发了诸如演进型小小区、高级小小区、云无线电接入网(RAN)、超密集网络、设备到设备通信(D2D)、无线回程、移动网络、协作通信、协调多点(CoMP)和接收干扰消除的技术。
此外,5G系统还开发了高级编码调制(ACM)方案,诸如混合频移键控(FSK)和正交幅度调制(QAM)(FQAM)和滑动窗口叠加编码(SWSC),并进一步开发了高级接入技术,诸如滤波器组多载波(FBMC)、非正交多址(NOMA)和稀疏码多址(SCMA)。
5G通信系统操作以通过波束形成方案来增加信号增益,以克服由于超高频带(例如,毫米波)的特性而引起的路径损耗问题。另外,需要用户设备(UE)预先执行频率扫描以接入演进的节点B(eNB)。由于在波束形成通信系统中对每个波束执行增益控制,因此进行频率扫描以接入eNB所花费的时间可能会增加。
发明内容
本公开的一方面提供了一种用于无线通信中的频率测量的装置和方法。
本公开的另一方面提供了一种用于在无线通信系统中快速执行频率测量的装置和方法。
本公开的另一方面提供了一种用于在无线通信系统中快速报告频率测量结果的装置和方法。
本公开的另一方面提供了一种用于在无线通信系统中快速配置载波聚合(CA)或双连接(DC)的装置和方法。
本公开的另一方面提供了无线通信系统中的辅小区(SCell)的状态的定义。
本公开的另一方面提供了一种用于在无线通信系统中切换SCell的状态的装置和方法。
本公开的另一方面提供了一种用于在无线通信系统中基于SCell的状态来执行频率测量操作的装置和方法。
本公开的另一方面提供了一种通过在较早的时间点执行频率测量来有效地配置CA或DC的装置和方法。
本公开的另一方面提供了通过为SCell定义状态并根据该状态执行测量操作来有效地执行测量。
根据本公开的一方面,提供一种在无线通信系统中操作UE的方法。所述方法包括:从eNB接收频率测量配置信息;基于频率测量配置信息,在无线电资源控制(RRC)空闲模式或RRC非活动模式下执行频率测量;将频率测量结果发送给eNB。
根据本公开的另一方面,提供了一种在无线通信系统中操作eNB的方法。所述方法包括发送频率测量配置信息;基于频率测量配置信息,从UE接收在RRC空闲模式或RRC非活动模式下执行的频率测量的结果;根据频率测量结果确定是否对UE执行CA或DC。
根据本公开的另一方面,提供了一种无线通信系统中的UE的装置。所述装置包括至少一个收发器;以及至少一个处理器,连接到至少一个收发器,其中,所述至少一个处理器被配置为从eNB接收频率测量配置信息,基于频率测量配置信息,在RRC空闲模式或RRC非活动模式下执行频率测量,将频率测量结果发送给eNB。
根据本公开的另一方面,提供了一种用于在无线通信系统中操作eNB的装置。所述装置包括至少一个收发器;以及至少一个处理器,连接到至少一个收发器,其中,所述至少一个处理器被配置为发送频率测量配置信息,基于频率测量配置信息,从UE接收在RRC空闲模式或RRC非活动模式下执行的频率测量的结果。
附图说明
从以下结合附图的描述中,本公开的某些实施例的上述和其他方面、特征和优点将变得更加明显,在附图中:
图1是根据实施例的无线通信系统的图示。
图2是根据实施例的在无线通信系统中的无线协议的框图;
图3是根据实施例的无线通信系统的图示;
图4是根据实施例的无线通信系统的无线协议的图示;
图5是根据实施例的在无线通信系统中用于由UE测量频率并报告测量的方法的流程图;
图6是根据实施例的在无线通信系统中由eNB进行频率测量和测量报告的方法的流程图;
图7是根据实施例的在无线通信系统中在eNB与UE之间用于频率测量和测量报告的信令的流程图;
图8是根据实施例的在无线通信系统中在eNB和UE之间用于频率测量和测量报告的信令的流程图;
图9是根据实施例的在无线通信系统中由UE配置SCell的方法的流程图;
图10是根据实施例的在无线通信系统中在eNB与UE之间用于配置SCell的信令的流程图;
图11是根据实施例的SCell的状态转变的图示;
图12A是根据实施例的在无线通信系统中支持SCell的状态转变的媒体访问控制(MAC)控制信息的图示;
图12B是根据实施例的在无线通信系统中根据支持SCell的状态转变的MAC控制信息的八位字节结构的图示;
图13A是根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的图示;
图13B是根据实施例的在无线通信系统中根据支持SCell的状态转变的MAC控制信息的八位字节结构的图示;
图13C是根据实施例的在无线通信系统中根据支持SCell的状态转变的MAC控制信息的八位字节结构的图示;
图14A是根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的图示;
图14B是根据实施例的在无线通信系统中根据支持SCell的状态转变的MAC控制信息的八位字节结构的图示;
图15A是根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的图示;
图15B是根据实施例的在无线通信系统中根据支持SCell的状态转变的MAC控制信息的八位字节结构的图示;
图16A是根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的图示;
图16B是根据实施例的在无线通信系统中根据支持用于SCell的状态转变的MAC控制信息的八位字节结构的图示;
图17A是根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的图示;
图17B是根据实施例的在无线通信系统中根据支持SCell的状态转变的MAC控制信息的八位字节结构的图示;
图18A是根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的图示;
图18B是根据实施例的在无线通信系统中根据支持SCell的状态转变的MAC控制信息的八位字节结构的图示;
图19是根据实施例的在无线通信系统中的eNB的框图;以及
图20是根据实施例的在无线通信系统中的UE的框图。
具体实施方式
本公开中使用的术语仅用于描述某些实施例,而无意于限制本公开。除非在上下文中它们肯定不同,否则单数表达可以包括复数表达。除非另有定义,否则本文中使用的所有术语具有与本公开所属领域的技术人员通常理解的含义相同的含义。诸如在常用字典中定义的那些术语可以被解释为具有与相关技术领域中的上下文含义相同的含义,但是除非在本公开中明确定义,否则它们并不意图被解释为具有理想或过分正式的含义。在某些情况下,即使本公开中定义的术语也不旨在被解释为排除本公开的实施例。
在下文中,基于硬件的方法描述了本公开的各种实施例。然而,本公开的各种实施例包括使用硬件和软件两者的技术,因此,本公开的各种实施例可以不排除软件的观点。
在下文中,本公开涉及一种方法和装置,其中处于RRC空闲模式或RRC非活动模式中的UE执行频率测量并将频率测量结果快速报告给eNB,并且eNB在无线通信系统中快速配置CA技术。RRC空闲模式可以被称为RRC空闲状态(RRC非活动状态),并且RRC非活动模式可以被称为RRC非活动状态。
为了在无线通信中支持具有高数据传输速率和低传输延迟的服务,需要eNB在UE中快速配置CA或DC技术。然而,需要UE的频率测量结果来配置UE中的技术。因此,在本公开中,UE预先在RRC空闲模式或RRC非活动模式以及RRC连接模式下执行频率测量,并且将频率测量结果快速报告给eNB,因此,eNB需要快速配置频率CA技术。
本发明公开了一种方法,当UE从RRC连接模式转变到RRC空闲模式或RRC非活动模式时,eNB通过RRC消息配置频率测量配置信息(频内频间测量配置(intra-interfrequency measurement configuration))或通过每个小区的系统信息广播频率测量配置信息,以允许UE在无线通信系统中在RRC空闲模式或RRC非活动模式下预先执行频率测量。当UE在测量的频率测量结果中确定有效频率测量结果并且向eNB指示存在有效频率测量结果时,eNB可以根据需要向UE请求频率测量结果,因此,UE可以报告频率测量结果。因此,在UE配置到网络的连接之前,eNB可以配置UE在RRC空闲模式或RRC非活动模式下执行频率测量。eNB可以接收频率测量结果。如果需要,eNB可以快速配置CA。如上所述,eNB可以通过小的信令开销和低的传输延迟来快速地向UE提供更大量的数据。
在下文中,参照附图详细描述本公开的操作原理。在以下描述本公开中,当确定其详细描述可能不必要地使本公开的主题模糊时,将省略本文中并入的相关已知配置或功能的详细描述。以下描述的术语是考虑到本公开中的功能而定义的术语,并且可以根据用户、用户的意图或习惯而不同。因此,术语的定义应基于整个公开内容而定。
在以下描述本公开中,当本文中并入的相关已知配置或功能的详细描述可能不必要地使本公开的主题不清楚时,将省略其详细描述。在下文中,参照附图描述本公开的实施例。
在下面的描述中,为了便于描述,使用了用于标识接入节点、指代网络实体,指代消息,指代网络实体之间的接口以及指代各种标识信息的术语。因此,本公开内容不旨在由以下提供的术语限制,并且可以使用指示具有等同含义的主题的其他术语。
本公开使用在第三代合作伙伴计划长期演进(3GPP LTE)标准中定义的术语和名称。然而,本公开内容不旨在限于术语和名称,而是可以等同地应用于根据另一标准的系统。在本公开中,eNB与下一代节点B(gNB)可互换。也就是说,被描述为eNB的基站可以指示gNB。
图1是根据实施例的无线通信系统的图示。无线通信系统可以是应用了长期演进(LTE)无线电接入技术(RAT)的系统(例如,演进分组系统(EPS))。在下文中,应用了LTE RAT的系统可以被称为“LTE系统”。
参照图1,LTE系统的RAN包括eNB 105、110、115和120,移动性管理实体(MME)125和服务网关(S-GW)130。UE 135可以通过eNB 105、110、115或120以及S-GW 130接入外部网络。
eNB 105、110、115和120对应于通用移动电信系统(UMTS)的传统节点B。eNB 105、110、115或120可以通过无线信道连接到UE 135,并且可以扮演比传统节点B更复杂的角色。在LTE系统中,由于通过共享信道服务包括实时服务(诸如通过互联网协议的互联网协议语音(VoIP))的所有用户业务,因此需要用于收集和调度状态信息(诸如缓冲器状态、可用传输功率状态和UE的信道状态)的设备,并且eNB 105、110、115和120充当此设备。一个eNB通常可以控制多个小区。例如,为了实现每秒100兆比特(Mbps)的传输速率,LTE系统在20MHz的带宽中使用正交频分复用(OFDM)作为无线电接入技术。此外,根据UE的信道状态,将确定信道编码率的调制方案和自适应调制和编码(AMC)方案应用于LTE系统。S-GW 130是用于提供数据承载的设备。S-GW 130可以根据MME 125的控制生成或去除数据承载。MME 125是用于执行管理UE的移动性的功能和各种控制功能的设备,并且可以连接到多个eNB。
图2是根据实施例的在无线通信系统中的无线协议的框图。协议结构可以是LTE系统中的协议结构。
参照图2,在LTE系统中,UE 135的无线协议可以包括分组数据汇聚协议(PDCP)205、无线电链路控制(RLC)210、MAC 215和物理层(PHY)220。在LTE系统中,eNB 105的无线协议可以包括PDCP 240、RLC 235、MAC 230和PHY 225。
PDCP 205和PDCP 240可以压缩或解压缩IP报头。PDCP 205和PDCP 240可以通过稳健报头压缩(ROHC)方案来压缩或解压缩IP报头。下面描述PDCP的主要功能,并且PDCP 205或PDCP 240可以执行以下功能中的至少一个。
-报头压缩和解压缩功能(报头压缩和解压缩:仅ROHC)
-用户数据发送(transmission)功能(用户数据的传输(transfer))
-顺序递送(delivery)功能(对于RLC确认模式(AM)在PDCP重新建立程序中按顺序递送上层分组数据单元(PDU))
-重新排序功能(用于DC中的分离承载(仅支持RLC AM):用于传输的PDCP PDU路由和用于接收的PDCP PDU的重新排序)
-重复检测功能(对于RLC AM,在PDCP重新建立程序中重复检测低层服务数据单元(SDU))
-重发功能(对于RLC AM,在切换时重发PDCP SDU,对于DC中的分离承载,在PDCP数据恢复程序中重发PDCP PDU)
-加密和解密功能(加密和解密)
-基于定时器的SDU删除功能(在上行链路中基于定时器的SDU丢弃)
RLC 210或RLC 235可以将PDCP PDU重新配置为适当的大小,并执行自动重复请求(ARQ)功能。下面描述RLC 210和RLC 235的主要功能,并且RLC 210或RLC 235可以执行以下功能中的至少一个。
-数据发送功能(上层PDU的传输)
-ARQ功能(通过ARQ进行纠错(仅用于AM数据传输))
-级联,分段和重组功能(RLC SDU的级联,分段和重组(仅用于未确认模式(UM)和AM数据传输))
-重新分段功能(RLC数据PDU的重新分段(仅用于AM数据传输))
-重新排序功能(RLC数据PDU的重新排序(仅用于UM和AM数据传输)
-重复检测功能(重复检测(仅用于UM和AM数据传输))
-错误检测功能(协议错误检测(仅用于AM数据传输))
-RLC SDU删除功能(RLC SDU丢弃(仅用于UM和AM数据传输))
-RLC重建功能(RLC重建)
MAC 215或MAC 230可以连接到UE中包括的多个RLC层设备。MAC 2115或MAC 230可以将RLC PDU多路复用到MAC PDU。MAC 2115或MAC 230可以从MAC PDU解复用RLC PDU。MAC215或MAC 230的主要功能在下面描述,并且可以执行以下功能中的至少一个。
-映射功能(逻辑信道和传输信道之间的映射)
-复用和解复用功能(将属于一个或不同逻辑信道的MAC SDU复用到要在传输信道上递送到物理层的传输块(TB)/从在传输信道上递送到物理层的传输块(TB)解复用)
-调度信息报告功能(调度信息报告)
-混合ARQ(HARQ)功能(通过HARQ进行纠错)
-逻辑信道优先级控制功能(一个UE的逻辑信道之间的优先级处理)
-UE优先级控制功能(通过动态调度在UE之间进行优先级处理)
-多媒体广播多播服务(MBMS)服务识别功能(MBMS服务识别)
-传输格式选择功能(传输格式选择)
-填充功能(填充)
PHY 220或PHY 225可以对较高层数据执行信道编码和调制,以生成符号(例如,OFDM符号),并通过无线信道发送所生成的符号。PHY 220或PHY 225可以对通过无线信道接收的符号执行解调和信道解码,并将该符号发送到较高层。
图3是根据实施例的无线通信系统的图示。无线通信系统可以支持与图1的LTE不同的RAT。无线通信系统可以包括应用新无线电(NR)RAT的系统。在下文中,在本公开中,应用NR RAT的系统可以被称为“NR系统”,“5G通信系统”或“下一代移动通信系统”。根据本公开的实施例,NR RAT可以是与LTE RAT相比实现更高的数据发送速率、更高的可靠性和/或更低的等待时间数据通信的RAT。
参照图3,NR系统的RAN包括eNB 105、110、115和120,MME 125和S-GW 130。UE 135可以通过eNB 105、110、115或120以及S-GW 130接入外部网络。
NR系统的无线接入网可以包括NR下一代节点B(NR gNB)310(以下称为gNB)和NR核心网(NR CN)305。NR gNB可以被称为下一代eNB、NR eNB或gNB。NR系统的UE 315(以下称为NR UE或终端)可以通过NR gNB 310和NR CN 305接入外部网络。
NR gNB 310对应于传统LTE系统的eNB。NR gNB可以通过无线电信道连接到NR UE315,并且可以提供比传统节点B更好的服务。由于在下一代移动通信系统中,通过共享信道服务所有用户业务,因此NR gNB 310可以收集并调度状态信息,诸如缓冲器状态、可用传输功率状态和UE的信道状态。NR gNB 310通常控制多个小区。与当前的LTE系统相比,NR系统可以支持传统的最大带宽或更宽以实现超高数据传输,并且可以通过RAT将波束形成技术另外嫁接到其上,作为OFDM方案。此外,根据UE的信道状态,应用确定信道编码率的调制方案和AMC方案。NR CN 305可以执行支持移动性,建立承载以及配置服务质量(QoS)的功能。NR CN 305是用于执行管理UE的移动性的功能和各种控制功能的设备,并且可以连接到多个eNB。NR系统可以与传统LTE系统互工作。例如,NR CN 305通过网络接口连接到MME 325。MME 325可以连接到作为传统eNB的eNB 330。
图4是根据实施例的无线通信系统的无线协议的图示。无线协议的结构可以是NR系统的无线协议的结构。
参照图4,NR系统的UE的无线协议可以包括NR PDCP 405、NR RLC 410、NR MAC 415和NR PHY 420。NR系统的NR gNB的无线协议可以包括NR PDCP 445、NR RLC 435、NR MAC430和NR PHY 425。
NR PDCP 405和NR PDCP 440可以执行以下功能中的至少一个。
-报头压缩和解压缩功能(报头压缩和解压缩:仅ROHC)
-用户数据发送功能(用户数据的传输)
-顺序递送功能(上层PDU的顺序递送)
-非顺序递送功能(上层PDU的不按顺序递送)
-重新排序功能(用于接收的PDCP PDU重新排序)
-重复检测功能(重复检测下层SDU)
-重发功能(重发PDCP SDU)
-加密和解密功能(加密和解密)
-基于定时器的SDU删除功能(在上行链路中基于定时器的SDU丢弃)
在以上示例中,NR PDCP的记录功能是基于PDCP序列号(SN)对由下层接收的PDCPPDU进行顺序重新排序的功能。重新排序功能可以包括以下各项的至少一个:将重新排序的数据顺序地发送到较高层的功能、不管其顺序如何发送数据的功能、记录由于重新排序而丢失的PDCP PDU的功能、向发送侧报告丢失的PDCP PDU的状态的功能,以及请求重新发送丢失的PDCP PDU的功能。
NR RLC 410和NR RLC 435可以执行以下功能中的至少一个。
-数据发送功能(上层PDU的传输)
-顺序递送功能(上层PDU的顺序递送)
-非顺序递送功能(上层PDU的不按顺序递送)
-ARQ功能(通过ARQ进行纠错)
-级联,分段和重组功能(RLC SDU的级联,分段和重组)
-重新分段功能(RLC数据PDU的重新分段)
-重新排序功能(RLC数据PDU的重新排序)
-重复检测功能(重复检测)
-错误检测功能(协议错误检测)
-RLC SDU删除功能(RLC SDU丢弃)
-RLC重建功能(RLC重建)
在以上示例中,NR RLC的顺序递送功能(顺序递送)是将从较低层接收的RLC SDU顺序传送到较高层的功能。当一个原始RLC SDU被分成多个RLC SDU并被接收时,顺序递送功能可以包括:重新组装和发送RLC SDU的功能、基于RLC SN或PDCP SN对接收的RLC PDU进行重新排序的功能、记录由于重新排序而丢失的RLC PDU的功能、向发送侧报告丢失的RLCPDU的状态的功能、请求重新发送丢失的RLC PDU的功能、在存在丢失的RLC SDU时仅将丢失的RCL SDU之前的RLC SDU顺序地发送到较高层的功能、在尽管存在丢失的RLC SDU但是预定定时器期满时将定时器开始之前接收的所有RLC SDU顺序发送到较高层的功能、以及在尽管存在丢失的RLC SDU但是预定定时器期满时将接收的所有RLC SDU顺序发送到较高层的功能。此外,NR RLC可以顺序地(即,根据SN,不考虑SN,或者按照到达顺序)处理RLC PDU,并且将RLC PDU传送到PDCP而不管其顺序如何(不按顺序递送),或者当接收到段时,可以接收存储在缓冲器中或将来要接收的段以重新配置一个完整的RLC PDU,然后将RLC PDU发送到PDCP以处理重新配置的RLC PDU。NR RLC层可以不包括级联功能。该功能可以由NR MAC层执行,或者可以由NR MAC层的复用功能代替。
在以上示例中,NR RLC的非顺序递送功能(不按顺序递送)是将从较低层接收的RLC SDU传送到较高层而不管其顺序的功能。当将一个原始RLC SDU划分为多个RLC SDU并被接收时,非顺序递送功能可以包括:重组和发送RLC SDU的功能以及存储接收的RCL PDU的RLC SN或PDCP SN,重新排序RLC PDU,并记录丢失的RLC PDU的功能。
NR MAC 415或NR MAC 430可以连接到一个UE中包括的多个NR RLC层设备。NR MAC415或NR MAC 430可以执行以下功能中的至少一个。
-映射功能(逻辑信道和传输信道之间的映射)
-复用和解复用功能(MAC SDU的复用/解复用)
-调度信息报告功能(调度信息报告)
-HARQ功能(通过HARQ进行纠错)
-逻辑信道优先级控制功能(一个UE的逻辑信道之间的优先级处理)
-UE优先级控制功能(通过动态调度在UE之间进行优先级处理)
-MBMS服务识别功能(MBMS服务识别)
-传输格式选择功能(传输格式选择)
-填充功能(填充)
NR PHY 420或NR PHY 425可以通过对较高层数据执行信道编码和调制来生成符号(例如,OFDM符号),并且通过无线信道发送生成的符号。NR PHY 420或NR PHY 425可以对通过无线信道接收的符号执行解调和信道解码,并将符号发送到较高层。
在下文中,描述了根据本公开的无线通信系统中的eNB或UE的操作。基站(BS)可以称为接入点(AP)、eNB、5G节点、下一代NodeB(G NodeB或gNB)、无线点、或具有等同含义的其他术语。根据实施例,eNB可以连接到一个或多个发送/接收点(TRP)。eNB可以通过一个或多个TRP向UE发送下行链路信号或接收上行链路信号。在下文中,描述了用于向UE发送无线信号的网络节点作为本公开中的eNB的示例。然而,本公开内容不旨在限于此。无线信号的发送可以包括eNB连接到TRP并且TRP发送无线信号的配置。
终端可以被称为UE、NR UE、移动站、订户站、客户驻地设备(customer premisesequipment,CPE)、远程终端、无线终端、电子设备、用户设备或具有等同含义的其他术语。
在LTE系统或NR系统(下一代移动通信系统)中,UE可以在执行小区重选程序的同时执行频率测量,以找到服务小区或UE在RRC空闲模式或RRC非活动模式下驻留的小区。然而,UE可以单独地测量多个频率或者可以不将频率测量结果报告给网络。UE可以在配置到网络的连接并转变到RRC连接模式之后基于由网络配置的频率测量配置信息来执行频率测量,并且如果满足预设条件,则将测量结果报告给eNB。
也就是说,eNB可以根据频率测量配置信息来配置UE。eNB可以在UE中配置要测量的频率(例如,频率列表)或频带,为每个频率设置优先级并配置测量顺序,配置频率强度的滤波方法(例如,L1滤波、L2滤波和L3滤波方法、或用于测量的系数和计算方法),以及配置频率测量中的事件或测量条件、与当前服务小区相比的测量参考(或UE当前驻留的频率)、报告测量的频率结果的事件或条件、与当前服务小区(或UE当前驻留的频率)相比报告频率的参考或条件、以及报告频率测量结果的时段。UE根据eNB进行的频率配置测量对应的频率,并根据对应的事件或条件将频率测量结果报告给eNB。eNB可以基于从UE接收的频率测量结果来确定是将CA还是DC应用于UE。
