CN111936814A - 热交换器和用于制造这种热交换器的方法 - Google Patents

热交换器和用于制造这种热交换器的方法 Download PDF

Info

Publication number
CN111936814A
CN111936814A CN201980023105.XA CN201980023105A CN111936814A CN 111936814 A CN111936814 A CN 111936814A CN 201980023105 A CN201980023105 A CN 201980023105A CN 111936814 A CN111936814 A CN 111936814A
Authority
CN
China
Prior art keywords
layer
channel
axis
along
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980023105.XA
Other languages
English (en)
Other versions
CN111936814B (zh
Inventor
帕特里克·特勒
埃米尔·柯蒂耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inetyx
Original Assignee
Inetyx
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inetyx filed Critical Inetyx
Publication of CN111936814A publication Critical patent/CN111936814A/zh
Application granted granted Critical
Publication of CN111936814B publication Critical patent/CN111936814B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/0026Welding of thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/34Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling
    • F28F2270/02Thermal insulation; Thermal decoupling by using blind conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/067Fastening; Joining by welding by laser welding

Abstract

该热交换器(100)包括沿着第一轴线(X‑X)纵向延伸的流体循环通道(C)和多个平坦的且沿着第二轴线(Z‑Z)彼此叠置的层(L)。为了改善该交换器的性能,各层由金属条(B)组成,使得同一层的条在相关层的平面中都沿垂直于第二轴线的方向纵向延伸并且彼此相邻,而不必接触。另外,各个通道由第一层、第二层以及第三层共同限定,第二层沿着第二轴线直接插入第一层与第三层之间,使得各个通道由第一层的一个面、第三层的一个面以及第二层的边缘限定,这些边缘平行于第一轴线并且横向于该第二层的平面延伸,这些边缘由该第二层的条形成,这些条在熔合区域中熔焊到第一层和第三层,这些熔合区域沿着通道的整个长度连续延伸,并且沿着第三轴线(Y‑Y)位于通道的任一侧上。

Description

热交换器和用于制造这种热交换器的方法
【技术领域】
本发明涉及一种热交换器。本发明还涉及一种用于制造这种热交换器的方法。
【背景技术】
本发明涉及同流换热器类型的热交换器和回热器类型的热交换器两者。同流换热器类型的热交换器的主要功能是允许通过交换器的壁在通过交换器的第一流体与第二流体之间传递热能,而在两种流体之间没有任何混合。在这个背景下实施的两种流体可以具有不同的物理和化学特性。回热器类型的热交换器的主要功能一方面是在其壁中存储由通过该热交换器的流体提供的热能,另一方面是接下来将已存储在其壁中的热能返回到通过交换器的流体。
热交换器的性能,无论是同流换热器还是回热器,都直接与它们的流体循环通道的几何形状以及这些交换器的组成材料的性质有关系。通常,热交换器的特征在于它们的交换表面与它们的交换体积之间的比率。例如,对于具有钢板和翅片的交换器,该比率通常为约2000m2/m3,该交换器的板通常具有包括在0.5至1mm之间的厚度,而其翅片通常具有包括在0.15至0.75mm之间的厚度。
US2004/099712、US2004/098854以及DE102007048206提出了具有多层结构的交换器,这些交换器的流体循环通道由沉积并固定在板上的金属条界定。板被设置为足够“宽”,以将“细”条定位在板上,这形成各个通道的侧向边缘,并且板与这些条一起形成子组件,该子组件使得可以通过与相同类型的其它子组件堆叠来获得功能多层结构,只要子组件彼此的组装在有预防措施的情况下进行(特别是通过减弱或加强结构以防止其在该组装期间变形)即可。
这些各种交换器,更一般地为市场上可买到的热交换器,通常具有这样的构造,该构造的缺点在于当流体的通过截面的流速降低时,它们的压头损失增加。这些压头损失还与交换器壁的表面状态有关系,通过这些壁进行热交换并且流体紧靠这些壁流动。
【发明内容】
本发明的目的是提出一种具有改进的性能水平的新热交换器。
为此,本发明涉及一种如权利要求1所限定的热交换器。
本发明的基本思想是通过叠置的层来界定流体在其中循环的通道,这些叠置的层均由金属条组成并且通过熔合而彼此焊接。特别地,各个通道由两个层的彼此相对的面界定,该两个层由界定通道的剩余部分的单个插入层彼此分开:换言之,在垂直于通道纵轴的截面中,通道的横截面都由两个相对的直线边和两个另外的相对边组成,两个相对的直线边分别由两个上述单独的层形成,两个另外的相对边分别由上述插入层的条的边界形成。实际上,该截面通常可以是矩形的。由此,应当理解,通道的横截面面积可以具有低值,该值直接与上述插入层的厚度以及该插入层的条的上述边界之间的间隔有关系,而通道可以在非常大的纵向宽阔区域上延伸:于是对于这种通道,交换表面(即通道壁的面积)与交换体积(即通道的体积)的比率可以非常高,通常大于10000m2/m3。由此,这些通道可以被描述为微通道,并且本发明的热交换器由此可以被描述为微交换器。作为示例,各通道的高度,换言之前述插入层的厚度,可以小于或等于0.1mm,和/或各个通道的宽度,换言之前述插入层的