根据本公开的实施例的UE可以在RRC空闲模式或RRC非活动模式下执行频率测量。eNB可以通过信令(例如,RRC消息或系统信息)在UE中设置频率测量配置。此外,eNB可以允许UE快速报告测量的频率测量结果,并且当eNB确定需要应用CA或DC时,基于频率测量结果快速配置并激活CA或DC,并允许UE使用CA或DC。
本发明公开了允许UE在转变到RRC连接模式之前开始频率测量,并在进入RRC连接模式之前或之后快速报告测量结果。当在宏小区中部署了小型小区的环境中网络在UE中快速配置CA或DC时,提出的技术可能非常有用。
图5是根据实施例的用于在无线通信系统中由UE测量频率并报告测量的方法的流程图。例如,下面参照图5描述在本公开的NR系统中处于RRC空闲模式或RRC非活动模式中的UE执行早期频率测量并快速报告频率测量结果(快速测量报告)的操作。UE对应于图1的UE135或图3的UE 315。
参照图5,在步骤501,UE可以接收频率测量配置信息。频率测量配置信息可以包括当UE执行频率测量时所需的参数。例如,频率测量配置信息可以包括要测量的信道信息、测量时段以及用于报告测量结果的条件。根据实施例,频率测量配置信息可以是用于配置当处于RRC空闲模式或RRC非活动模式中的UE执行频率测量时所需的参数的信息。
频率测量配置信息可以由eNB通过各种方案来发送。例如,频率测量配置信息可以在被包括在RRC消息中的同时被发送。例如,RRC消息可以是用于使UE从RRC连接模式转变到RRC空闲模式或RRC非活动模式的RRC消息。例如,RRC消息可以是当UE与eNB建立RRC连接时从eNB发送到UE的消息。例如,频率测量配置信息可以在被包括在系统信息中的同时被发送。例如,可以在RRC空闲模式下在小区重选中将频率测量配置信息从eNB发送到UE。下面参照图7至图8描述频率测量配置信息的发送。
在步骤503中,UE可以执行频率测量。UE可以在RRC空闲模式或RRC非活动模式以及RRC连接模式下执行频率测量。UE可以通过在RRC空闲模式或RRC非活动模式下较早地执行频率测量来更快速地获取频率测量结果。根据实施例,可以在随机接入之前执行频率测量。可以在重新配置RRC连接之前执行频率测量。
RRC空闲模式或RRC非活动模式下的频率测量可以与RRC连接模式下的频率测量不同。例如,在RRC空闲模式或RRC非活动模式下要测量的信号和对应信号的信道质量参数(例如,接收信号强度指示符(RSSI))可以与在RRC连接模式下要测量的信号和对应信号的信道质量参数(例如,参考信号接收功率(RSRP))不同。
根据实施例,可以以各种方式确定发起频率测量的时间点。例如,UE可以在接收到步骤501的频率测量配置信息的时间点发起频率测量。例如,UE可以在从接收到步骤501的频率测量配置信息的时间点起的预定间隔之后发起频率测量。可以以各种方式确定频率测量结束的时间点。例如,当报告频率测量的结果时,频率测量可以结束。例如,当测量间隔到达时,频率测量可以结束。下面参照图7至图8更详细地描述与频率测量的时间点和结束有关的实施例。
在步骤505,UE可以报告测量结果。UE可以将步骤503的频率测量结果发送到eNB。可以以各种方式来定义UE的测量结果的报告的信令。在实施例中,UE可以向eNB通知测量结果的存在。必要时,eNB向UE请求测量结果。在从eNB接收到请求之后,UE可以将测量结果报告给eNB。eNB可以向UE请求测量结果。UE可以响应于来自eNB的请求将测量结果报告给eNB。即使没有来自eNB的请求,UE也可以将测量结果报告给eNB。例如,UE可以周期性地报告测量结果。例如,当满足特定条件时,UE可以报告测量结果。
据此,UE可以将测量结果的至少一部分报告给eNB,而不是将所有测量结果都报告给eNB。例如,UE可以将满足预定条件的SCell的频率测量结果发送到eNB。下面参照图7和图8更详细地描述这些条件的示例。
根据实施例,UE可以以各种方式将测量结果报告给eNB。UE可以通过随机接入程序或者用于RRC连接的RRC消息或RRC重新配置消息来报告测量结果。下面参照图7和图8更详细地描述测量结果的发送方案的示例。
另外,在实施例中,UE可以从eNB接收配置信息。配置信息可以包括用于支持特定通信技术的配置的参数,例如,用于UE中的CA或DC的配置。eNB可以基于从UE接收的测量结果来确定对UE执行CA还是DC。当eNB期望配置CA或DC时,eNB可以将配置信息发送到UE。例如,eNB可以发送用于为CA配置或添加SCell的配置信息。eNB可以基于报告的测量结果来确定SCell。例如,eNB可以发送用于为DC配置辅小区组(SCG)的配置信息。
根据实施例,UE可以终止频率测量。当在RRC非活动模式或RRC空闲模式下执行的频率测量完成时,UE可以停止频率测量。此外,UE可以如在步骤505中在报告测量结果的同时停止频率测量。另外,如果满足预定条件,则UE可以停止频率测量。
图6是根据实施例的在无线通信系统中由eNB进行频率测量和测量报告的方法的流程图。eNB对应于图1的eNB 110或图3的gNB 310或eNB 315。
参照图6,在步骤601中,eNB可以发送频率测量配置信息。频率测量配置信息可以包括在UE的RRC空闲模式或RRC非活动模式下进行频率测量所需的参数。eNB可以通过RRC消息或者通过广播系统信息来发送频率测量配置信息,或者可以重用先前使用的频率测量配置信息。eNB可以向处于RRC连接模式下的UE发送RRC空闲模式或RRC非活动模式的频率测量配置信息。eNB可以在接收到随机接入前导码之前向处于RRC空闲模式或RRC非活动模式的UE发送频率测量配置信息。UE可以在RRC非活动模式下再次建立连接之前向UE发送频率测量配置信息。
在步骤603中,eNB可以从UE接收测量结果。UE可以基于步骤601的频率测量配置信息来执行测量。UE根据各种信令方法将测量结果发送给eNB。UE可以根据预定事件或在每次测量中将测量结果发送到eNB。UE可以根据来自eNB的请求来发送测量结果。当满足预定条件(或生成特定事件)时,eNB可以请求测量结果。UE可以将通知存在有效测量结果的信号发送到eNB,并且接收到该信号的eNB可以请求有效测量结果。因此,eNB可以接收该测量结果。
该测量结果可以包括SCell的测量结果。UE可以根据频率测量配置信息对SCell执行测量。SCell的测量结果包括基于每个SCell的状态(例如,激活、停用(deactivated)或休眠状态)获取的测量结果。
在步骤605中,eNB可以基于测量结果来配置CA或DC。eNB可以基于从UE接收的频率测量结果来确定是将CA还是DC应用于UE。UE可以基于在步骤603中报告的测量结果来确定是否存在可以应用CA或DC的SCell或主SCell(PSCell)。当CA或DC可以被应用于UE时,eNB可以配置CA或DC。虽然图6示出总是执行CA或DC,但是根据本公开的实施例,可以在基于测量结果确定是执行CA还是DC之后不执行CA或DC。
图7是根据实施例的在无线通信系统中在eNB与UE之间用于频率测量和测量报告的信令的流程图。处于RRC空闲模式或RRC非活动模式下的UE执行图7所示的频率测量和测量报告。UE对应于图1的UE 135或图3的UE 315。eNB对应于图1的eNB 110或图3的gNB 310或eNB 315。
参照图7,下面描述根据本公开的实施例的由UE或eNB执行的操作。在步骤705中,UE处于RRC连接模式。
在步骤710中,eNB可以发送用于控制在RRC连接模式下发送和接收数据的UE转变到RRC空闲模式或RRC非活动模式的信号。例如,当由于预定原因在预定时间内没有数据发送和接收时,eNB可以向UE发送RRC消息(例如,RRC连接释放、RRC连接暂停或新的RRC消息)并控制UE转变到RRC空闲模式或RRC非活动模式。也就是说,当处于RRC连接模式的UE转变到RRC空闲模式或RRC非活动模式时,网络可以发送RRC消息以指示UE切换模式。RRC消息可以包括关于在RRC空闲模式或RRC非活动模式下要测量的频率、频率的优先级以及定时器值的信息。网络通过RRC消息在UE中配置频率测量配置信息,而不是通过系统信息将频率测量配置信息广播到小区,会更加有效。这是因为网络能够准确地知道在RRC连接模式下的UE能力,因此eNB可以在UE中配置更合适的频率测量配置信息。
RRC消息可以包括各种信息。根据实施例,RRC消息可以包括关于与测量对象相对应的频率的信息或关于每个小区的频率的信息(由于CA技术支持属于一个eNB的多个小区或频率,因此关于属于一个eNB的小区或频率的信息)、频带信息、频率标识符(小区标识符)、要测量的测量值(RSRP、参考信号接收质量(RSRQ)或参考信号信噪比(RS-SINR))、测量对象标识符、测量标识符(ID)或报告配置ID。
RRC消息可以包括关于应当在RRC空闲模式或RRC非活动模式下执行频率测量的区域的信息(例如,跟踪区域(TA)、小区列表、RAN通知区域、或没有区域信息时使用的默认区域信息)。此外,可以通过物理小区ID或eNB ID来指示UE应当测量的区域或频率。
RRC消息可以指示物理小区ID或eNB ID,并且因此允许UE在频率测量中区分相同频带的不同的小区或eNB。也就是说,UE可以仅对与配置的物理小区ID或eNB ID相对应的频率或小区执行频率测量。
RRC消息可以包括指示符,指示是否在RRC空闲模式或RRC非活动模式下执行频率测量,或者是否通过被配置为RRC消息的频率配置信息或作为系统信息接收的频率配置信息来执行频率测量。
RRC消息可以包括指示在频率的信道质量中哪个参数被测量以及在RRC空闲模式或RRC非活动模式下在频率测量中如何测量该参数的信息。信道质量可以是波束RSRP(BRSRP)、RSRP、RSRQ、RSSI、SINR、RS-SINR、载波对干扰和噪声比(CINR)、信噪比(SNR)、误差向量幅度(error vector magnitude,EVM)、比特错误率(BER)和块错误率(BLER)中的至少一个。在以上示例中,可以使用具有等效含义的其他术语或指示信道质量的其他度量。在本公开中,高信道质量指示与信号的大小有关的信道质量值大或者与错误率有关的信道质量值小。当信道质量高时,可以保证更好的无线通信环境。例如,RRC消息可包括指示RSRP、RSRQ和RS-SINR中的一个或多个的测量的配置信息。
RRC消息可以包括关于可以在RRC空闲模式或RRC非活动模式下在频率测量中测量的频率(载波)的最大数量的信息。
RRC消息可以配置执行频率测量的时间,以节省UE的电池电力(battery power)。例如,可以通过设置定时器值以仅在驱动定时器时执行频率测量并且在定时器期满时停止频率测量,来节省UE的电池电力。也就是说,RRC消息可以包括在RRC空闲模式或RRC非活动模式下在频率测量中执行频率测量的时间。
RRC消息可以包括诸如第一时间、第二时间、次数、阈值和时段的参数。通过RRC消息配置所述参数,RRC消息可以指示以下频率测量方法中的至少一个。当UE基于参数值执行频率测量并提供测量报告时,UE可以报告时间戳,该时间戳指示多久之前执行的测量或最近多久执行的测量。
当频率的信道质量(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态保持预定时间时(阈值和时间可以通过RRC消息在UE中配置,或者可以通过系统信息广播)并给出时段时,UE可以在每个对应的时段内执行测量。
当频率的信道质量(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次(阈值和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)并给出时段时,UE可以在每个对应的时段中执行测量。
当在预定时间内频率的信道质量(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次(阈值和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)并给出时段时,UE可以在每个对应的时段中执行测量。
当在预定第一时间内(例如,在定时器被驱动的同时)频率的信道质量(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态保持预定第二时间(阈值、第一时间和第二时间可以通过RRC消息在UE中配置,或者可以通过系统信息广播)并给出时段时,UE可以在每个对应的时段中执行测量。
当在预定第一时间内(例如,在定时器被驱动的同时)频率的信道质量(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次(阈值、第一时间和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)并给出时段时,UE可以在每个对应的时段中执行测量。
根据实施例,可以通过步骤720的系统信息广播包括在RRC消息中的关于频率测量的至少一条信息。换句话说,系统信息可以包括关于频率测量的多条信息。例如,系统信息可以包括关于与测量对象相对应的频率的信息或关于每个小区的频率的信息。例如,系统信息可以包括关于哪个信道质量将用于频率测量的信息。
可以在RRC消息中定义新指示符。根据新指示符,eNB可以向UE指示是否在RRC空闲模式或RRC非活动模式下执行频率测量,或者是根据系统信息接收频率测量信息然后执行频率测量,还是基于配置为RRC消息的频率测量配置信息执行频率测量。
当通过RRC消息指示UE转变到RRC非活动模式时,eNB可以预先分配要用于恢复的安全密钥(例如,下一跳变计数器(hop changing counter,NCC)),并且将安全密钥提供给UE。UE可以使用安全密钥加密关于在RRC非活动模式下的测量的频率结果的信息,并且将来将该信息报告给eNB。通过预先分配安全密钥,可以在UE的重新接入中增强安全性,并且可以减少由于安全性配置引起的信令开销。通过预先配置的安全密钥,当发送消息3(RRC消息,例如,RRC连接恢复请求)时,可以加密并发送RRC消息,并对接收的解密消息4(RRC消息,例如,RRC连接恢复)进行解密。
可以引入公共配置参数或每个SCell的配置参数,以通过RRC消息有效地执行(例如,一次)多个SCell的配置。eNB或UE可以使用公共配置参数或每个SCell的配置参数。当配置公共配置参数和每个SCell的配置参数时,每个SCell的配置可以优先于公共配置参数。例如,定义组标识符,然后可以定义与每个SCell标识符的映射关系。也就是说,一个组标识符可以被映射到所有SCell标识符中的每一个,并且一个组标识符可以指示所有SCell的公共配置信息。此外,可以定义多个组标识符,并且可以定义映射到相应组标识符的SCell标识符,从而可以以组为单位配置小区的配置信息。RRC消息可以包括具有基于SCell标识符指示要用于SCell的带宽部分的带宽部分ID的映射信息、时间/频率资源信息或与每个SCell相对应的带宽部分配置信息。
根据各个实施例,当在通过RRC消息使UE转变到RRC空闲模式或RRC非活动模式时,通过在RRC消息中定义指示符,eNB可以向UE指示在RRC空闲模式或RRC非活动模式下是存储并维持还是丢弃SCell的配置信息或SCell状态(激活状态、休眠状态或停用状态)信息。当UE的移动性不大时,UE可以直接重用配置信息。
在步骤715中,UE根据RRC消息的指示转变到RRC空闲模式或RRC非活动模式。在RRC空闲模式或RRC非活动模式下,UE可以在移动期间执行小区重选。
在步骤720中,UE可以接收小区的系统信息。UE基于小区重选来搜索合适的小区。当找到UE驻留的小区时,UE接收并读取该小区的系统信息。
UE可以在RRC空闲模式或RRC非活动模式下驻留在小区上,并从对应小区的系统信息(例如,LTE系统中的系统信息块(SIB)5和NR系统中的SIB 1、SIB 2、SIB 3、SIB 4或SIB5)中读取关于在RRC空闲模式或RRC非活动模式下要测量的频率的信息、频率的优先级以及定时器信息。可以广播在步骤710中描述的RRC消息中包括的至少一条信息作为步骤720的系统信息。
根据实施例,可以确定步骤710的RRC消息的优先级和步骤720的系统信息。当在RRC消息中配置的RRC空闲模式或RRC非活动模式下要使用的频率测量信息满足第一条件时,RRC消息可以优先于系统信息应用。
第一条件可以由下面的一个条件或多个条件的组合来确定。
在RRC消息中配置的定时器值没有期满的情况。
UE没有脱离RRC消息中配置的执行频率测量的有效小区列表或区域的情况。
UE没有脱离向处于RRC连接模式的UE提供服务的小区的情况。
然而,当满足第二条件时,UE可以确定在RRC消息中配置的在RRC空闲模式或RRC非活动模式下要使用的频率测量信息不再有效,并且优先使用系统信息进行频率测量。
可以根据下面的一个条件或多个条件的组合来确定第二条件。
在RRC消息中配置的定时器值期满的情况。
UE脱离RRC消息中配置的执行频率测量的有效小区列表或区域的情况。
UE逃脱向处于RRC连接模式下的UE提供服务的小区的情况。
通过系统信息接收在RRC空闲模式或RRC非活动模式下要测量的频率测量信息以执行频率测量的UE可以移动并执行小区重选。当UE根据小区重选接入新小区时,UE可以接收新小区的系统信息。当在包括在RRC空闲模式或RRC非活动模式下要使用的频率测量信息的同时广播新小区的系统信息时,UE可以接收新系统信息并在RRC空闲模式或RRC非活动模式下连续执行频率测量。当新小区的系统信息不包括在RRC空闲模式或RRC非活动模式下使用的频率测量信息时,UE可以停止频率测量以节省UE的电池电力。
UE可以通过区域更新程序接收频率测量配置信息。UE在执行小区重选的同时移动。UE可以连接到网络以在移动的UE处于RRC空闲模式时执行跟踪区域更新(TAU)程序,或者在UE处于RRC非活动模式时执行RAN通知区域更新(RAN NAU)。网络可以通过RRC消息在UE中新配置在RRC空闲模式或RRC非活动模式下要使用的频率测量信息。如上所述,当UE在TAU或RAN NAU更新程序中接入网络时,如果在UE中配置频率测量信息,则可以为每个UE配置更合适的频率测量信息,并且还可以减少信令开销。
在步骤725,UE可以执行频率测量。处于RRC空闲模式或RRC非活动模式下的UE可以根据被配置为RRC消息的频率测量信息或被配置为系统信息的频率测量信息来执行频率测量。处于RRC空闲模式或RRC非活动模式下的UE执行的频率测量可以包括例如对测量指示要测量的频率的信道质量(例如,RSRP、RSRQ或RS-SINR)的操作、或测量信号的信道质量满足预定范围(例如,超过阈值)的时间的操作。频率测量可以被称为快速频率测量。
在步骤730中,UE可以发送随机接入前导码(RAP)。eNB可以接收RAP。在步骤735,eNB可以响应于RAP发送随机接入响应(RAR)。UE可以接收RAR。
根据实施例,UE可以在各个时间点发起频率测量。也就是说,UE可以在下述时间点之一开始频率测量。
UE可以在UE接收到RRC消息并读取频率测量配置信息的时间点开始频率测量。
UE可以接收RRC消息,读取频率测量配置信息以及在由频率测量配置信息指示(或预先指定)的n个时间单位(例如,子帧、时隙或传输时间间隔(TTI))之后开始频率测量。
UE可以在UE接收步骤720的系统信息并读取频率测量配置信息的时间点开始频率测量。在实施例中,UE可以接收步骤720的系统信息,读取频率测量配置信息以及在由频率测量配置信息指示(或预先指定)的n个时间单位(例如,子帧、时隙或TTI)之后开始频率测量。
UE可以在为连接到网络而发送前导码的时间点开始频率测量。这是因为,如果在无需连接到网络时也继续进行频率测量,那么电池的功耗会增加。
UE可以发送用于连接到网络的前导码,并且在接收到RAR的时间点开始频率测量。这是因为,如果在无需连接到网络时也继续进行频率测量,那么电池的功耗会增加。
UE可以发送用于连接到网络的前导码,接收RAR,并且在发送RRC消息(消息3,例如,RRC连接请求或RRC连接恢复请求)的时间点开始频率测量。这是因为,如果在无需连接网络时也继续进行频率测量,那么电池的功耗会增加。
UE可以发送用于连接到网络的前导码,接收RAR,并且在发送RRC消息(消息3,例如,RRC连接请求或RRC连接恢复请求)和接收消息4(RRC消息,例如,RRC连接建立或RRC连接恢复)的时间点开始频率测量。这是因为,如果在无需连接网络时也继续进行频率测量,那么电池的功耗会增加。
根据实施例,UE可以根据各种条件停止频率测量。例如,当UE报告频率测量时,UE可以停止频率测量。例如,当转变到RRC连接模式时,UE可以停止频率测量。例如,当UE从eNB接收RRC消息(例如,消息2(也就是说,随机接入响应)、消息4(即,竞争解决消息))或频率测量请求消息,或者UE向eNB报告有效频率测量结果的存在时,UE可以停止频率测量。
处于RRC空闲模式或RRC非活动模式下的UE执行的频率测量可以与在RRC连接模式下执行的频率测量不同。也就是说,当在RRC连接模式下执行的频率测量中当前服务小区的强度质量小于预定参考时(例如,RSRP、RSRQ、服务小区的接收水平、或小区选择质量值(例如,小区选择质量值(Squal)))时,UE启动另一个频率的测量。也就是说,在RRC连接模式下执行频率测量的目的是:如果当前服务小区的信号不好,则移动到更好的小区并接收更好的服务。然而,由处于RRC空闲模式或RRC非活动模式下的UE执行的频率测量的目的是:通过测量和报告另一个小区来容易地配置载波聚合技术,而与当前服务小区的信道质量无关。尽管处于RRC连接模式的UE可以基于服务小区的时间参考值基于信道状态信息参考信号(CSI-RS)执行频率测量,但是处于RRC空闲模式或RRC非活动模式的UE因为不存在服务小区而无法基于信道参考信号(CRS)测量信道质量(例如,RSRP、RSRQ或RS-SINR)。也就是说,RRC连接模式和RRC空闲模式或RRC非活动模式可以具有作为频率测量对象的不同参考信号。对于处于RRC空闲模式或RRC非活动模式下的UE执行的频率测量,如果服务小区的频率测量结果大于SnonIntraSearch和SnonIntraSearchQ(例如,小区选择接收(RX)值(Srxlev)>SnonIntraSearchP或Squal>SnonIntraSearchQ),则UE可以对不是服务小区的区域的频率(以下称为非服务频率)执行频率测量。
随后,当前不建立连接的UE,也就是说,处于RRC空闲模式或RRC非活动模式下的UE可以在生成要发送的数据时与eNB执行RRC连接建立过程。在步骤730和735中,UE可以通过随机接入过程与eNB建立后向传输同步。
在步骤740中,UE可以向eNB发送RRCConnectionRequest消息。该消息包括建立连接的原因(establishmentCause)以及UE的标识符。在步骤745中,eNB可以发送RRCConnectionSetup消息以允许UE建立RRC连接。该消息可以包括RRC连接配置信息。RRC连接也被称为信令无线电承载(SRB),并且被用于在UE和eNB之间发送和接收作为控制消息的RRC消息。在步骤750,建立RRC连接的UE可以向eNB发送RRCConnectionSetup消息。
RRCConnetionSetupComplete消息被包括在UE向MME请求建立用于预定服务的承载的控制消息(例如,服务请求)中。eNB可以将包括在RRCConnetionSetupComplete消息中的该控制消息发送到MME。MME确定是否提供由UE请求的服务。如果基于确定结果确定提供UE请求的服务,则MME将设置(setup)请求消息(例如,初始上下文设置请求)发送给eNB。设置请求消息可以包括要应用于数据无线电承载(DRB)的建立的服务质量(QoS)信息和要应用于DRB的安全相关信息(例如,安全密钥和安全算法)。eNB可以在步骤755中发送安全配置消息(例如,SecurityModeCommand)以对UE配置安全性,并在步骤760中发送安全配置完成消息(例如,SecurityModeComplete)以向eNB通知安全配置,以完成安全配置程序。
UE可以将有效频率测量结果报告给eNB。也就是说,如果存在满足SCell的预定条件的有效频率测量结果,则在建立到网络的连接时,处于RRC空闲模式或RRC非活动模式下的UE可以将有效测量结果值报告给eNB。例如,UE可以通过消息3(例如,RRC消息、RRC连接请求、RRC连接恢复请求或新的RRC消息)或消息5(例如,RRC消息、RRC连接设置完成、RRC连接恢复完成、或新的RRC消息)向eNB报告有效频率测量结果值的存在。根据RRC消息中新指示符或信息元素(IE)的定义,可以指示有效频率测量结果值的存在。此外,根据MAC层使用的逻辑信道标识符(LCID)的分配,MAC控制元素可以指示有效频率测量结果值的存在。
eNB可以向UE做出报告测量结果的请求。当eNB知道存在处于RRC空闲模式或RRC非活动模式下的UE测量的有效频率测量结果时,eNB可以根据需要向UE做出报告测量结果的请求。可以通过各种方法请求测量结果报告。根据实施例,eNB可以通过通过消息2(RAR)或消息4发送指示符做出报告测量结果的请求。在安全配置完成之后,eNB可以通过发送单独的测量报告请求的RRC消息(新的RRC消息或传统定义的RRC消息,例如,测量报告命令)做出报告测量结果的请求。可以定义用于测量报告请求的新的MAC控制信息,并且定义新的逻辑信道标识符。eNB可以通过向UE发送MAC控制信息来作出对于测量报告的请求。
当UE从eNB接收到测量报告请求时,UE可以发送测量结果。UE可以通过配置的安全配置信息来加密测量结果,并发送加密的测量结果。如果频率测量结果的报告没有被加密,则频率测量信息可能被黑客入侵或泄漏,并且基于频率测量报告可以跟踪UE的位置,从而可能暴露个人信息。因此,需要在加密之后执行频率测量报告。UE可以通过RRC消息(新的RRC消息或传统定义的RRC消息,例如,测量报告)将频率测量结果发送给eNB。可选地,定义用于测量报告的新的MAC控制信息并且定义新的逻辑信道标识符,因此,UE可以通过将MAC控制信息发送到eNB来提供测量报告。
根据实施例,可以将随机接入程序用于有效频率测量结果以及频率测量结果的请求和报告。消息1的前导码可以被分组。在分组的前导码中,特定前导码可以指示测量报告结果的存在。UE可以通过发送与特定组相对应的前导码来通知eNB存在有效频率测量结果。UE可以通过从eNB接收RAR(消息2)来识别是否存在对测量结果的请求。当通过RAR请求测量结果的报告时(例如,指示符的存在),UE可以通过消息3报告测量结果。eNB可以向UE发送用于基于测量结果配置SCell的RRC配置消息。
当存在有效频率测量结果报告时,UE可以将频率测量结果报告给eNB。也就是说,当存在有效频率测量结果报告时,即使没有来自eNB的请求,UE也可以将频率测量结果的报告发送到eNB。UE可以通过RRC消息(新的RRC消息、传统定义的RRC消息、消息3或消息5,例如,测量报告)将频率测量结果发送到eNB。当定义了用于测量报告的新的MAC控制信息并且定义了新的逻辑信道标识符时,UE可以通过将MAC控制信息发送到eNB来提供测量报告。
UE可以将所有频率测量结果中的必要频率测量结果发送到网络(eNB)。在RRC空闲模式或RRC非活动模式下执行频率测量的UE可以向网络报告可以应用CA的载波(SCell)的频率测量结果。UE可以仅报告满足预定条件的SCell的测量结果。换句话说,可以应用CA的SCell是满足预定条件的SCell。
UE可以基于UE的测量将满足预定条件的SCell的频率测量结果报告给网络。如果给定时段,则UE可以在每个对应时段中执行测量。预定条件可以包括以下条件中的至少一个。
当频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态保持预定时间时,满足条件(阈值和时间可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次时,满足条件(阈值和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当在预定时间内频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次时,满足条件(阈值、时间和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当在第一时间内(例如,在定时器被驱动的同时)频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态保持第二时间,满足条件(阈值、第一时间和第二时间可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当在第一时间内(例如,在定时器被驱动的同时)频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次时,满足条件(阈值、第一时间和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当处于RRC空闲模式或RRC非激活模式下的UE测量的频率是UE接入的服务小区的系统信息指示的小区或频率时,满足条件,可以为一个eNB服务的多个小区支持CA技术,使得无论由另一eNB服务的小区的信号有多好,都不能应用CA技术。因此,仅当频率测量结果是对UE接入的小区或eNB支持的频率的的测量结果时,才可以将UE测量的频率测量结果用于载波聚合技术的应用。例如,当频率是属于由系统信息指示的小区列表(白小区列表)的频率或小区时,对应的频率或小区满足条件。
当eNB不知道当前具有已建立的连接的UE的UE能力时,或者当需要eNB识别UE能力时,eNB可以发送询问UE能力的消息(例如,UE能力询问)。UE可以发送报告其自身能力的消息(例如,UE能力)。通过该消息,UE可以将关于是否可以在RRC空闲模式或RRC非活动模式下执行频率测量的信息或者关于可以测量的频率或频率区域或可以测量的最大频率数量的信息报告给eNB。
在步骤770,eNB可以向UE发送RRCConnectionReconfiguration消息。当根据步骤755和760完成安全配置时,eNB可以向UE发送RRCConnectionReconfiguration消息。该消息可以包括用于处理用户数据的DRB的配置信息。UE可以接收DRB的配置信息。在发送重新配置消息(RRCConnectionReconfiguration)之前,在步骤765中,eNB可以发送测量报告请求(测量报告命令),并且UE可以发送测量报告。
在步骤775,UE可以将RRCConnectionReconfigurationComplete消息发送到eNB。UE可以通过应用在步骤770中接收的DRB的配置信息来建立DRB,并且将RRCConnectionReconfigurationComplete消息发送到eNB。
根据实施例,可以通过步骤770的RRC消息(RRC连接重新配置)引入公共配置参数或每个SCell的配置参数,以对多个SCell有效地执行(例如,一次)配置。eNB或UE可以使用公共配置参数或每个SCell的配置参数。当配置了公共配置参数和每个SCell的配置参数时,每个SCell的配置可以优先于公共配置参数。例如,定义组标识符,然后可以定义与每个SCell标识符的映射关系。也就是说,一个组标识符可以被映射到所有SCell标识符中的每一个,并且一个组标识符可以指示所有SCell的公共配置信息。此外,可以定义多个组标识符,并且可以定义映射到相应组标识符的SCell标识符,从而可以以组为单位配置小区的配置信息。RRC消息可以包括具有基于SCell标识符指示要用于SCell的带宽部分的带宽部分ID的映射信息、时间/频率资源信息、或与每个SCell相对应的带宽部分配置信息。在发送RRC重新配置消息(RRCConnectionReconfiguration)之后,在步骤780中,eNB可以发送测量报告请求(测量报告命令),并且UE可以发送测量报告。
当在RRC消息中配置SCell时,SCell的初始状态可以被配置为激活状态、休眠状态或停用状态。如果在发送SCell的配置信息时将SCell配置为具有与激活状态或休眠状态相对应的初始状态,则UE可以直接对SCell执行频率测量并报告频率测量,使得eNB可以快速应用CA技术。可以通过MAC控制信息向处于RRC连接模式下的UE指示到每个SCell的激活状态、休眠状态或停用状态的转变。当SCell处于激活状态或休眠状态时,处于RRC连接模式的UE可以执行频率测量并将频率测量结果报告给eNB。可以通过RRC消息或MAC控制信息来提供频率测量报告。当通过RRC消息将每个SCell的状态配置为激活状态或休眠状态时,可以根据包括指示何时开始物理下行链路控制信道(PDCCH)监视以及何时开始频率(信道或小区)测量结果的报告的整数的配置信息来配置UE。例如,UE可以在与指示的整数相对应的时间单位(例如,子帧、时隙或TTI)之后开始PDCCH监视或测量结果报告。
与UE完成DRB的建立的eNB向MME发送初始上下文设置完成消息。接收该消息的MME与S-GW交换S1承载设置消息和S1承载设置响应消息,以便建立S1承载。S1承载是在S-GW和eNB之间建立的用于数据传输的连接,并且以一一对应的方式对应于DRB。当处理器完成时,UE通过eNB和S-GW发送和接收数据。此外,eNB可以发送RRCConnectionReconfiguration消息,以便向UE提供新的配置或者出于预定原因添加或改变该配置。
在本公开中,小区和载波可以指示相同的含义。SCell表示辅小区。当使用CA时,可以通过附加载波或小区以及在eNB与UE之间接收和发送控制信号的主小区(Pcell)来发送和接收更多数据,并且可以将附加载波或小区称为SCell。根据实施例,服务小区可以包括SCell。
本公开中的RRC空闲模式或RRC非活动模式下的频率测量程序和频率配置信息可以扩展以应用于RRC连接模式下的UE。本公开中的RRC空闲模式或RRC非活动模式下的频率测量程序和频率配置信息可以独立于当UE执行小区重选程序时由UE在RRC空闲模式或RRC非活动模式下执行的频率测量程序来应用和执行。根据实施例,由于存在根据UE能力可以测量的最大频率数,因此eNB可以考虑UE能力来设置频率测量方法的配置信息。
图8是根据实施例的在无线通信系统中在eNB和UE之间用于频率测量和测量报告的信令的流程图。UE在RRC非活动模式下执行频率测量和测量报告。UE对应于图1的UE 135或图3的UE 315。eNB对应于图1的eNB 110、或图3的gNB 310或eNB 315。
参照图8,下面描述由UE或eNB执行的实施例。在步骤805中,UE处于RRC连接模式。
在步骤810中,eNB可以发送用于控制在RRC连接模式下发送和接收数据的UE转变到RRC非活动模式的信号。例如,当由于预定原因或在预定时间没有数据发送和接收时,在步骤815中,eNB可以向UE发送RRC消息(例如,RRC连接释放、RRC连接暂停或新的RRC消息),并控制UE转变到RRC非活动模式。也就是说,当处于RRC连接模式下的UE转变到RRC非活动模式时,网络可以发送RRC消息以指示UE切换模式。RRC消息可以包括关于在RRC非活动模式下要测量的频率、频率的优先级以及定时器值的信息。根据实施例,网络通过RRC消息在UE中配置频率测量配置信息,而不是通过系统信息将频率测量配置信息广播到小区,会更加有效。这是因为网络能够在RRC连接模式下准确地知道UE能力,因此eNB可以在UE中配置更合适的频率测量配置信息。
RRC消息可以包括各种信息。RRC消息可以包括关于与测量对象相对应的频率的信息或关于每个小区的频率的信息(由于CA技术支持属于一个eNB的多个小区或频率,因此关于属于一个eNB的小区或频率的信息)、频带信息、频率标识符(小区标识符)、要测量的测量值(RSRP、RSRQ或RS-SINR)、测量对象标识符、测量ID或报告配置ID。
RRC消息可以包括关于在RRC非活动模式下执行频率测量的区域的信息(例如,TA、小区列表、RAN通知区域(RNA)或没有区域信息时使用的默认区域信息)。此外,可以通过物理小区ID或eNB ID来指示UE应当测量的区域或频率。
RRC消息可以指示物理小区标识符或eNB标识符,并且因此允许UE在频率测量中区分相同频带不同的小区或eNB。也就是说,UE可以仅对与配置的物理小区ID或eNB ID相对应的频率或小区执行频率测量。
RRC消息可以包括指示符,指示是否在RRC非活动模式下执行频率测量,或者是通过被配置为RRC消息的频率配置信息还是作为系统信息接收的频率配置信息来执行频率测量。
RRC消息可以包括指示在频率的信道质量中哪个参数被测量以及在RRC非活动模式下在频率测量中如何测量该参数的信息。例如,RRC消息可包括指示RSRP、RSRQ和RS-SINR中的一个或多个的测量的配置信息。
RRC消息可以包括关于可以在RRC非活动模式下在频率测量中测量的频率(载波)的最大数量的信息。
RRC消息可以配置执行频率测量的时间,以节省UE的电池电力。例如,可以通过设置定时器值以仅在驱动定时器时执行频率测量并且在定时器期满时停止频率测量来节省UE的电池电力。也就是说,RRC消息可以包括在RRC非活动模式下执行频率测量的时间。
RRC消息可以包括诸如第一时间、第二时间、次数,阈值或时段(period)的参数。通过配置参数,RRC消息可以指示以下频率测量方法中的至少一个。当UE基于参数值执行频率测量并提供测量报告时,UE可以报告时间戳,该时间戳指示多久之前执行的测量或最近多久执行的测量。
当频率的信道质量(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态保持预定时间(阈值和时间可以通过RRC消息在UE中配置,或者可以通过系统信息广播)并且给定时段时,UE可以在每个对应的时段中执行测量。
当频率的信道质量(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次(阈值和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)并给出时段时,UE可以在每个对应的时段中执行测量。
当在预定时间内频率的信道质量(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次(阈值和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)并给出时段时,UE可以在每个对应的时段中执行测量。
当在预定第一时间内频率的信道质量(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态保持预定第二时间(阈值和时间可以通过RRC消息在UE中配置,或者可以通过系统信息进行广播)并给出时段时,UE可以在每个对应的时段中执行测量。
当在预定第一时间内(例如,在定时器被驱动的同时)频率的信道质量(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次(阈值、第一时间和次数可以通过RRC消息在UE中配置,或者可以通过系统信息被广播)并给出时段时,UE可以在每个对应的时段中执行测量。
根据实施例,可以在RRC消息中定义新的指示符。根据新指示符,eNB可以向UE指示是否在RRC空闲模式下或RRC非活动模式下执行频率测量,或者是根据系统信息接收频率测量信息然后执行频率测量,还是基于配置为RRC消息的频率测量配置信息执行频率测量。
当通过RRC消息指示UE转变到RRC非活动模式时,eNB可以预先分配要用于恢复的安全密钥(例如,NCC),并且将安全密钥提供给UE。UE可以使用安全密钥对关于在RRC非活动模式下的测量的频率结果的信息进行加密,并且将来将该信息报告给eNB。通过预先分配安全密钥,可以在UE的重新接入中增强安全性,并且可以减少由于安全性配置引起的信令开销。通过预先配置的安全密钥,当发送消息3(RRC消息,例如,RRC连接恢复请求)时,UE可以加密并发送RRC消息,并对接收的解密消息4(RRC消息,例如,RRC连接恢复)进行解密。
可以通过RRC消息引入公共配置参数或每个SCell的配置参数,以有效地执行(例如,一次)对多个SCell的配置。eNB或UE可以使用公共配置参数或每个SCell的配置参数。当配置公共配置参数和每个SCell的配置参数时,每个SCell的配置可以优先于公共配置参数。例如,定义组标识符,然后可以定义与每个SCell标识符的映射关系。也就是说,一个组标识符可以被映射到所有SCell标识符中的每一个,并且一个组标识符可以指示所有SCell的公共配置信息。此外,可以定义多个组标识符,并且可以定义映射到相应组标识符的SCell标识符,从而可以以组为单位配置小区的配置信息。RRC消息可以包括具有基于SCell标识符指示要用于SCell的带宽部分的带宽部分ID的映射信息、时间/频率资源信息、或与每个SCell对应的带宽部分配置信息。
当通过RRC消息使UE转变到RRC非活动模式时,通过在RRC消息中定义指示符,eNB可以向UE指示在RRC空闲模式或RRC非活动模式下是存储并维持还是丢弃SCell的配置信息或SCell状态(激活状态、休眠状态或停用状态)信息。当UE的移动性不大时,UE可以直接重用配置信息。
在步骤815,UE根据RRC消息的指示转变到RRC非活动模式。在RRC非活动模式下,UE可以在移动期间执行小区重选。
在步骤820,UE可以接收小区的系统信息。UE基于小区重选来搜索合适的小区。当找到UE驻留的小区时,UE接收并读取该小区的系统信息。
UE可以在RRC非活动模式下驻留在小区上,并从对应小区的系统信息(例如,LTE系统中的SIB5和NR系统中的SIB 1、SIB 2、SIB 3、SIB 4或SIB 5)中读取关于在RRC非活动模式下要测量的频率的信息、频率的优先级以及定时器信息。可以通过步骤820的系统信息广播在步骤810中描述的RRC消息中包括的至少一条信息。
根据实施例,可以确定步骤810的RRC消息和步骤820的系统信息的优先级。当在RRC消息中配置的RRC非活动模式下要使用的频率测量信息满足第一条件时,可以优先于步骤820的系统信息来应用RRC消息。
第一条件可以通过下面的一个条件或多个条件的组合来确定。
在RRC消息中配置的定时器值没有期满的情况。
UE没有脱离RRC消息中配置的执行频率测量的有效小区列表或区域的情况。
UE没有脱离向处于RRC连接模式下的UE提供服务的小区的情况。
然而,当满足第二条件时,UE可以确定在RRC消息中配置的RRC非活动模式下要使用的频率测量信息不是有效的,并且优先使用系统信息进行频率测量。
可以根据下面的一个条件或多个条件的组合来确定第二条件。
在RRC消息中配置的定时器值期满的情况。
UE脱离RRC消息中配置的执行频率测量的有效小区列表或区域的情况。
UE脱离向处于RRC连接模式下的UE提供服务的小区的情况。
接收在RRC非活动模式下要使用的频率测量信息以执行频率测量的UE可以移动并执行小区重选。当UE根据小区重选接入新小区时,UE可以接收新小区的系统信息。当在包括在RRC非活动模式下要使用的频率测量信息的同时广播小区的系统信息时,UE可以接收新的系统信息并在RRC非活动模式下连续执行频率测量。当新小区的系统信息不包括在RRC非活动模式下使用的频率测量信息时,UE可以停止频率测量以节省UE的电池电力。
UE可以通过区域更新程序接收频率测量配置信息。UE在执行小区重选的同时移动。UE可以连接到网络以在移动的UE处于RRC空闲模式时执行TAU程序,或者在UE处于RRC非活动模式时执行RAN NAU。网络可以通过RRC消息在UE中新配置在RRC非活动模式下要使用的频率测量信息。如上所述,当UE在TAU或RAN NAU更新程序中接入网络时,如果在UE中配置频率测量信息,则可以为每个UE配置更合适的频率测量信息,并且还可以减少信令开销。
在步骤825,UE可以执行频率测量。处于RRC非活动模式下的UE可以根据被配置为RRC消息的频率测量信息或被配置为系统信息的频率测量信息来执行频率测量。
处于RRC非活动模式下的UE执行的频率测量可以包括例如对测量指示要测量的频率的信道质量(例如,RSRP、RSRQ或RS-SINR)的操作,或测量信号的信道质量满足预定范围(例如,超过阈值)的时间的操作。
在步骤830,UE可以发送RAP。eNB可以接收RAP。在步骤835,eNB可以响应于RAP发送RAR。UE可以接收RAR。
根据实施例,UE可以在各个时间点发起频率测量。也就是说,UE可以在下述时间点之一开始频率测量。
UE可以在UE接收到步骤810的RRC消息并读取频率测量配置信息的时间点开始频率测量。
UE可以接收步骤810的RRC消息,读取频率测量配置信息,以及在由频率测量配置信息指示(或预先指定)的n个时间单位(例如,子帧、时隙或TTI)之后开始频率测量。
UE可以在UE接收步骤820的系统信息并读取频率测量配置信息的时间点开始频率测量。
UE可以接收系统信息,读取频率测量配置信息,以及在由频率测量配置信息指示(或预先指定)的n个时间单位(例如,子帧、时隙或TTI)之后开始频率测量。
UE可以在发送前导码以连接到网络的时间点开始频率测量。这是因为,如果在不需要连接到网络时仍继续进行频率测量,那么电池的功耗会增加。
UE可以发送用于连接到网络的前导码,并且在接收到RAR的时间点开始频率测量。这是因为,如果在不需要连接到网络时仍继续进行频率测量,那么电池的功耗会增加。
UE可以发送用于连接到网络的的前导码,并且在发送RRC消息(消息3,例如,RRC连接请求或RRC连接恢复请求)的时间点开始频率测量。这是因为,如果在不需要连接到网络时仍继续进行频率测量,那么电池的功耗会增加。
UE可以发送用于连接到网络的的前导码,接收RAR,并且在发送RRC消息(消息3,例如,RRC连接请求或RRC连接恢复请求)和接收消息4(RRC消息,例如,RRC连接设置或RRC连接恢复)的时间点开始频率测量。这是因为,如果在不需要连接到网络时仍继续进行频率测量,那么电池的功耗会增加。
UE可以根据各种条件停止频率测量。例如,当UE报告频率测量时,UE可以停止频率测量。例如,当转变到RRC连接模式时,UE可以停止频率测量。例如,当UE从eNB接收到RRC消息(例如,消息2(也就是说,随机接入响应)、消息4(即,竞争解决消息))、或频率测量请求消息,或者UE向eNB报告有效频率测量结果的存在时,UE可以停止频率测量。
根据实施例,处于RRC非活动模式下的UE执行的频率测量可以与在RRC连接模式下执行的频率测量不同。也就是说,当在RRC连接模式下执行的频率测量中当前服务小区的质量或强度小于预定参考(例如,RSRP、RSRQ、服务小区的接收水平(例如,Srxlev))或服务小区选择质量值(例如,(Squal))时,UE启动另一频率的测量。也就是说,在RRC连接模式下执行频率测量的目的是:如果当前服务小区的信号不好,则移动到更好的小区并接收更好的服务。然而,处于RRC非活动模式下的UE执行的频率测量的目的是:通过测量和报告另一个小区来配置载波聚合技术,而与当前服务小区的信道质量无关。尽管处于RRC连接模式的UE可以基于服务小区的时间参考值基于CSI-RS执行频率测量,但是处于RRC空闲模式或RRC非活动模式的UE因为不存在服务小区而无法基于CSI CRS测量信道质量(例如,RSRP、RSRQ或RS-SINR)。也就是说,RRC连接模式和RRC非活动模式可以具有作为频率测量对象的不同参考信号。对于处于RRC非活动模式下的UE执行的频率测量,尽管服务小区的频率测量结果大于系统信息指示的SnonIntraSearch和SnonIntraSearchQ(例如,Srxlev>SnonIntraSearchP或Squal>SnonIntraSearchQ),但是UE可以对不是服务小区的区域的频率,即非服务频率,执行频率测量。
随后,当前不建立连接的UE,也就是说,处于RRC非活动模式的UE可以在生成要发送的数据时与eNB执行RRC连接恢复过程。在步骤830和835中,UE可以通过随机接入过程与eNB建立后向传输同步。
在步骤840中,UE可以向eNB发送RRCConnectionResumeRequest消息。该消息包括建立连接的原因(establishmentCause)以及UE的标识符。在步骤845中,eNB可以发送RRCConnectionResume消息以允许UE建立RRC连接。该消息可以包括RRC连接配置信息。如上所述,RRC连接被称为SRB,并且被用于在UE和eNB之间发送和接收作为控制消息的RRC消息。在步骤850中,建立RRC连接的UE可以向eNB发送RRCConnetionResumeComplete消息。
根据实施例,UE可以向eNB报告有效频率测量结果。也就是说,如果存在满足SCell的预定条件的有效频率测量结果,则在建立到网络的连接时,处于RRC非活动模式下的UE可以将有效测量结果值报告给eNB。例如,UE可以通过消息3(例如,RRC消息、RRC连接请求、RRC连接恢复请求或新的RRC消息)或消息5(例如,RRC消息、RRC连接设置完成、RRC连接恢复完成、或新的RRC消息)向eNB报告有效频率测量结果值的存在。可以通过在RRC消息中定义新的指示符或IE来指示有效频率测量结果值的存在,以指示有效频率测量结果值的存在。可以通过MAC层使用的逻辑信道标识符的分配由MAC控制信息指示有效频率测量结果值的存在。
eNB可以向UE做出报告测量结果的请求。当eNB知道存在处于RRC非活动模式下的UE测量的有效频率测量结果时,eNB可以根据需要向UE做出报告测量结果的请求。可以通过各种方法来请求测量结果报告。eNB可以通过经由消息2(RAR)或消息4发送指示符来作出报告测量结果的请求。在安全配置完成之后,eNB可以通过向UE发送用于单独的测量报告请求的RRC消息(新的RRC消息、传统定义的RRC消息或测量报告命令)来做出报告测量结果的请求。可以定义用于测量报告请求的新的MAC控制信息,并且定义新的逻辑信道标识符。eNB可以通过向UE发送MAC控制信息来请求测量报告。
当UE从eNB接收到测量报告请求时,UE可以发送测量结果。UE可以通过网络配置的安全配置信息来加密测量结果,并发送加密的测量结果。如果频率测量结果的报告没有被加密,则频率测量信息可能被黑客入侵或泄漏,并且基于频率测量报告可以跟踪UE的位置,从而可能暴露个人信息。因此,需要在加密之后执行频率测量报告。UE可以通过RRC消息(新的RRC消息或传统定义的RRC消息,例如,测量报告)将频率测量结果发送给eNB。可选地,定义用于测量报告的新的MAC控制信息并且定义新的逻辑信道标识符,因此,UE可以通过将MAC控制信息发送到eNB来提供测量报告。
根据实施例,可以将随机访问程序用于有效频率测量结果以及频率测量结果的请求和报告。消息1的前导码可以被分组。在分组的前导码中,特定前导码可以指示测量报告结果的存在。UE可以通过发送与特定组相对应的前导码来通知eNB存在有效频率测量结果。当作为消息2的RAR包括指示测量结果的报告的指示符时,UE可以识别是否存在对测量结果的请求。当通过RAR请求测量结果的报告时,UE可以通过消息3报告测量结果。eNB可以向UE发送基于测量结果配置SCell的RRC配置消息。
当存在有效频率测量结果报告时,UE可以将频率测量结果报告给eNB。也就是说,当存在有效频率测量结果报告时,即使没有来自eNB的请求,UE也可以将频率测量结果的报告发送到eNB。UE可以通过RRC消息(新的RRC消息、传统定义的RRC消息、消息3或消息5,例如,测量报告)将频率测量结果发送到eNB。当定义了用于测量报告的新的MAC控制信息并且定义了新的逻辑信道标识符时,UE可以通过将MAC控制信息发送到eNB来提供测量报告。
UE可以将所有频率测量结果中的必要频率测量结果发送到网络(eNB)。在RRC非活动模式下执行频率测量的UE可以向网络报告可以应用CA的载波(SCell)的频率测量结果。UE可以仅对于满足预定条件的SCell报告测量结果。换句话说,可以应用CA的SCell是满足预定条件的SCell。
UE可以基于UE的测量将满足预定条件的SCell的频率测量报告报告给网络。如果给定时段,则UE可以在每个对应时段中执行测量。预定条件可以包括以下条件中的至少一个。
当频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态保持预定时间时,满足条件(阈值和时间可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次时,满足条件(阈值和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当在预定时间内频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次时,满足条件(阈值、时间和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当在第一时间内(例如,在定时器被驱动期间)频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态保持第二时间时,满足条件(阈值、第一时间和第二时间可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当在第一时间内(例如,在定时器被驱动期间)频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次时,满足条件(阈值、第一时间和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当处于RRC非活动模式下的UE测量的频率是UE接入的服务小区的系统信息指示的小区或频率时,满足条件,可以为一个eNB服务的多个小区支持CA技术,使得无论由另一eNB服务的小区的信号有多好,都不能应用CA技术。因此,仅当频率测量结果是对UE接入的小区或eNB支持的频率的测量结果时,才可以将UE测量的频率测量结果用于载波聚合技术的应用。例如,当频率是属于由系统信息指示的小区列表(白小区列表)的频率或小区时,对应的频率或小区满足条件。
当eNB不知道当前具有已建立的连接的UE的UE能力时,或者当要求eNB识别UE能力时,eNB可以发送询问UE能力的消息(例如,UE能力询问)。UE可以发送报告其自身能力的消息(例如,UE能力)。通过该消息,UE可以将关于是否可以在RRC空闲模式或RRC非活动模式下执行频率测量的信息或者关于可以测量的频率或频率区域或可以测量的最大频率的信息报告给eNB。
根据实施例,可以通过步骤845的RRC消息(RRC连接重新配置)引入公共配置参数或每个SCell的配置参数,以对多个SCell有效地执行(例如,一次)配置。eNB或UE可以使用公共配置参数或引入每个SCell的配置参数。eNB或UE可以使用公共配置参数或每个SCell的配置参数。当配置了公共配置参数和每个SCell的配置参数时,每个SCell的配置可以优先于公共配置参数。例如,定义组标识符,然后可以定义与每个SCell标识符的映射关系。也就是说,一个组标识符可以被映射到所有SCell标识符中的每一个,并且一个组标识符可以指示所有SCell的公共配置信息。此外,可以定义多个组标识符,并且可以定义映射到相应组标识符的SCell标识符,从而可以以组为单位配置小区的配置信息。RRC消息可以包括具有基于SCell标识符指示要用于SCell的带宽部分的带宽部分ID的映射信息、时间/频率资源信息或与每个SCell相对应的带宽部分配置信息。
当在RRC消息中配置SCell时,SCell的初始状态可以被配置为激活状态、休眠状态或停用状态。如果在发送SCell的配置信息时将SCell配置为具有与激活状态或休眠状态相对应的初始状态,则UE可以直接对SCell执行频率测量并报告频率测量,使得eNB可以快速应用CA技术。可以通过MAC控制信息向处于RRC连接模式下的UE指示到每个SCell的激活状态、休眠状态或停用状态的转变。当SCell处于激活状态或休眠状态时,处于RRC连接模式下的UE可以执行频率测量并将频率测量结果报告给eNB。可以通过RRC消息或MAC控制信息来提供频率测量报告。当通过RRC消息将每个SCell的状态配置为激活状态或休眠状态时,可以根据包括指示何时开始PDCCH监视以及何时包括开始频率(信道或小区)测量结果的整数的配置信息来配置UE。例如,UE可以在与指示的整数相对应的时间单位(例如,子帧、时隙或TTI)之后开始PDCCH监视或测量结果报告。
根据实施例,eNB可以再次发送RRC连接重新配置消息,以便向UE提供新的配置或者出于预定原因添加或改变该配置。RRC连接重新配置消息可以被发送,同时包括可以被包括在RRC连接恢复中的信息或者该信息的一部分。
在下文中,指示根据图8中所示的实施例的UE的操作。
图8的步骤810的RRC消息可以包括用于测量非活动状态的测量相关参数的配置信息。也就是说,可以在指示到非活动状态的转变的控制消息中配置测量相关参数。
非活动状态参数:
身份无线电网络临时标识符(I-RNTI):当重新配置到网络的连接时,I-RNTI可以用作UE的标识符,并且可以称为恢复ID。当接收到寻呼消息时,I-RNTI可以用于识别寻呼的存在或不存在。
RNA:当UE转变到非活动模式时,RNA可以指示支持非活动模式的网络区域。当UE脱离按照RNA的预定区域时,UE应向网络报告其自身位置并执行用于接收新区域的程序。
非活动状态第一测量相关参数:
要测量的频率和测量时段。
NR演进的绝对射频频道号(EARFCN)列表和每个NR-EARFCN的测量时段。
如果测量时段为n,则每n*个不连续接收(DRX)周期(cycle)执行测量。
如果未配置测量时段,则n=1。
L3滤波系数(在频率测量中要使用的测量系数)。
有效定时器(仅在根据配置的定时器值驱动定时器时执行频率测量)。
测量结果报告条件。
整数m、RSRP/RSRQ阈值、时间段d。
例如,如果全部m个测量结果均大于RSRP阈值或RARQ阈值,则满足条件。
例如,如果在时间段d内所有测量结果均大于RSRP阈值或RARQ阈值,则满足条件。
例如,如果将全部m个测量结果均大于RSRP阈值或RARQ阈值的状态被维持时间段d,则满足条件。
测量区域(如果未信号通知测量区域,则与RAN相同)。
在步骤825中,UE可以在RRC非活动模式下执行以下频率测量。UE可以在非活动状态期间执行频率测量。
当满足第一条件时,UE执行第一测量操作。可以根据有效性定时器来确定第一条件的满足。例如,驱动第一条件的有效性定时器。如果驱动有效性定时器,则满足第一条件。当UE转变到RRC非活动模式,即非活动状态时,启动有效性定时器的驱动。当UE转变到非活动状态时,UE发起第一测量操作。当满足特定条件时,有效性定时器将停止或重置。例如,当UE脱离RNA或测量区域时,或者当周期性RNA更新失败时,有效性定时器将停止或重置。
可以如下指定第一测量操作的详细操作。UE可以根据DRX时段来测量服务小区/频率的同步信号块(SSB)的RSRP/RSRQ。当测量非服务频率时,UE可以测量由NR-ARFCN指示的频率的SSB。UE可以在每个DRX中测量服务频率,并且在每n*DRX时段中测量非服务频率。整数n可以通过RRC消息或系统信息来指示。即使服务频率的测量结果大于系统信息指示的SnonIntraSearchP和SnonIntraSearchQ(例如,Srxlev>SnonIntraSearchP或Squal>SnonIntraSearchQ),UE也可以测量非服务频率。
如果不满足第一条件,则UE执行第二测量操作。例如,如果没有驱动有效性定时器,则UE可以执行第二测量操作。可以如下指定第二测量操作的详细操作。UE可以根据DRX时段来测量服务小区/频率的SSB的RSRQ/RSRQ。可以在每个DRX时段中执行在SIB 5的非服务频率中具有比服务频率更高的优先级的频率的测量。如果满足预定条件,则可以在每个DRX时段中执行对SIB 5的非服务频率中优先级低于(或等于)服务频率的频率的测量。例如,当服务频率的测量结果低于系统信息指示的SnonIntraSearchP和SnonIntraSearchQ时,可以满足预定条件。
当启动RRC连接恢复程序时,UE可以执行以下程序。UE可以执行随机接入程序。UE可以将指示存在非活动状态测量结果的信息插入消息3(Msg 3)。例如,UE可以通过将预定的IE插入MAC控制信息的LCID或RRC消息(例如,RRCResumeRequest消息)向eNB通知存在非活动状态测量结果。当通过消息4(Msg 4/RRCResume)从eNB接收到指示非活动状态测量结果的报告的信息时,UE可以生成并报告非活动状态测量结果。
步骤855的非活动状态测量报告消息可以包括测量结果。在实施例中,测量结果可以包括服务小区测量结果。例如,服务小区测量结果可以包括L3滤波的RSRP/RSRQ。测量结果可以包括频率间测量结果。UE可以报告对每个频率的有效测量结果中具有最高RSRP或RSRQ的一个小区的测量结果。例如,频率间测量结果可以包括NR-ARFCN、物理小区标识符(PCI)、L3滤波的RSRP/RWRQ和从测量经过的时间中的至少一个。
本公开提供了一种方法,该方法将对UE中配置的SCell的UE的状态定义为激活状态、停用状态或休眠状态,定义每个状态下UE的操作,以及通过MAC控制信息切换状态。因此,本公开提供了一种装置和方法,通过该装置和方法,UE可以更快地执行频率测量并且更快地将频率测量结果报告给eNB,从而eNB可以更加快速地配置载波聚合技术。
为了在下一代移动通信系统(例如,NR通信系统)中支持具有较高数据传输速率和较低传输延迟的服务,可能需要eNB在UE中快速配置频率聚合(CA)技术或双连接(DC)技术。然而,需要UE的频率测量结果来在UE中配置该技术。需要为UE中配置的SCell定义UE的状态,并配置或控制UE执行“快速频率测量”并报告测量结果。
将描述eNB对每个辅小区(SCell)在UE中配置的UE的状态定义为激活状态、停用状态和休眠状态以及UE在每种状态下的操作。
下面描述使用新的MAC控制信息在每个SCell的三个状态之间的转变方法。例如,在休眠状态下,随着UE快速执行频率测量并向eNB快速报告频率测量报告,eNB可以快速配置载波聚合技术。此外,通过使用MAC控制信息控制eNB在UE中配置的对于每个SCell的UE的状态,可以动态地控制SCell。因此,eNB可以通过CA或DC以较小的信令开销和较低的传输延迟来快速地向UE提供大量数据。
本公开提供了引入新的休眠状态以便即使没有对每个SCell激活UE也允许UE执行频率测量并报告测量结果、以及切换状态的方法。当在宏小区中部署了小型小区的环境中网络在UE中快速配置CA或DC时,这些方法会非常有用。
图9是根据实施例的在无线通信系统中由UE配置SCell的方法的流程图。UE对应于图1的UE 135或图3的UE 315。在下一代移动通信系统(即NR系统)中,UE接收SCell的频率测量配置和状态配置,根据MAC控制信息的指示执行状态转变,并且根据配置的状态执行操作。
参照图9,在步骤901中,UE可以识别SCell配置信息。UE可以从系统信息、用于切换UE的模式的RRC消息(例如,RRC非活动模式或RRC空闲模式)或在RRC连接配置中接收的消息中的至少一个接收频率测量配置信息。频率测量信息可以包括SCell配置信息。UE可以识别SCell配置信息。
SCell配置信息可以指示每个SCell的初始状态。
在步骤903,UE可以根据每个SCell中配置的初始状态进行操作。SCell配置信息可以指示每个SCell的初始状态。UE可以配置每个SCell的初始状态。UE可以识别在每个SCell中配置的初始状态,并根据识别的状态进行操作。初始状态可以是激活状态、停用状态和休眠状态中的一个。UE可以基于在对应的SCell中配置的初始状态来测量服务小区。
在步骤905,UE可以接收转变信息。转变信息可以是指示UE的SCell的状态到另一状态的转变的信息。转变信息可以将SCell从特定状态切换到另一特定状态。可以通过转变信息的类型或转变信息的值来指示SCell从哪个状态转变和SCell转变到的状态。例如,转变信息可以指示从激活状态到休眠状态的转变。例如,转变信息可以指示从激活状态到停用状态的转变。例如,转变信息可以指示从停用状态到休眠状态的转变。例如,转变信息可以指示从停用状态到激活状态的转变。例如,转变信息可以指示从休眠状态转变到激活状态。例如,转变信息可以指示从休眠状态到停用状态的转变。转变信息可以是MAC CE。下面参照图12A、图12B、图13A、图13B、图13C、图14A、图14B、图15A、图15B、图16A、图16B、图17A、图17B、图18A和图18B更详细地描述MAC CE。
在步骤907,UE可以切换SCell的状态。UE可以基于转变信息(例如,在步骤905中接收的MAC CE)来切换SCell的状态。例如,UE可以将第一SCell从激活状态切换到休眠状态。例如,UE可以将第一SCell从激活状态切换到停用状态。例如,UE可以将第二SCell从停用状态切换到休眠状态。例如,UE可以将第二SCell从停用状态切换到激活状态。例如,UE可以将第三SCell从休眠状态切换到激活状态。例如,UE可以将第三SCell从休眠状态切换到停用状态。
在步骤909,UE可以根据转变状态进行操作。UE可以基于SCell的转变状态来测量对应的SCell。例如,当SCell转变到激活状态时,UE可以在每个DRX时段测量SCell。例如,当SCell转变到停用状态时,UE可以在每个DRX时段或每个单独配置的SCell测量时段测量SCell。例如,当SCell转变到休眠状态时,UE可以测量SCell并报告测量结果。
图10是根据实施例的在无线通信系统中在eNB与UE之间用于配置SCell的信令的流程图。UE对应于图1的UE 135或图3的UE 315。eNB对应于图1的eNB 110、图3的gNB 310或eNB 315。
参照图10,在步骤1005中,UE处于RRC连接模式。当由于预定原因或预定时间在RRC连接模式下发送和接收数据的UE没有数据发送和接收时,在步骤1010中,eNB可以向UE发送RRC消息(例如,RRC连接释放、RRC连接暂停或新的RRC消息),并控制UE转变到RRC空闲模式或RRC非活动模式。也就是说,当处于RRC连接模式的UE转变到RRC空闲模式或RRC非活动模式时,网络可以发送RRC消息以指示UE切换模式。
根据实施例,当通过RRC消息使UE转变到RRC空闲模式或RRC非活动模式时,通过在RRC消息中定义指示符,eNB可以向UE指示在RRC空闲模式或RRC非活动模式下是存储并维持还是丢弃SCell的配置信息或SCell状态(活动状态、空闲状态或非活动状态)信息。如果UE的移动性不大,则可以直接重用该配置信息。
在步骤1015中,UE根据RRC消息的指示转变到RRC空闲模式或RRC非活动模式。在RRC空闲模式或RRC非活动模式下,UE可以在移动期间执行小区重选。
在步骤1020中,UE可以接收小区的系统信息。UE基于小区重选来搜索合适的小区。当找到UE驻留的小区时,在步骤1020,UE接收并读取该小区的系统信息。
UE可以在RRC空闲模式或RRC非活动模式下驻留在小区上,并从对应小区的系统信息(例如,LTE系统中的SIB 5和NR系统中的SIB 1、SIB 2、SIB 3、SIB 4或SIB 5)中读取关于要测量的频率的信息、频率的优先级以及定时器信息。
步骤1010中描述的RRC消息中包括的至少一条信息可以被广播为步骤1020的系统信息。处于RRC空闲模式或RRC非活动模式下的UE可以根据被配置为RRC消息的频率测量信息或被配置为系统信息的频率测量信息来执行频率测量。
在步骤1030中,UE可以发送RAP。eNB可以接收随机接入前导码。在步骤1035中,eNB可以响应于RAP发送RAR。UE可以接收RAR。
随后,当前未配置连接的UE,也就是,处于RRC空闲模式或RRC非活动模式的UE可以在生成要发送的数据时与eNB执行RRC连接建立过程。在步骤1030和1040中,UE可以通过随机接入过程与eNB建立前向传输同步。
在步骤1040中,UE可以向eNB发送RRCConnectionRequest消息。该消息包括建立连接的原因(establishmentCause)以及UE的标识符。在步骤1045中,eNB可以发送RRCConnectionSetup消息以允许UE建立RRC连接。该消息可以包括RRC连接配置信息。RRC连接可以被称为SRB,并且被用于在UE和eNB之间发送和接收作为控制消息的RRC消息。在步骤1050中,建立RRC连接的UE向eNB发送RRCConnetionSetupComplete消息。
RRCConnetionSetupComplete消息包括在UE向MME请求建立预定服务的承载的控制消息(例如,服务请求)中。eNB可以将包括在RRCConnetionSetupComplete消息中的控制消息发送到MME。MME确定是否提供由UE请求的服务。如果基于确定结果确定提供UE请求的服务,则MME将设置(setup)请求消息(例如,初始上下文设置请求)发送给eNB。设置请求消息可以包括要应用于DRB的建立的QoS信息和要应用于DRB的安全相关信息(例如,安全密钥和安全算法)。eNB可以在步骤1055中发送安全配置消息(例如,SecurityModeCommand)以配置与UE的安全性,并且可以在步骤1060中发送安全配置完成消息(例如,SecurityModeComplete)以向eNB通知安全配置,其完成安全配置程序。
在步骤1070中,eNB可以向UE发送RRCConnectionReconfiguration消息。当在步骤1055和1060完成安全配置时,eNB可以向UE发送RRCConnectionReconfiguration消息。该消息可以包括用于处理用户数据的DRB的配置信息。
在步骤1075中,UE可以RRCConnectionReconfigurationComplete消息发送到向eNB。UE可以通过应用在步骤1070中接收的DRB的配置信息来建立DRB,并且将RRCConnectionReconfigurationComplete消息发送到eNB。
根据实施例,可以引入公共配置参数或每个SCell的配置参数,以通过RRC消息有效地执行多个SCell的配置(步骤1070的RRC连接重新配置)。eNB或UE可以使用公共配置参数或每个SCell的配置参数。当配置了公共配置参数和每个SCell的配置参数时,每个SCell的配置可以优先于公共配置参数。例如,定义组标识符,然后可以定义与每个SCell标识符的映射关系。也就是说,一个组标识符可以被映射到所有SCell标识符中的每一个,并且一个组标识符可以指示所有SCell的公共配置信息。此外,可以定义多个组标识符,并且可以定义映射到相应组标识符的SCell标识符,从而可以以组为单位配置小区的配置信息。RRC消息可以包括具有基于SCell标识符指示要用于SCell的带宽部分的带宽部分ID的映射信息、时间/频率资源信息或与每个SCell相对应的带宽部分配置信息。
完成与UE建立DRB的eNB向MME发送初始上下文设置完成消息。接收该消息的MME与S-GW交换S1承载设置消息和S1承载建立响应消息,以便建立S1承载。S1承载是在S-GW和eNB之间建立的用于数据传输的连接,并且以一一对应的方式对应于DRB。当处理器完成时,UE通过eNB和S-GW发送和接收数据。此外,eNB可以发送RRCConnectionReconfiguration消息,以便向UE提供新的配置或者出于预定原因添加或改变该配置。
UE可以执行频率测量。UE可以基于接收的频率测量配置信息对每个配置的SCell执行频率测量。UE可以对每个配置的SCell根据UE的状态执行频率测量(激活状态、休眠状态或停用状态)。
eNB可以通过各种方法将频率测量结果报告给UE。在实施例中,在步骤1080中,UE可以将频率测量结果报告给eNB。eNB可以将满足预定条件的频率测量结果报告给eNB。如果在向eNB提供报告时存在有效频率测量结果,则UE可以通过RRC消息或MAC控制消息直接向eNB提供报告,或者周期性地提供报告。在步骤1085中,仅当存在对频率测量信息的请求时,UE可以报告频率测量结果。UE可以基于指示有效频率测量结果的存在的指示符将频率测量结果报告给eNB。例如,UE可以将指示有效频率测量结果的存在的指示符发送到eNB。eNB可以根据需要向UE请求频率测量结果。此后,eNB可以接收频率测量结果。
当通过RRC消息配置SCell时,每个SCell的初始状态可以被配置为激活状态、休眠状态或停用状态。当根据SCell的配置信息将SCell配置为具有作为激活状态或休眠状态的初始状态时,UE可以直接对SCell执行报告频率测量,使得eNB可以快速应用CA。
每个SCell的激活状态、休眠状态或停用状态可以通过向UE发送MAC控制信息来指示。另外,可以通过向UE发送MAC控制信息来指示RRC模式之间的切换。
当SCell处于激活状态或休眠状态时,处于RRC连接模式的UE可以执行频率测量并将频率测量结果报告给eNB。可以通过RRC消息或MAC控制信息来提供频率测量报告。当通过RRC消息将每个SCell的状态配置为激活状态或休眠状态时,可以基于包括指示何时开始PDCCH监视以及何时开始频率(信道或小区)测量结果的报告的整数的频率测量配置信息来配置UE。例如,UE可以在与指示的整数相对应的时间单位(例如,子帧、时隙或TTI)之后开始测量报告。
当使用RRC消息配置SCell的初始状态时,eNB可以定义RRC消息的指示符以快速应用CA,并且将每个SCell的初始状态配置为激活状态或休眠状态。如果不需要快速CA(根据快速频率测量配置的CA),则可以将初始状态配置为停用状态。eNB可以在RRC消息中配置定时器值,当定时器值期满时,配置UE自动将SCell的状态从激活状态切换到休眠状态,或者当定时器值期满时,将UE配置为自动将SCell的状态从休眠状态切换到停用状态,或者当定时器值期满时,将UE配置为自动将SCell的状态从激活状态切换到停用状态,从而节省电池电力并减少信令开销。SCell的配置可以在初始连接配置中或在切换中执行,或者在eNB向处于RRC连接模式下的UE发送RRC消息时执行。
根据实施例,在休眠状态下UE对SCell执行的频率测量可以与在激活状态下对SCell执行的频率测量不同。也就是说,虽然可以基于根据当前UE的Pcell的时间参考值的CSI-RS进行在激活状态下对SCell执行的频率测量,但是基于CSI-RS可能难以进行在休眠状态下的频率测量。因此,UE可以基于CRS测量RSRP、RSRQ和RS-SINR。因此,作为用于测量频率的对象的参考信号在激活状态和其他状态(例如,休眠状态)下可能不同。
如上所述,UE可以在各个时间点启动频率测量。也就是说,频率测量开始的时间点可以是以下时间点之一。
UE可以在UE接收步骤1010的RRC消息并读取频率测量配置信息的时间点开始频率测量。
UE可以接收步骤1010的RRC消息,读取频率测量配置信息,并且在由频率测量配置信息指示(或预先指定)的n个时间单位(例如,子帧、时隙或TTI)之后开始频率测量。
UE可以接收步骤1010的RRC消息,读取频率测量配置信息以及在频率测量配置信息指示(或预先指定)的每个SCell的UE的状态被配置并且配置状态为激活状态或休眠状态时指示的n个时间单位(例如,子帧、时隙或TTI)之后开始频率测量。
UE可以接收步骤1010的RRC消息,读取频率测量配置信息以及在频率测量配置信息指示(或预先指定)的每个SCell的UE的状态被配置并且配置状态为激活状态或休眠状态时开始频率测量。
UE可以将所有频率测量结果中的必要频率测量结果发送到网络(eNB)。根据实施例,在RRC空闲模式或RRC非活动模式下执行频率测量的UE可以向网络报告对可以应用CA的载波(SCell)的频率测量结果。UE可以报告仅针对满足预定条件的SCell的测量结果。换句话说,可以应用CA的SCell是满足预定条件的SCell。
UE可以基于UE的测量将满足预定条件的SCell的频率测量报告报告给网络。如果给定时段,则UE可以在每个对应时段中执行测量。预定条件可以包括以下条件中的至少一个。
当频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态保持预定时间时,满足条件(阈值和时间可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次时,满足条件(阈值值和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当在预定时间内频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次时,满足条件(阈值、时间和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当在第一时间内(例如,在定时器被驱动期间)频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态保持第二时间时,满足条件(阈值、第一时间和第二时间可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当在第一时间内(例如,在定时器被驱动期间)频率的信号强度(例如,RSRP、RSRQ或RS-SINR)大于预定阈值的状态被测量预定次数或更多次时,满足条件(阈值、第一时间和次数可以通过RRC消息在UE中配置,或者可以通过系统信息广播)。
当处于RRC空闲模式或RRC非活动模式下的UE测量的频率是UE接入的服务小区的系统信息指示的小区或频率时,满足条件,可以为一个eNB服务的多个小区支持CA技术,使得无论另一eNB服务的小区的信号有多好,都不能应用CA技术。因此,仅当频率测量结果是对UE接入的小区或eNB支持的频率的测量结果时,才可以将频率测量结果用于CA技术的应用。例如,当频率是属于由系统信息指示的小区列表(白小区列表)的频率或小区时,对应的频率或小区满足条件。
当eNB不知道当前具有已建立的连接的UE的UE能力时,或者当要求eNB识别UE能力时,eNB可以发送询问UE能力的消息(例如,UE能力询问)。UE可以发送报告其自身能力的消息(例如,UE能力)。通过该消息,UE可以将关于是否可以在RRC空闲模式或RRC非活动模式下执行频率测量的信息或者关于可以测量的频率或频率区域或可以测量的最大数量的频率的信息报告给eNB。
当在UE中配置的SCell的状态为激活状态或休眠状态时,当UE执行切换或生成无线链路失败(RLF)时,或者当Pcell改变时,SCell的状态可以转变为停用状态,以防止不必要的PDCCH监视和频率测量。也就是说,UE可以回退每个SCell的状态。也就是说,UE可以执行隐式状态转变。
对于配置为激活状态的SCell,UE监视PDCCH以监视eNB的信号,根据RRC配置执行信道质量指示符(CQI)或无线电资源监视(RRM)测量,并且在配置DRX时,根据DRX执行CQI或RRM测量,并将测量结果报告给eNB。可以通过RRC消息将频率测量结果报告从UE提供给eNB,或者可以定义MAC控制信息,然后可以通过MAC控制信息提供频率测量报告。
对于被配置为休眠状态的SCell,UE可以根据Pcell的DRX执行频率测量(CQI或RRM测量),并触发频率测量报告,以将报告提供给eNB。也就是说,UE可以在Pcell的DRX中UE应当开启RF以监视PDCCH的开启持续时间间隔(on-duration interval)中执行频率测量。可以通过RRC消息将频率测量结果报告从UE提供给eNB。可选地,可以定义MAC控制信息,并且UE可以通过MAC控制信息来报告频率测量结果。为了节省电池电力,可以不执行用于监视eNB的指示的PDCCH监视。
对于被配置为休眠状态的SCell,UE可以不执行用于监视网络的指示的PDCCH监视以节省电池电力。UE可以提供周期性频率测量(信道测量)报告,以便快速地支持SCell的激活。可以基于CRS提供频率测量(信道测量)报告。
对于被配置为停用状态的SCell,UE可能不会监视eNB的信号。也就是说,不监视PDCCH并执行频率测量(RRM),不将测量结果报告给eNB。在停用状态下,可以根据通过RRC配置的SCell测量报告时段执行频率测量。
图11是根据实施例的SCell的状态转变的图示。UE可以对SCell维持特定状态或转变到另一特定状态。SCell的状态可以是激活状态、休眠状态或停用状态。也就是说,UE可以对每个SCell维持激活状态、休眠状态或停用状态,或者基于MAC控制信息执行状态转变。在下文中,激活状态可以被称为Ac,休眠状态可以被称为Do,停用状态可以被称为De,因此下面描述SCell的状态转变。状态转变可以包括维持与先前状态相同的状态的情况1105、1110和1115。
参照图11,下面的九种状态转变是可能的。
1105:Ac到Ac(维持该状态)
1110:Do到Do(维持该状态)
1115:De到De(维持该状态)
1120:Ac到Do(用于节省UE的电池电力并容易执行调度)
1125:Do到Ac(用于激活CA)
1130:De到Do(用于在激活CA之前接收频率测量报告)
1135:Do到De(用于防止和停用频率测量报告以节省UE的电池电力)
1140:De到Ac(用于激活CA)
1145:Ac到De(用于节省UE的电池电力并容易执行调度)
根据实施例,可以不使用特定状态转变。如果使用情况的频率或使用率低,则可能不支持状态转变1130(De到Do)。是否使用特定状态转变是可自适应配置的。在下文中,将参照图12A、图12B、图13A、图13B、图13C、图14A、图14B、图15A、图15B、图16A、图16B、图17A、图17B、图18A和图18B描述用于支持图11中描述的本公开的状态转变的MAC控制信息的详细实施例。参照图12A至图18B,下面描述每个MAC CE的角色。每个MAC CE可以由MAC PDU和LCID来识别。
图12A和图12B是根据实施例的在无线通信系统中支持用于SCell的状态转变的MAC控制信息的第一实施例的图示。下面参照图11描述MAC控制信息的第一实施例。图12A所示的MAC控制信息的第一实施例不支持图11A的状态转变1130(De到Do)。如上所述,可能不支持状态转变1130(De到Do),因为其使用情况的频率或使用率可能较低。
参照图12A和图12B,将第一MAC CE和第二MAC CE定义为MAC控制信息,并且支持根据第一MAC CE或第二MAC CE的状态转变。第一MAC CE可以停用处于休眠状态的SCell,但是不能激活SCell。第二MAC CE不能切换处于停用状态的SCell的状态。
下面描述第一MAC控制信息,也就是说,根据第一实施例的第一MAC CE。第一MACCE可以被称为激活/停用MAC CE。第一MAC CE可以具有1个字节的固定大小,并且可以由逻辑信道标识符(LCID)来识别。第一MAC CE可以具有一个保留(R)字段,并且其详细格式与图12B的MAC CE 1211的格式相同。MAC CE 1211包含1个八位字节。
此外,第一MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第一MACCE可以具有31个C字段和1个R字段,并且其详细格式与图12B的MAC CE 1213的格式相同。MAC CE 1213包含四个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第一MAC CE。否则,可以使用具有4个字节大小的第一MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则与小区ID i对应的SCell处于激活状态、停用状态或休眠(冬眠)状态。否则,MAC层设备(例如,MAC实体)将忽略此字段。当C(i)字段设置为1时,C(i)字段指示应当激活配置有SCellIndex i的SCell的状态。然而,当配置有SCellIndex i的SCell的状态为休眠状态时,MAC实体将忽略C(i)字段的值1。当C(i)字段被设置为0时,C(i)字段指示配置有SCellIndex i的SCell的状态是停用。
R字段:表示保留字段,并被配置为0。
可以如下表1所示定义根据第一实施例的第一MAC CE。
表1
C(i)字段 状态转变
0 Ac→De,Do→De,De→De
1 Ac→Ac,Do→Do,De→Ac
下面描述第二MAC控制信息,也就是说,第一实施例中的第二MAC CE。第二MAC CE可以被称为激活/冬眠MAC CE。
第二MAC CE可以具有1个字节的固定大小,并且可以由LCID来识别。第二MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图12B的MAC CE 1221的格式相同。格式与MAC CE 1221的格式相同。MAC CE 1221包含1个八位字节。
此外,第二MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第二MACCE可以具有31个C字段和1个R字段,并且其详细格式与图12B的MAC CE 1223的格式相同。MAC CE 1223包括四个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第二MAC CE。否则,可以使用具有4个字节大小的第二MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体将忽略此字段。当C(i)字段被设置为1位信息的一个值(0或1,例如,1)时,C(i)字段指示应当是激活配置有SCellIndex i的SCell的状态。然而,当配置有SCellIndex i的SCell处于停用状态时,MAC实体将忽略1位信息的一个值(0或1,例如,1)。当C(i)字段被设置为1位信息的一个值(0或1,例如,0)时,C(i)字段指示配置有SCellIndex i的SCell的状态将处于休眠。然而,当配置有SCellIndex i的SCell处于停用状态时,MAC实体将忽略1位信息的一个值(0或1,例如,1)。
R字段:表示保留字段,并被配置为0。
可以如下表2所示定义根据第一实施例的第二MAC控制信息。
表2
C(i)字段 状态转变
0 Ac→Do,Do→Do,De→De
1 Ac→Ac,Do→Ac,De→De
在根据第一实施例的第一MAC CE和第二MAC CE中,具有1个字节大小的MAC CE和具有4个字节大小的MAC CE可以具有不同的逻辑信道标识符,因此可以彼此区分。此外,第一MAC CE和第二MAC CE可以具有固定长度。在这种情况下,MAC子报头中不需要长度(L)字段。
在另一方法中,R字段可以用于节省LCID的空间。LCID 1指示具有1个字节大小的第一MAC CE或第二MAC CE,并且如果R字段值为0,则可以指示具有1个字节大小的第一MACCE,并且如果R字段值为1,则指示具有1个字节大小的第二MAC CE。LCID 2指示具有4个字节大小的第一MAC CE或第二MAC CE,并且如果R字段值为0,则可以指示具有4个字节大小的第一MAC CE,并且如果R字段值为1,则指示具有4个字节大小的第二MAC CE。因此,在这种情况下,在MAC子报头中不需要L字段。
指示本公开的状态转变的MAC控制信息应支持图11的每个小区的所有状态转变。下面描述第一实施例中的第一MAC CE和第二MAC CE如何支持每个SCell的状态转变的示例。如下面的表3所示,当每个SCell具有多个状态时,可以识别出MAC控制信息通过仅一种状态到另一种状态的改变来正确地设计。如下表3所示,第一实施例中的第一MAC CE和第二MAC CE支持所有情况的数量的状态转变。
表3
SCell索引 7 6 5 4 3 2 1
状态 Ac Ac Ac De De Do Do
MAC CE 1 0 1 1 0 0 1 1
状态 <u>De</u> Ac Ac De De Do Do
MAC CE 2 <u>0</u> 0 1 0 0 0 0
状态 De <u>Do</u> Ac De De Do Do
MAC CE 1 0 1 1 1 0 1 1
状态 De Do Ac <u>Ac</u> De Do Do
MAC CE 1 0 0 1 1 0 1 1
状态 De <u>De</u> Ac Ac De Do Do
MAC CE 2 0 0 1 1 0 1 0
状态 De De Ac Ac De <u>Ac</u> Do
图13A、图13B和图13C是根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的第二实施例的图示。下面参照图11描述MAC控制信息的第二实施例。MAC控制信息的第二实施例支持图11的状态转变1130(De到Do)。也就是说,即使状态转变1130(De到Do)的使用情况的频率或使用率低,也可以通过将处于停用状态的SCell切换到休眠状态来节省UE的电池电力并提前报告频率测量结果。eNB可以根据报告的频率测量结果来确定是否执行激活,因此状态转变1130可以是有用的。
参照图13A、图13B和图13C,将第一MAC CE和第二MAC CE定义为MAC控制信息,并且支持根据第一MAC CE或第二MAC CE的状态转变。第一MAC CE可以停用处于休眠状态的SCell,但是不能激活处于休眠状态的SCell。此外,第二MA CE可以通过1位信息的一个值(0或1,例如,1)将处于停用状态的SCell切换到休眠状态,并且通过1位信息的一个值(0或1,例如,0)连续保持处于停用状态的SCell的停用状态。
下面描述第一MAC控制信息,也就是说,第二实施例中的第一MAC CE。第一MAC CE可以被称为激活/停用MAC CE。第一MAC CE可以具有一个字节的固定大小,并且可以由LCID来识别。第一MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图13B的MAC CE1311的格式相同。MAC控制信息1311包含1个八位字节。
此外,第一MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第一MACCE可以具有31个C字段和1个R字段,并且其详细格式与图13B的MAC CE 1313的格式相同。MAC CE 1313包含四个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第一MAC CE。否则,可以使用具有4个字节大小的第一MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体将忽略此字段。当C(i)字段设置为1时,C(i)字段指示配置有SCellIndex i的SCell的状态应当是激活的。然而,当配置有SCellIndex i的SCell的状态为休眠状态时,MAC实体将忽略C(i)字段的值1。当C(i)字段设置为0时,C(i)字段指示配置有SCellIndex i的SCell的状态是停用的。
R字段:表示保留字段,并被配置为0。
可以如下表4所示定义根据第一实施例的第一MAC CE。
表4
C(i)字段 状态转变
0 Ac→De,Do→De,De→De
1 Ac→Ac,Do→Do,De→Ac
下面描述第二MAC控制信息,也就是说,第二实施例中的第二MAC CE。第二MAC CE可以被称为激活/冬眠MAC CE。
第二MAC CE可以具有一个字节的固定大小,并且可以由LCID来识别。第二MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图13B的MAC CE 1321的格式相同。格式与MAC CE 1321的格式相同。MAC CE 1321包含1个八位字节。
此外,第二MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第二MACCE可以具有31个C字段和1个R字段,并且其详细格式与图13B的MAC CE 1323的格式相同。MAC CE 1323包含四个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第二MAC CE。否则,可以使用具有4个字节大小的第二MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体将忽略此字段。当C(i)字段被设置为1位信息的一个值(0或1,例如,1)时,C(i)字段指示配置有SCellIndex i的SCell的状态应当是激活。然而,当配置有SCellIndex i的SCell的状态为停用状态时,C(i)字段的1位信息的一个值(0或1,例如,1)指示SCell状态转变到休眠状态。当C(i)字段被设置为1位信息的一个值(0或1,例如,0)时,C(i)字段指示配置有SCellIndex i的SCell的状态应当是休眠。然而,当配置有SCellIndex i的SCell处于停用状态时,MAC实体将忽略该1位信息的一个值(0或1,例如,1)。
R字段:表示保留字段,并被配置为0。
可以如下表5所示定义根据第二实施例的第二MAC控制信息。
表5
C(i)字段 状态转变
0 Ac→Do,Do→Do,De→De
1 Ac→Ac,Do→Ac,De→Do
在第二实施例中,根据另一实施例的第二MAC CE可以被配置为与上述设计方法相同。可选地,可以设计另一第二MAC CE,使得具有0或1的每个位的位值(0和1)所表示的含义被交换。
第二MAC CE可以具有一个字节的固定大小,并且可以由LCID来识别。第二MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图13C的MAC CE 1331的格式相同。
此外,第二MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第二MACCE可以具有31个C字段和1个R字段,并且其详细格式与图13C的MAC CE 1333的格式相同。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第二MAC CE。否则,可以使用具有4个字节大小的第二MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体将忽略此字段。当C(i)字段被设置为1位信息的一个值(0或1,例如,0)时,C(i)字段指示配置有SCellIndex i的SCell的状态应当是激活。然而,当配置有SCellIndex i的SCell处于停用状态时,MAC实体将忽略1位信息的一个值(0或1,例如,1)。当C(i)字段设置为1位信息的一个值(0或1,例如,1)时,C(i)字段指示配置有SCellIndex i的SCell的状态应当是休眠状态。
R字段:表示保留字段,并被配置为0。
表5-1
C(i)字段 状态转变
0 Ac→Ac,Do→Ac,De→De
1 Ac→Do,Do→Do,De→Do
在根据第二实施例的第一MAC CE和第二MAC CE中,具有2个字节大小的MAC CE和具有4个字节大小的MAC CE可以具有不同的逻辑信道标识符,因此彼此区分开。此外,第一MAC CE和第二MAC CE可以具有固定长度。因此,在这种情况下,在MAC子报头中不需要L字段。
在另一方法中,R字段可以用于节省LCID的空间。也就是说,LCID 1指示具有1个字节大小的第一MAC CE或第二MAC CE,并且如果R字段值为0,则可以指示具有1个字节大小的第一MAC CE,并且如果R字段值为1,则指示具有1个字节大小的第二MAC CE。LCID 2指示具有4字节大小的第一MAC CE或第二MAC CE,并且如果R字段值为0,则可以指示具有4个字节大小的第一MAC CE,并且如果R字段值为1,则指示具有4个字节大小的第二MAC CE。因此,在这种情况下,在MAC子报头中不需要L字段。
指示本公开的状态传输的MAC控制信息应当支持图11的每个SCell的所有状态传输。下面描述第一实施例中的第一MAC CE和第二MAC CE如何支持每个SCell的状态转变的示例。
如下面的表6所示,当每个SCell具有多个状态时,可以识别出通过仅将一种状态改变为另一种状态正确地设计了MAC控制信息。第二实施例中的第一MAC CE和第二MAC CE支持对所有情况的数量的状态转变,如下表6所示。
表6
SCell索引 7 6 5 4 3 2 1
状态 Ac Ac Ac De De Do Do
MAC CE 1 0 1 1 0 0 1 1
状态 <u>De</u> Ac Ac De De Do Do
MAC CE 2 <u>0</u> 0 1 0 0 0 0
状态 De <u>Do</u> Ac De De Do Do
MAC CE 1 0 1 1 1 0 1 1
状态 De Do Ac <u>Ac</u> De Do Do
MAC CE 1 0 0 1 1 0 1 1
状态 De <u>De</u> Ac Ac De Do Do
MAC CE 2 0 0 1 1 0 1 0
状态 De De Ac Ac De <u>Ac</u> Do
MAC CE 2 1 0 1 1 0 <u>1</u> 0
状态 <u>Do</u> De Ac Ac De Ac Do
图14A和图14B是根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的第三实施例的图示。下面参照图11描述MAC控制信息的第三实施例。MAC控制信息的第三实施例支持图11的状态转变1130(De做Do)。也就是说,即使状态转变1130(De到Do)的使用情况的频率或使用率低,也可以通过将处于停用状态的SCell切换到休眠状态来节省UE的电池电力并提前报告频率测量结果。eNB可以根据报告的频率测量结果来确定是否执行激活,因此可以使用状态转变1130。
参照图14A和图14B,将第一MAC CE和第二MAC CE定义为MAC控制信息,并且支持根据第一MAC CE或第二MAC CE的状态转变。第一MAC CE不能切换处于休眠状态的SCell的状态。第二MAC CE可以通过2位指示每个SCell的所有状态中的每一个,或者将状态初始化为特定状态。因此,如果使用第二MAC CE,则eNB不需要跟踪UE的每个SCell的状态转变。因此,可以降低eNB的实现的复杂度。
下面描述第一MAC控制信息,也就是说,第三实施例中的第一MAC CE。第一MAC CE可以被称为激活/停用MAC CE。第一MAC CE可以具有一个字节的固定大小,并且可以由LCID来识别。第一MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图14B的MAC CE1411的格式相同。MAC CE 1411包含1个八位字节。
此外,第一MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第一MACCE可以具有31个C字段和1个R字段,并且其详细格式与图14B的MAC CE 1413的格式相同。MAC CE 1413包括四个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第一MAC CE。否则,可以使用具有4个字节大小的第一MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、停用状态或休眠状态。否则,MAC实体将忽略此字段。当C(i)字段设置为1时,C(i)字段指示配置有SCellIndex i的SCell的状态应当是激活。然而,当配置有SCellIndex i的SCell的状态是休眠状态时,MAC实体将忽略C(i)字段。当C(i)字段设置为0时,C(i)字段指示配置有SCellIndex i的SCell的状态是停用。
R字段:表示保留字段,并被配置为0。
可以如下表7所示定义根据第三实施例的第一MAC CE。
表7
C(i)字段 状态转变
0 Ac→De,Do→Do,De→De
1 Ac→Ac,Do→Do,De→Ac
下面描述第二MAC控制信息,也就是说,第三实施例中的第二MAC CE。第二MAC CE可以被称为激活/冬眠MAC CE。
第二MAC CE可以具有2个字节的固定大小,并且可以由LCID来识别。第二MAC CE可以具有七个具有2位大小的C字段和一个具有2位大小的R字段,并且其详细格式与图14B的MAC CE 1421的格式相同。MAC CE 1421包含两个八位字节。
第二MAC CE可以具有8个字节的固定大小,并且可以由LCID来识别。第二MAC CE可以具有31个具有2位大小的C字段和一个具有2位大小的R字段,其详细格式与图14B的MACCE 1423的格式相同。MAC CE 1423包含8个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有2个字节大小的第二MAC CE。否则,可以使用具有8个字节大小的第二MAC CE。
C(i,1)C(i,0)字段:2位信息,指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体将忽略此字段。当C(i,1)C(i,0)字段设置为2位信息的一个值(00、01、10或11,例如,00)时,C(i,1)C(i,0)字段可以指示配置为SCellIndex i的SCell的状态转变未发生,或者可以是保留值。当C(i)字段设置为2位信息的一个值(00、01、10或11,例如,01)时,C(i,1)C(i,0)字段指示配置有SCellIndex i的SCell的状态应当是激活。当C(i,1)C(i,0)字段设置为2位信息的一个值(00、01、10或11,例如,10)时,C(i,1)C(i,0)字段指示配置有SCellIndex i的SCell的状态应当是停用。当C(i,1)C(i,0)字段设置为2位信息的一个值(00、01、10或11,例如,11)时,C(i,1)C(i,0)字段指示配置有SCellIndex i的SCell的状态应当是休眠。
R字段:表示保留字段,并被配置为0。
可以如下表8所示定义根据第三实施例的第二MAC控制信息。
表8
C(i)字段 状态转变
00 无状态转变或保留
01 激活(激活状态)
10 停用(停用状态)
11 冬眠(休眠状态)
当使用2位时,根据第三实施例的第二MAC控制信息可以被定义为如下表9所示,以便不支持状态转变1130(De到Do)。
表9
C(i)字段 状态转变
00 无状态转变或保留
01 Ac/Do/De→Ac
10 Ac/Do→Do,De→De
11 Ac/Do/De→De
在根据第三实施例的第一MAC CE和第二MAC CE中,具有1个节或2个字节大小的MAC CE和具有4个字节或8个字节大小的MAC CE可以具有不同的逻辑信道标识符,因此可以彼此区分。此外,第一MAC CE和第二MAC CE可以具有固定的长度。因此,在这种情况下,在MAC子报头中不需要L字段。
在另一方法中,MAC子报头的L字段可以用于节省LCID的空间。也就是说,LCID 1可以指示具有1个字节大小的第一MAC CE或具有2个字节大小的第二MAC CE,并且可以通过在L字段值指示1个字节的情况下指示具有1个字节大小的第一MAC CE以及在L字段值指示2个字节的情况下指示具有2个字节大小的第二MAC CE来执行优化。LCID 2可以指示具有4个字节大小的第一MAC CE或者指示具有8个字节大小的第二MAC CE;并且可以通过在L字段值指示4字节的情况下指示具有4个字节大小的第一MAC CE以及在L字段值指示8个字节的情况下指示具有8个字节大小的第二MAC CE来执行优化。因此,在这种情况下,MAC子报头中不需要L字段。
在本公开中指示状态转变的MAC控制信息应支持图11的每个SCell的所有状态转变。可以容易地识别出本公开第三实施例中的第一MAC CE和第二MAC CE是否支持图11的所有状态转变。可以直观地基于图14A的描述和表识别出第三实施例是否支持图11的每个SCell的所有状态转变。
图15A和15B是根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的第四实施例的图示。下面参照图11描述MAC控制信息的第四实施例。MAC控制信息的第四实施例支持图11的状态转变1130(De到Do)。也就是说,即使状态转变1130(De到Do)的使用情况的频率或使用率低,也可以通过将处于停用状态的SCell切换到休眠状态来节省UE的电池电力并提前报告频率测量结果。eNB可以根据报告的频率测量结果来确定是否执行激活,因此可以使用状态转变1130。
参照图15A和图15B,第一MAC CE和第二MAC CE被定义为MAC控制信息并且支持状态转变。第一MAC CE可以停用处于休眠状态的SCell,但是不能激活SCell。此外,第二MACCE可以通过1位信息的一个值(0或1,例如,1)将处于停用状态的SCell切换到休眠状态,并通过1位信息的一个值(0或1,例如,0)持续维持处于停用状态的SCell的停用状态。
下面描述第一MAC控制信息,也就是说,第四实施例中的第一MAC CE。第一MAC CE可以被称为激活/停用MAC CE。第一MAC CE可以具有一个字节的固定大小,并且可以由LCID来识别。第一MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图15B的MAC CE1511的格式相同。MAC CE 1511包含1个八位字节。
此外,第一MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第一MACCE可以具有31个C字段和1个R字段,并且其详细格式与图15B的MAC CE 1513的格式相同。MAC CE 1513包含4个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第一MAC CE。否则,可以使用具有4个字节大小的第一MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体将忽略此字段。当C(i)字段设置为1时,C(i)字段指示配置有SCellIndex i的SCell的状态应当是激活。然而,当配置有SCellIndex i的SCell的状态是休眠状态时,MAC实体将忽略C(i)字段的值1。当C(i)字段设置为0时,C(i)字段指示配置有SCellIndex i的SCell的状态是停用。
R字段:表示保留字段,并被配置为0。
可以如下面的表10中所示定义根据第四实施例的第一MAC CE。
表10
C(i)字段 状态转变
0 Ac→De,Do→De,De→De
1 Ac→Ac,Do→Do,De→Ac
下面描述第二MAC控制信息,也就是,第四实施例中的第二MAC CE。第二MAC CE可以被称为激活/冬眠MAC CE。
第二MAC CE可以具有1个字节的固定大小,并且可以由LCID来识别。第二MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图15B的MAC CE 1521的格式相同。格式与图15B的MAC CE 1521的格式相同。MAC CE 1521包含1个八位字节。
此外,第二MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第二MACCE可以具有31个C字段和1个R字段,并且其详细格式与图15B的MAC CE 1523的格式相同。MAC CE 1523包含4个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第二MAC CE。否则,可以使用具有4个字节大小的第二MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体将忽略此字段。当C(i)字段设置为1位信息的一个值(0或1,例如,1)时,C(i)字段指示配置有SCellIndex i的SCell的状态应当是激活。然而,当配置有SCellIndex i的SCell的状态是停用状态时,C(i)字段的1位信息的一个值(0或1,例如,0)指示SCell到休眠状态的状态转变。当C(i)字段设置为1位信息的一个值(0或1,例如,0)时,C(i)字段指示配置有SCellIndex i的SCell的状态应当休眠。然而,当配置有SCellIndex i的SCell处于停用状态时,MAC实体将忽略1位信息的一个值(0或1,例如,1)。
R字段:表示保留字段,并被配置为0。
可以如下表11所示定义根据第四实施例的第二MAC控制信息。
表11
C(i)字段 状态转变
0 Ac→Do,Do→Do,De→De
1 Ac→Ac,Do→Ac,De→Do
在根据第四实施例的第一MAC CE和第二MAC CE中,具有4个字节大小的MAC CE和具有4个字节大小的MAC CE可以具有不同的LCID,因此可以彼此区分。此外,第一MAC CE和第二MAC CE可以具有固定的长度。因此,在这种情况下,在MAC子报头中不需要L字段。
在另一方法中,R字段可以用于节省LCID的空间。也就是说,LCID 1指示具有1个字节大小的第一MAC CE或第二MAC CE,并且可以通过在R字段值为0的情况下指示具有1个字节大小的第一MAC CE以及在R字段值为1的情况下指示具有1个字节大小的第二MAC CE来执行优化。LCID 2指示具有4个字节大小的第一MAC CE或第二MAC CE,并且可以通过在R字段值为0的情况下指示具有4个字节大小的第一MAC CE以及在R字段值为4的情况下指示具有4个字节大小的第二MAC CE来执行优化。因此,在这种情况下,在MAC子报头中不需要L字段。
指示本公开的状态传输的MAC控制信息应当支持图11的每个SCell的所有状态传输。下面描述第四实施例中的第一MAC CE和第二MAC CE如何支持状态转变的示例。
当如下表12所示每个SCell存在多个状态时,可以识别出通过仅将一种状态改变为另一种状态正确地设计了MAC控制信息。本公开的第四实施例中的第一MAC CE和第二MACCE支持对所有情况的数量的状态转变,如下表12所示。
表12
SCell索引 7 6 5 4 3 2 1
状态 Ac Ac Ac De De Do Do
MAC CE 1 0 1 1 0 0 1 1
状态 <u>De</u> Ac Ac De De Do Do
MAC CE 2 <u>0</u> 0 1 1 1 1 1
状态 De <u>Do</u> Ac De De Do Do
MAC CE 1 0 1 1 1 0 1 1
状态 De Do Ac <u>Ac</u> De Do Do
MAC CE 1 0 0 1 1 0 1 1
状态 De <u>De</u> Ac Ac De Do Do
MAC CE 2 1 1 1 1 1 1 0
状态 De De Ac Ac De <u>Ac</u> Do
MAC CE 2 0 1 1 1 1 <u>1</u> 0
状态 <u>Do</u> De Ac Ac De Ac Do
图16A和图16B是根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的第五实施例的图示。下面参照图11描述MAC控制信息的第五实施例。MAC控制信息的第五实施例支持图11的状态转变1130(De到Do)。也就是说,即使状态转变1130(De到Do)的使用情况的频率或使用率低,也可以通过将处于停用状态的SCell切换到休眠状态来节省UE的电池电力并提前报告频率测量结果。eNB可以根据报告的频率测量结果来确定是否执行激活,因此状态转变1130可以是有用的。
参照图16A和图16B,将第一MAC CE、第二MAC CE和第三MAC CE定义为MAC控制信息,并且支持根据第一MAC CE、第二MAC CE或第三MAC CE的状态转变。第一MAC CE不对SCell的休眠状态执行状态转变。第二MAC CE通过1位信息的一个值(0或1,例如,1)持续维持处于停用状态的SCell的停用状态。此外,第二MAC CE通过1位信息的一个值(0或1,例如,0)不执行SCell的状态转变。第三MAC CE通过1位信息的一个值(0或1,例如,1)持续维持处于激活状态的SCell的激活状态。此外,第三MAC CE通过1位信息的一个值(0或1,例如,0)不执行SCell的状态转变。
下面描述第一MAC控制信息,也就是说,第五实施例中的第一MAC CE。第一MAC CE可以被称为激活/停用MAC CE。第一MAC CE可以具有1个字节的固定大小,并且可以由LCID来识别。第一MAC CE可以具有7个C字段和1个R字段,并且其详细格式与16B的MAC CE 1611的格式相同。MAC控制信息1611包含1个八位字节。
此外,第一MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第一MACCE可以具有31个C字段和1个R字段,并且其详细格式与图16B的MAC CE 1613的格式相同。MAC CE 1613包含4个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第一MAC CE。否则,可以使用具有4个字节大小的第一MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、停用状态或休眠状态。否则,MAC实体将忽略此字段。当C(i)字段设置为1时,C(i)字段指示配置有SCellIndex i的SCell的状态应当是激活。当C(i)字段设置为0时,C(i)字段指示配置有SCellIndex i的SCell的状态是停用。然而,当配置有SCellIndexi的SCell的状态是休眠状态时,MAC实体将忽略C(i)字段。
R字段:表示保留字段,并被配置为0。
可以如下表13所示定义根据第五实施例的第一MAC CE。
表13
C(i)字段 状态转变
0 Ac→De,Do→Do,De→De
1 Ac→Ac,Do→Do,De→Ac
下面描述第二MAC控制信息,也就是说,第五实施例中的第二MAC CE。第二MAC CE可以被称为激活/冬眠MAC CE。
第二MAC CE可以具有1个字节的固定大小,并且可以由LCID来识别。第二MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图16B的MAC CE 1621的格式相同。MAC CE1621包含1个八位字节。
此外,第二MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第二MACCE可以具有31个C字段和1个R字段,并且其详细格式与图16B的MAC CE 1623的格式相同。MAC CE 1623包含4个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第二MAC CE。否则,可以使用具有4个字节大小的第二MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体将忽略此字段。当C(i)字段设置为1位信息的一个值(0或1,例如,1)时,如果配置有SCellIndex i的SCell的状态是激活状态,则C(i)字段指示到休眠状态的状态转变,如果SCell的状态为休眠状态,则C(i)字段指示到激活状态的状态转变,以及如果SCell的状态是停用状态,则C(i)字段指示到停用状态的状态转变。然而,当将配置有SCellIndex i的C(i)字段配置为1位信息的一个值(0或1,例如,0)时,C(i)字段可以指示对SCell不执行状态转变或者一个值(例如,0)可以是保留值。
R字段:表示保留字段,并被配置为0。
可以如下表14所示定义根据第五实施例的第二MAC控制信息。
表14
C(i)字段 状态转变
0 无状态转变或保留
1 Ac→Do,Do→Ac,De→De
不仅定义第一MAC控制信息和第二MAC控制信息,而且定义第三MAC控制信息。下面描述第三MAC控制信息,也就是说,第五实施例中的第三MAC CE。第三MAC CE可以被称为停用/冬眠MAC CE。
第三MAC CE可以具有1个字节的固定大小,并且可以由LCID来识别。第三MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图16B的MAC CE 1631的格式相同。MAC CE1631包含1个八位字节。
此外,第二MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第二MACCE可以具有31个C字段和1个R字段,并且其详细格式与图16B的MAC CE 1633的格式相同。MAC CE 1633包含4个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第三MAC CE。否则,可以使用具有4个字节大小的第三MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体将忽略此字段。当C(i)字段设置为1位信息的一个值(0或1,例如,1)时,如果配置有SCellIndex iSCell的状态是停用状态,则C(i)字段指示状态转变为休眠状态,如果SCell的状态是休眠状态,则C(i)字段指示状态转变到停用状态,如果SCell的状态是激活状态,则C(i)字段指示状态转变到激活状态。然而,当将配置有SCellIndex i的C(i)字段配置为1位信息的一个值(0或1,例如,0)时,C(i)字段可以指示对SCell不执行状态转变或者一个值(例如0)可以是保留值。
R字段:表示保留字段,并被配置为0。
可以如下面的表15中所示定义根据第五实施例的第三MAC控制信息。
表15
C(i)字段 状态转变
0 无状态转变或保留
1 Ac→Ac,Do→De,De→Do
在根据第五实施例的第一MAC CE、第二MAC CE和第三MAC CE中,可以通过不同的LCID来区分具有1个字节大小的MAC CE和具有4个字节大小的MAC CE。第一MAC CE、第二MACCE和第三MAC CE中的每一个可以具有固定的长度。因此,在这种情况下,在MAC子报头中不需要L字段。
在本公开中指示状态转变的MAC控制信息应当支持图11的每个SCell的所有状态转变。当使用本公开的第五实施例中的第一MAC CE、第二MAC CE和第三MAC CE时,可以容易地识别是否支持图11的所有状态转变。可以基于图16A的描述和表直观地识别出第五实施例是否支持图11的每个SCell的所有状态转变。
图17A和图17B是根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的第六实施例的图示。下面参照图11描述MAC控制信息的第六实施例。MAC控制信息的第六实施例支持图11的状态转变1130(De到Do)。也就是说,即使状态转变1130(De到Do)的使用情况的频率或使用率低,也可以通过将处于停用状态的SCell切换到休眠状态来节省UE的电池电力并提前报告频率测量结果。eNB可以根据报告的频率测量结果确定是否执行激活,因此,可以使用状态转变1130。
参照图17A和图17B,将第一MAC CE、第二MAC CE和第三MAC CE定义为MAC控制信息,并且支持根据第一MAC CE、第二MAC CE或第三MAC CE的状态转变。第一MAC CE对SCell的休眠状态不执行状态转变。第二MAC CE通过1位信息的一个值(0或1,例如,1)持续维持处于停用状态的SCell的停用状态。此外,第二MAC CE通过1位信息的一个值(0或1,例如,0)不执行SCell的状态转变。第三MAC CE通过1位信息的一个值(0或1,例如,1),持续维持处于激活状态的SCell的激活状态。此外,第三MAC CE通过1位信息的一个值(0或1,例如,0)不执行对SCell的状态转变。
下面描述第一MAC控制信息,也就是说,第六实施例中的第一MACC。第一MAC CE可以被称为激活/停用MAC CE。第一MAC CE可以具有1个字节的固定大小,并且可以由LCID来识别。第一MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图17B的MAC CE 1711的格式相同。MAC CE 1711包含1个八位字节。
此外,第一MAC CE可以具有4个字节的固定大小,并且可以由LCID来标识。第一MACCE可以具有31个C字段和1个R字段,并且其详细格式与图17B的MAC CE 1713的格式相同。MAC CE 1713包含4个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第一MAC CE。否则,可以使用具有4个字节大小的第一MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、停用状态或休眠状态。否则,MAC实体将忽略此字段。当C(i)字段设置为1时,C(i)字段指示配置有SCellIndex i的SCell的状态应当是激活。当C(i)字段设置为0时,C(i)字段指示配置有SCellIndex i的SCell的状态是停用。然而,当配置有SCellIndexi的SCell的状态是休眠状态时,MAC实体将忽略C(i)字段。
R字段:表示保留字段,并被配置为0。
可以如下表16所示定义根据第六实施例的第一MAC CE。
表16
C(i)字段 状态转变
0 Ac→De,Do→Do,De→De
1 Ac→Ac,Do→Do,De→Ac
下面描述第二MAC控制信息,也就是说,第六实施例中的第二MAC CE。第二MAC CE可以被称为冬眠(hibernation)MAC CE。
第二MAC CE可以具有1个字节的固定大小,并且可以由LCID来识别。第二MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图17B的MAC CE 1721的格式相同。MAC CE1721包含1个八位字节。
此外,第二MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第二MACCE可以具有31个C字段和1个R字段,并且其详细格式与图17B的MAC CE 1723的格式相同。MAC CE 1723包含4个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第二MAC CE。否则,可以使用具有4个字节大小的第二MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体将忽略此字段。当C(i)字段设置为1位信息的一个值(0或1,例如,1)时,如果配置有SCellIndex i的SCell是激活状态,则C(i)字段指示到休眠状态的状态转变,如果SCell的状态是休眠状态,则C(i)字段指示到停用状态的状态转变;如果SCell的状态是停用状态,则C(i)字段指示到停用状态的状态转变。然而,当将配置有SCellIndex i的C(i)字段配置为1位信息的一个值(0或1,例如,0)时,C(i)字段可以指示对SCell不执行状态转变或者一个值(例如,0)可以是保留值。
R字段:表示保留字段,并被配置为0。
可以如下表17所示定义根据第六实施例的第二MAC控制信息。
表17
C(i)字段 状态转变
0 无状态转变或保留
1 Ac→Do,Do→De,De→De
下面描述第三MAC控制信息,也就是说,第六实施例中的第三MAC CE。第三MAC CE可以被称为激活MAC CE。
第三MAC CE可以具有1个字节的固定大小,并且可以由LCID来识别。第三MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图17B的MAC CE 1731的格式相同。MAC CE1731包含1个八位字节。
此外,第二MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第二MACCE可以具有31个C字段和1个R字段,并且其详细格式与图17B的MAC CE 1733的格式相同。MAC CE 1733包含4个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第三MAC CE。否则,可以使用具有4个字节大小的第三MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体将忽略此字段。当C(i)字段设置为1位信息的一个值(0或1,例如,1)时,如果配置有SCellIndex i的SCell是停用状态,则C(i)字段指示到休眠状态的状态转变,如果SCell的状态是休眠状态,则C(i)字段指示到激活状态的状态转变,如果SCell的状态是激活状态,则C(i)字段指示到激活状态的状态转变。然而,当将配置有SCellIndex i的C(i)字段配置为1位信息的一个值(0或1,例如,0)时,C(i)字段可以指示对SCell不执行状态转变或者一个值(例如,0)可以是保留值。
R字段:表示保留字段,并被配置为0。
可以如下表18所示定义根据第六实施例的第三MAC控制信息。
表18
C(i)字段 状态转变
0 无状态转变或保留
1 Ac→Ac,Do→Ac,De→Do
在根据第六实施例的第一MAC CE、第二MAC CE和第三MAC CE中,可以通过不同的逻辑信道标识符来区分具有1个字节大小的MAC CE和具有4个字节大小的MAC CE。第一MACCE、第二MAC CE和第三MAC CE中的每一个可以具有固定的长度。因此,在这种情况下,在MAC子报头中不需要L字段。
在本公开中指示状态转变的MAC控制信息应当支持图11的每个SCell的所有状态转变。当使用本公开的第六实施例中的第一MAC CE、第二MAC CE和第三MAC CE时,可以容易地识别出是否支持图11的所有状态转变。可以基于图17A的描述和表直观地识别出第六实施例是否支持图11的每个SCell的所有状态转变。
图18A和图18B示出根据实施例的在无线通信系统中支持SCell的状态转变的MAC控制信息的第七实施例。参照图11描述MAC控制信息的第七实施例。MAC控制信息的第七实施例支持图11的状态转变1130(De到Do)。也就是说,即使状态转变1130(De到Do)的使用情况的频率或使用率低,也可以通过将处于停用状态的SCell切换到休眠状态来节省UE的电池电力并提前报告频率测量结果。eNB可以根据报告的频率测量结果来确定是否执行激活,因此状态转变1130可以是有用的。
参照图18A和图18B,将第一MAC CE、第二MAC CE和第三MAC CE定义为MAC控制信息,并且支持根据第一MAC CE、第二MAC CE或第三MAC CE的状态转变。第一MAC CE对SCell的休眠状态不执行状态转变。第二MAC CE对SCell的停用状态不执行状态转变。第三MAC CE对SCell的激活状态不执行状态转变。
下面描述第一MAC控制信息,也就是说,第七实施例中的第一MAC CE。第一MAC CE可以被称为激活/停用MAC CE。第一MAC CE可以具有1个字节的固定大小,并且可以由LCID来识别。第一MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图18B的MAC CE1811的格式相同。MAC CE 1811包含1个八位字节。
此外,第一MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第一MACCE可以具有31个C字段和1个R字段,并且其详细格式与图18B的MAC CE 1813的格式相同。MAC CE 1813包含4个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第一MAC CE。否则,可以使用具有4个字节大小的第一MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell时,配置有SCellIndex i的SCell处于激活状态、停用状态或休眠状态。否则,MAC实体忽略此字段。当C(i)字段设置为1时,C(i)字段指示配置有SCellIndex i的SCell的状态应当是激活。当C(i)字段设置为0时,C(i)字段指示配置有SCellIndex i的SCell的状态是停用。然而,当配置有SCellIndex i的SCell的状态是休眠状态时,MAC实体将忽略C(i)字段。
R字段:表示保留字段,并被配置为0。
可以如下表19所示定义根据第七实施例的第一MAC CE。
表19
C(i)字段 状态转变
0 Ac→De,Do→Do,De→De
1 Ac→Ac,Do→Do,De→Ac
下面描述第二MAC控制信息,也就是说,第七实施例中的第二MAC CE。第二MAC CE可以被称为激活/冬眠MAC CE。
第二MAC CE可以具有1个字节的固定大小,并且可以由LCID来识别。第二MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图18B的MAC CE 1821的格式相同。MAC CE1821包含1个八位字节。
此外,第二MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第二MACCE可以具有31个C字段和1个R字段,并且其详细格式与图18B的MAC CE 1823的格式相同。MAC CE 1823包含4个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第二MAC CE。否则,可以使用具有4个字节大小的第二MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC实体忽略此字段。当C(i)字段设置为1位信息的一个值(0或1,例如,1)时,如果配置有SCellIndex i的SCell是激活状态,则C(i)字段指示到激活状态的状态转变,如果SCell的状态是休眠状态,则C(i)字段指示到激活状态的状态转变,如果SCell的状态是停用状态,则C(i)字段指示到停用状态的状态转变。当C(i)字段设置为1位信息的一个值(0或1,例如0)时,如果配置有SCellIndex i的SCell是激活状态,则C(i)字段指示到休眠状态的状态转变,如果SCell的状态是休眠状态,则指示到休眠状态的状态转变,如果SCell的状态是停用状态,则指示到停用状态的状态转变。
R字段:表示保留字段,并被配置为0。
可以如下表20所示定义根据第七实施例的第二MAC控制信息。
表20
C(i)字段 状态转变
0 Ac→Do,Do→Do,De→De
1 Ac→Ac,Do→Ac,De→De
下面描述第三MAC控制信息,也就是说,第七实施例中的第三MAC CE。第三MAC CE可以被称为停用/冬眠MAC CE。
第三MAC CE可以具有1个字节的固定大小,并且可以由LCID来识别。第三MAC CE可以具有7个C字段和1个R字段,并且其详细格式与图18B的MAC CE 1831的格式相同。MAC CE1831包含1个八位字节。
此外,第三MAC CE可以具有4个字节的固定大小,并且可以由LCID来识别。第三MACCE可以具有31个C字段和1个R字段,并且其详细格式与图18B的MAC CE 1833的格式相同。MAC CE 1833包含4个八位字节。
如果配置的小区标识符(SCell索引)不超过7,则可以使用具有1个字节大小的第三MAC CE。否则,可以使用具有4个字节大小的第三MAC CE。
C(i)字段:指示如果存在配置有SCellIndex i的SCell,则配置有SCellIndex i的SCell处于激活状态、休眠状态或停用状态。否则,MAC r忽略该字段。当C(i)字段设置为1位信息的一个值(0或1,例如,1)时,如果配置有SCellIndex i的SCell是激活状态,则C(i)字段指示到激活状态的状态转变,如果SCell的状态是休眠状态,则C(i)指示到激活状态的状态转变,如果SCell的状态是停用状态,则C(i)指示到休眠状态的状态转变。当C(i)字段设置为1位信息的一个值(0或1,例如,0)时,如果配置有SCellIndex i的SCell的状态是激活状态,则C(i)字段指示到激活状态的状态转变,如果SCell的状态是休眠状态,则C(i)字段指示到停用状态的状态转变,如果SCell的状态为停用状态,则C(i)字段指示到停用状态的状态转变。
R字段:表示保留字段,并被配置为0。
可以如下表21所示定义根据第七实施例的第三MAC控制信息。
表21
C(i)字段 状态转变
0 Do→De,De→De,Ac→Ac
1 De→Do,Ac→Ac,Do→Do
在根据第七实施例的第一MAC CE、第二MAC CE和第三MAC CE中,可以通过不同的逻辑信道标识符来区分具有1个字节大小的MAC CE和具有4个字节大小的MAC CE。第一MACCE、第二MAC CE和第三MAC CE中的每一个可以具有固定的长度。因此,在这种情况下,在MAC子报头中不需要L字段。
在本公开中指示状态转变的MAC控制信息应当支持图11的每个SCell的所有状态转变。当使用本公开的第七实施例中的第一MAC CE、第二MAC CE和第三MAC CE时,可以容易地识别出是否支持图11的所有状态转变.可以基于图17A的描述和表直观地识别出第六实施例是否支持图11的每个SCell的所有状态转变。
根据实施例,eNB将频率测量配置信息发送到UE。基于频率测量配置信息来配置UE。在本公开中,eNB可以通过RRC消息(例如,RRC连接设置或RRC连接重新配置)在UE中配置RRC连接重新配置(例如,CA配置、CSI配置或探测参考信号(SRS)配置)。CSI、SRS、带宽部分(BWP)配置可以包括每个特殊小区(SpCell)/上传(UL)BWP的周期性CSI(P-CSI)、半永久性CSI(SP-CSI)或非周期性CSI(AP-CSI)配置或每个服务小区/UL BWP的P-SRS配置。SpCell可以是DC中每个小区组的Pcell,即,主小区组(MCG)的Pcell和辅小区组(SCG)的PSCell。CA配置可以包括每个SCell的DL BWP或UL BWP配置、SCell索引(SCellIndex)配置或初始配置状态(激活状态、停用状态或休眠状态)。
在下文中,描述了根据SCell的初始状态的UE的操作。
在初始状态是激活状态的服务小区中,UE可以在操作1-1之后执行操作1。在初始状态是停用状态的服务小区中,UE可以执行操作3。应用操作1-1的时间点可以是子帧n+x。子帧n可以是在其中接收到将初始状态配置为激活状态的RRC消息的子帧,并且x可以是预定整数或通过RRC消息配置的整数。操作1-1包括电力余量(power headroom,PHR)触发和SCellDeactivationTimer开始中的至少一个。操作1在每个DRX周期中包括PDCCH监视、CSI报告、SRS传输、SCellDeactivationTimer驱动、类型1CG传输、服务小区测量中的至少一个。操作3在DRX周期和sCellMeasCycle(也就是说,每个Max[DRX周期,sCellMeasCycle])中的每个更大的值中包括服务小区测量。sCellMeasCycle是用于确定SCell测量间隔的参数。
根据本公开的各种实施例,对于接收到指示服务小区的状态转变的MAC CE并且被指示处于激活状态的服务小区(SCell),UE可以在操作1-1之后执行操作1。应用操作1-1的时间点可以是子帧m+y,并且子帧m可以是接收MAC CE的子帧,并且y是预定整数或通过RRC消息配置的整数。对于本公开中接收到MAC CE并被指示为处于停用状态的服务小区(SCell),UE在子帧m+z中在操作3-1之后开始操作3。z可以是预定整数或通过RRC消息配置的整数。对于初始状态被配置为休眠状态的服务小区或者接收到MAC CE并转变为休眠状态的服务小区,UE可以连续执行操作2。操作3-1可以包括用于停止或重置SCell的定时器(SCellDeactivationTimer)、停用类型2配置准许(configured grant CG)和暂停类型2CG的操作中的至少一个。操作2可以包括CSI报告、SRS传输、每个DRX周期中的服务小区测量和测量结果报告中的至少一个。
根据指示服务小区的状态转变的本公开的各个实施例,在接收到MAC CE并被指示转变为激活状态的休眠状态服务小区中,UE在操作1-1之后执行操作1。在接收到MAC CE并被指示转变为休眠状态的激活状态服务小区中,UE在操作2-1之后执行操作2。应用操作1-1和操作2-1的时间点可以是符号k+y(例如,UE对接收的MAC CE完成HARQ反馈传输的符号)。操作2-1可以包括用于停止或重置SCell的定时器(SCellDeactivationTimer)、停用类型2CG和暂停类型2CG的操作中的至少一个。符号k可以是在其中接收到MAC CE的符号,并且y可以是预定整数或通过RRC消息配置的整数。
图19是根据实施例的在无线通信系统中的eNB 1900的框图。eNB 1900可以是图1的eNB 110,图3的gNB 310或eNB 315。术语“...单元”或以诸如“器”等结尾的单词可以表示处理至少一个功能或操作的单元,并且这可以由硬件、软件或硬件和软件的组合体现。
参照图19,eNB 1900包括无线通信单元1910、回程通信单元1920、存储单元1930和控制器1940。
无线通信单元1910执行用于通过无线信道发送和接收信号的功能。例如,通信单元1910根据系统的物理层标准执行基带信号和比特流之间的转换功能。例如,在数据传输中,无线通信单元1910通过编码和调制传输比特流来生成复数符号。在数据接收中,通信单元1910通过对基带信号进行解调和解码来恢复接收比特流。无线通信单元1910将基带信号上转换为射频(RF)带信号并通过天线发送,并且将通过天线接收的RF带信号下转换为基带信号。
为此,无线通信单元1910可以包括发送滤波器、接收滤波器、放大器、混频器、振荡器、数模转换器(DAC)、模数转换器(ADC)等。此外,无线通信单元1910可以包括多个发送/接收路径。另外,无线通信单元1910可以包括由多个天线元件组成的至少一个天线阵列。在硬件方面,无线通信单元1910可以包括数字单元和模拟单元,并且根据操作功率、操作频率等,模拟单元可以包括多个子单元。
无线通信单元1910可以发送和接收信号。例如,无线通信单元1910可以发送同步信号、参考信号、系统信息、消息、控制信息或数据。无线通信单元1910可以执行波束成形。无线通信单元1910可以将波束成形加权值应用于信号,以根据控制器1940的设置将方向性分配给要发送和接收的信号。
如上所述,无线通信单元1910发送和接收信号。因此,无线通信单元1910中的部分或全部可以被称为“发送器”、“接收器”或“收发器”。另外,在以下描述中描述的通过无线信道执行的发送和接收可以理解为指示上述处理是由通信单元1910执行的。
回程通信单元1920提供用于与网络内的其他节点执行通信的接口。也就是说,回程通信单元1920将从基站发送到另一节点(例如,另一接入节点、另一基站或核心网络)的比特流转换为物理信号,并将从另一节点接收的物理信号转换成比特流。
存储单元1930存储数据,诸如用于操作基站的基本程序、应用、配置信息等。例如,存储单元1930可以存储关于分配给被访问UE的承载的信息和从被访问UE报告的测量结果。例如,存储单元1930可以存储信息,该信息是用于确定是提供还是停止到UE的多个连接的参考。存储单元1930可以被配置为易失性存储器、非易失性存储器或易失性存储器和非易失性存储器的组合。此外,存储单元1930响应于来自控制器1940的请求而提供存储的数据。
控制器1940控制eNB 1900的整体操作。例如,控制器1940通过无线通信单元1910或回程通信单元1920发送和接收信号。此外,控制器1940将数据记录在存储单元1930中并读取记录的数据。控制器1940可以执行通信标准所需的协议栈(例如,图2或图4所示)的功能。为此,控制器1940可以包括至少一个处理器。根据实施例,控制器1940可以控制eNB1900执行根据以下描述的各种实施例的操作。
图20示出根据本公开的实施例的无线通信系统中的UE 2000的配置的示例。UE2000可以被理解为图1的UE 135或图3的UE 315的配置。术语“...单元”或以诸如“器”等结尾的单词可以表示处理至少一个功能或操作的单元,并且这可以由硬件、软件或硬件和软件的组合体现。参照图20,UE2000包括通信单元2010、存储单元2020和控制器2030。
通信单元2010执行用于通过无线信道发送/接收信号的功能。例如,通信单元2010根据系统的物理层标准执行基带信号和比特流之间的转换功能。例如,在数据传输中,通信单元2010通过对传输比特流进行编码和调制来生成复数符号。在数据接收中,通信单元2010通过对基带信号进行解调和解码来恢复接收比特流。另外,通信单元2010将基带信号上转换为RF带信号并通过天线发送,并且将通过天线接收的RF带信号下转换为基带信号。例如,通信单元2010可以包括发送滤波器、接收滤波器、放大器、混频器、振荡器、DAC、ADC等。
此外,通信单元2010可以包括多个发送/接收路径。另外,通信单元2010可以包括天线单元。通信单元2010可以包括至少一个由多个天线元件组成的天线阵列。在硬件方面,通信单元2010可以包括数字电路和模拟电路(例如,RFIC)。数字电路和模拟电路可以被实现为一个封装。通信单元2010可以包括多个RF链。通信单元2010可以执行波束成形。通信单元2010可以将波束成形加权值应用于信号,以根据控制器2030的设置将方向性分配给要发送和接收的信号。
通信单元2010可以发送和接收信号。通信单元2010可以接收下行链路信号。下行链路信号可以包括同步信号(SS)、参考信号(RS)(例如,CRS、解调(DM)-RS)、系统信息(例如,主信息块(MIB)、SIB、剩余系统(RMSI)和其他系统信息(OSI))、配置消息、控制信息或下行链路数据。通信单元2010可以发送上行链路信号。上行链路信号可以包括随机接入相关信号(例如,RAP(或消息1(Msg1)、消息3(Msg3))或参考信号(例如,SRS或DM-RS)。通信单元2010可以包括不同的通信模块以处理不同频带中的信号。另外,通信单元2010可以包括用于支持多种不同的无线电接入技术的多个通信模块。例如,不同的无线电接入技术可以包括蓝牙低功耗(BLE)、无线保真(Wi-Fi)、Wi-Fi千兆字节(WiGig)和蜂窝网络(例如LTE,新无线电(NR))。此外,不同的频带可以包括超高频(SHF)(例如2.5GHz和5GHz)频带和毫米(mm)波(例如,38GHz和60GHz)频带。通信单元2010可以在用于不同频带(例如,许可辅助访问(LAA))的非许可频带和民用宽带无线电服务(CBRS)(例如3.5GHz)中使用相同类型的RAT。
如上所述,通信单元2010发送和接收信号。因此,通信单元2010的部分或全部可以被称为发送器、接收器或收发器。另外,在以下描述中描述的通过无线信道执行的发送和接收可以理解为指示上述处理由通信单元2010执行。
存储单元2020可以存储数据,诸如用于操作终端的基本程序、应用、配置信息等。存储单元2020可以被配置为易失性存储器、非易失性存储器或易失性存储器和非易失性存储器的组合。此外,存储单元2020响应于来自控制器2030的请求而提供存储的数据。
控制器2030控制UE 2000的整体操作。控制器2030可以包括至少一个处理器。例如,控制器330可以包括执行用于通信的控制的通信处理器(CP)以及控制诸如应用的高层的应用处理器(AP)。例如,控制器2030通过通信单元2010发送和接收信号。此外,控制器2030将数据记录在存储单元2020中并读取数据。控制器2030可以执行通信标准所需的协议栈的功能(例如,图2或图4所示)。为此,控制器2030可以包括至少一个处理器或微处理器,或者可以扮演处理器的一部分。通信单元2010和控制器2030的一部分可以被称为CP。控制器2030可以包括用于执行通信的各种模块。
控制器2030内的每个功能和操作是存储在存储单元2020中的指令或代码集合,并且可以对应于至少临时驻留在控制器2030或存储指令/代码的存储空间中的指令/代码、控制器2030中包括的电路中的一部分或用于执行控制器2030的功能的模块。根据各种实施例,控制器2030可以控制UE 2000执行根据以下描述的各种实施例的操作。
图20中所示的配置仅是UE 2000的示例,并且UE 2000不限于此。也就是说,根据各种实施例,可以添加,删除或改变一些元件。
在本公开中,尽管术语“大于或等于”和“小于或等于”用于确定是否满足特定条件,但是这仅是示例,并不排除术语“大于(或大于或等于)”或“小于(或等于或小于)”。例如,可以将条件“大于或等于”替换为条件“大于”、将条件“小于或等于”替换为条件“小于”、将条件“大于”替换为“大于或等于”、将条件“小于”可以替换为“等于或小于”、可以将条件“大于或等于且小于”替换为“大于且等于或小于”,以及可以将条件“大于且等于或小于”替换为“大于或等于且小于”。
根据权利要求和/或本公开中陈述的实施例的方法可以以硬件、软件或硬件和软件的组合来实现。
当通过软件实现方法时,可以提供用于存储一个或多个程序(软件模块)的非暂时性计算机可读存储介质。可以将存储在非暂时性计算机可读存储介质中的一个或多个程序配置为由电子设备内的一个或多个处理器执行。至少一个程序可以包括使电子设备执行根据如所附权利要求书和/或本文所公开的本公开的各种实施例的方法的指令。
程序(软件模块或软件)可以存储在非易失性存储器中,包括随机存取存储器和闪存、只读存储器(ROM)、电可擦除可编程ROM(EEPROM)、磁盘存储设备、光盘ROM(CD-ROM)、数字多功能光盘(DVD)或其他类型的光学存储设备或磁带。可选地,部分或全部的任何组合可以形成存储程序的存储器。此外,在电子设备中可以包括多个这样的存储器。
此外,程序可以存储在通过通信网络可访问的可附接存储设备中,诸如互联网、内联网、局域网(LAN)、广域网(WAN)、存储区域网(SAN)、及其组合。这样的存储设备可以经由外部端口访问电子设备。此外,通信网络上单独的存储设备可以访问便携式电子设备。
在本公开的上述详细实施例中,根据提出的详细实施例,本公开中包括的组件以单数或复数表示。然而,为了便于描述,选择单数形式或复数形式以适合于所呈现的情况,并且本公开的各种实施例不限于单个元件或其多个元件。此外,在说明书中表达的多个元件可以被配置成单个元件,或者在说明书中的单个元件可以被配置成多个元件。
尽管已经参照本公开的某些实施例示出和描述了本公开,但是本领域技术人员将理解,在不脱离本公开的范围的情况下,可以在形式和细节上进行各种改变。因此,本公开的范围不应被限定为限于实施例,而是由所附权利要求及其等同物限定。

Claims (15)

1.一种无线通信系统中用户设备(UE)的方法,所述方法包括:
从基站接收与辅小区(SCell)相关联的冬眠媒体访问控制(MAC)控制元素(CE),其中,冬眠MAC CE包括与SCell相关联的值,所述值被设置为以下各项之一:
第一值,指示SCell的小区状态为休眠状态;和
第二值,在SCell处于休眠状态的情况下指示SCell的小区状态转变为激活状态;
基于冬眠MAC CE,识别SCell的小区状态是否转变为休眠状态;以及
在SCell的小区状态为休眠状态的情况下,执行信道质量指示符(CQI)或无线电资源管理(RRM)测量的报告,并且不执行对SCell的物理下行链路控制信道(PDCCH)监视。
2.根据权利要求1所述的方法,还包括:
从基站接收激活/停用MAC CE,其中,激活/停用MAC CE包括与SCell相关联的值,所述值被设置为以下各项之一:
第一值,在SCell的小区状态是停用状态的情况下指示SCell的小区状态为激活状态;和
第二值,指示SCell的小区状态为停用状态;以及
基于激活/停用MAC CE,识别SCell的小区状态是否转变为停用状态。
3.根据权利要求1所述的方法,还包括:
基于包括MAC CE的控制信息,识别用于SCell的两个位;以及
基于所述两个位,将SCell的小区状态识别为四个状态之一,
其中,所述四个状态包括:保留、激活状态、休眠状态和停用状态。
4.根据权利要求1所述的方法,还包括:
当在SCell处于激活状态的情况下第一定时器期满时,通过使SCell冬眠,执行SCell的小区状态从激活状态到休眠状态的第一转变;
当第二定时器期满时,通过停用SCell,执行SCell的小区状态从休眠状态到停用状态的第二转变。
5.根据权利要求4所述的方法,还包括:
通过使用无线电资源控制(RRC)信令从基站接收与SCell相关联的配置信息,所述配置信息包括:
为从激活状态到休眠状态的第一转变定义的第一定时器的值;以及
为从休眠状态到停用状态的第二转变定义的第二定时器的值。
6.根据权利要求1所述的方法,
其中,CQI被周期性地报告。
7.根据权利要求1所述的方法,还包括:
通过使用无线电资源控制(RRC)信令从基站接收与SCell相关联的配置信息,所述配置信息包括用于指示SCell状态的信息;
基于该信息确定SCell的小区状态;
其中,所确定的SCell的小区状态为激活状态、休眠状态和停用状态中的一个,以及
其中,接收冬眠MAC CE包括:
识别指示冬眠的逻辑信道标识符(LCID);以及
基于LCID识别冬眠MAC CE。
8.一种无线通信系统中基站的方法,所述方法包括:
向用户设备(UE)发送冬眠媒体访问控制(MAC)控制元素(CE),其中,冬眠MAC CE包括与SCell相关联的值,所述值被设置为以下各项之一:
第一值,指示SCell的小区状态为休眠状态;和
第二值,在SCell处于休眠状态的情况下指示SCell的小区状态为激活状态;以及
其中,冬眠MAC CE被用于识别SCell的小区状态是否转变为休眠状态,以及
其中,在SCell的小区状态为休眠状态的情况下,信道质量指示符的报告(CQI)或无线电资源管理(RRM)测量的报告被执行,并且对SCell的物理下行链路控制信道(PDCCH)监视不被执行。
9.根据权利要求8所述的方法,还包括:
向UE发送激活/停用MAC CE,其中,激活/停用MAC CE包括与SCell相关联的值,所述值被设置为以下各项之一:
第一值,在SCell处于停用状态的情况下指示SCell的小区状态为激活状态;
第二值,指示SCell的小区状态为停用状态,
其中,激活/停用MAC CE被用于识别SCell的小区状态是否转变为停用状态。
10.根据权利要求8所述的方法,还包括:
向UE发送包括MAC CE的控制信息;以及
其中,控制信息包括用于SCell的两位,
其中,所述两位指示SCell的小区状态为四种状态之一,
其中,所述四种状态包括:保留、激活状态、休眠状态和停用状态。
11.根据权利要求8所述的方法,还包括:
通过使用无线电资源控制(RRC)信令向UE发送与SCell相关联的配置信息,所述配置信息包括:
为从激活状态到休眠状态的第一转变定义的第一定时器的值;以及
为从休眠状态到停用状态的第二转变定义的第二定时器的值。
12.根据权利要求8所述的方法,还包括:CQI被周期性地报告。
13.根据权利要求8所述的方法,还包括:
通过使用无线电资源控制(RRC)信令向UE发送与SCell相关联的配置信息,所述配置信息包括用于指示SCell状态的信息,
其中,SCell状态为激活状态、休眠状态和停用状态中的一个,以及
其中,冬眠MAC CE由指示冬眠的逻辑信道标识符(LCID)识别。
14.一种无线通信系统中的用户设备(UE),所述UE包括:
至少一个收发器;以及
至少一个处理器,可操作地耦合到至少一个收发器,并且被配置为实现权利要求1至7中的一项。
15.一种无线通信系统中的基站,所述基站包括:
至少一个收发器;以及
至少一个处理器,可操作地耦合到至少一个收发器,并且被配置为实现权利要求8至13中的一项。
CN201980022709.2A 2018-03-28 2019-03-28 用于无线通信系统中的测量的装置和方法 Active CN111937428B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20180035954 2018-03-28
KR10-2018-0035954 2018-03-28
KR10-2018-0049250 2018-04-27
KR1020180049250A KR102433768B1 (ko) 2018-03-28 2018-04-27 무선 통신 시스템에서 측정을 위한 장치 및 방법
PCT/KR2019/003672 WO2019190245A1 (en) 2018-03-28 2019-03-28 Apparatus and method for measurement in wireless communication system

Publications (2)

Publication Number Publication Date
CN111937428A true CN111937428A (zh) 2020-11-13
CN111937428B CN111937428B (zh) 2024-04-02

Family

ID=68209041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980022709.2A Active CN111937428B (zh) 2018-03-28 2019-03-28 用于无线通信系统中的测量的装置和方法

Country Status (3)

Country Link
EP (1) EP3777302B1 (zh)
KR (1) KR102433768B1 (zh)
CN (1) CN111937428B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737654A (zh) * 2020-12-29 2021-04-30 中国石油大学(华东) 一种基于稀疏码多址接入的端信息扩展序列多用户并发通信方法
WO2022121641A1 (zh) * 2020-12-09 2022-06-16 展讯通信(上海)有限公司 早期测量方法及装置、存储介质、终端、基站
WO2023065212A1 (zh) * 2021-10-21 2023-04-27 华为技术有限公司 一种小区测量方法、装置和系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021000890A (es) * 2018-08-10 2021-03-31 Fg innovation co ltd Metodo y aparato para la transicion a estado de control de recursos de radio (rrc).
WO2024069427A1 (en) * 2022-09-26 2024-04-04 Lenovo (Singapore) Pte. Ltd. Measuring for cell reselection based on a cell state

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150215929A1 (en) * 2014-01-30 2015-07-30 Qualcomm Incorporated Cell on-off procedure for dual connectivity
CN107211015A (zh) * 2015-01-16 2017-09-26 三星电子株式会社 无线通信系统中的控制信息传输方法和装置
US20180077643A1 (en) * 2016-09-10 2018-03-15 Ofinno Technologies, Llc Deactivation timer management in a wireless device and wireless network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091778B1 (en) 2014-01-24 2018-11-28 Huawei Technologies Co., Ltd. Measurement in unlicensed spectrum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150215929A1 (en) * 2014-01-30 2015-07-30 Qualcomm Incorporated Cell on-off procedure for dual connectivity
CN107211015A (zh) * 2015-01-16 2017-09-26 三星电子株式会社 无线通信系统中的控制信息传输方法和装置
US20180077643A1 (en) * 2016-09-10 2018-03-15 Ofinno Technologies, Llc Deactivation timer management in a wireless device and wireless network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
""R2-1801396_Draft CR to 38.321 on SCell activation_deactivation in NR CA"", 3GPP TSG_RAN\\WG2_RL2 *
VIVO: "R2-1802002 "MAC CE for the new SCell state"", 3GPP TSG_RAN\\WG2_RL2, no. 2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022121641A1 (zh) * 2020-12-09 2022-06-16 展讯通信(上海)有限公司 早期测量方法及装置、存储介质、终端、基站
CN112737654A (zh) * 2020-12-29 2021-04-30 中国石油大学(华东) 一种基于稀疏码多址接入的端信息扩展序列多用户并发通信方法
CN112737654B (zh) * 2020-12-29 2022-04-01 中国石油大学(华东) 一种基于稀疏码多址接入的端信息扩展序列多用户并发通信方法
WO2023065212A1 (zh) * 2021-10-21 2023-04-27 华为技术有限公司 一种小区测量方法、装置和系统

Also Published As

Publication number Publication date
CN111937428B (zh) 2024-04-02
KR102433768B1 (ko) 2022-08-19
KR20190113472A (ko) 2019-10-08
EP3777302A4 (en) 2021-05-26
EP3777302A1 (en) 2021-02-17
EP3777302B1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
US11963030B2 (en) Apparatus and method for measurement in wireless communication system
US11497079B2 (en) Method and apparatus for performing discontinuous reception in wireless communication system
US11368867B2 (en) Method and apparatus for communication in next generation mobile communication system
CN111937428B (zh) 用于无线通信系统中的测量的装置和方法
KR102525923B1 (ko) 무선 통신 시스템에서 부분적인 주파수 대역을 제어하는 방법 및 장치
KR20190113293A (ko) 차세대 무선통신 시스템에서 비연속수신모드가 적용시 채널상태보고를 수행하는 방법 및 장치
KR20220017735A (ko) 차세대 이동 통신 시스템이 지원하는 이중 접속 기술에서 복수 개의 scg 설정을 지원하는 방법 및 장치
KR20210101985A (ko) 차세대 이동 통신 시스템에서 휴면 부분 대역폭을 관리하는 방법 및 장치
US20220225453A1 (en) Method and apparatus for performing dual connectivity in wireless communication system
US20220279427A1 (en) Method and device for measurement in wireless communication system
KR20220021307A (ko) 차세대 이동 통신 시스템에서 현재 활성화되어 있는 부분 대역폭과 부분 대역폭 설정 정보를 고려한 SCell 활성화 또는 재활성화 방법 및 장치
KR20210100479A (ko) 이동 통신 시스템에서 대역폭 설정 방법 및 장치
KR20210129559A (ko) 차세대 이동 통신 시스템에서 휴면 부분 대역폭을 고려한 phr 트리거링 방법과 phr 구성 방법 및 장치
KR20200094046A (ko) 차세대 이동 통신 시스템에서 캐리어 집적 기술을 향상시키는 방법 및 장치
KR20200094059A (ko) 차세대 이동 통신 시스템에서 전력 소모 절감을 위한 링크 별 활성화 및 비활성화 방법 및 장치
KR102670815B1 (ko) 무선 이동 통신 시스템에서 기기내 공존을 위한 방법 및 장치
KR102507107B1 (ko) 무선 이동 통신 시스템에서 기기내 공존을 위한 방법 및 장치
KR102619369B1 (ko) 무선 이동 통신 시스템에서 단말이 페이징 메시지를 처리하는 방법 및 장치
KR102628660B1 (ko) 무선 이동 통신 시스템에서 분산 유닛이 페이징 메시지를 처리하는 방법 및 장치
KR102628661B1 (ko) 무선 이동 통신 시스템에서 기지국이 페이징 메시지를 처리하는 방법 및 장치
KR20220008697A (ko) 무선 통신 시스템에서 셀 그룹의 활성화를 제어하는 방법 및 장치
KR20230053471A (ko) 차세대 이동 통신 시스템에서 랜덤 액세스 절차 없이 셀 그룹을 활성화시키는 방법 및 장치
KR20230162268A (ko) 무선 이동 통신 시스템에서 기기내 공존을 위한 방법 및 장치
KR20230162263A (ko) 무선 이동 통신 시스템에서 기기내 공존을 위한 방법 및 장치
KR20230162269A (ko) 무선 이동 통신 시스템에서 기기내 공존을 위한 방법 및 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant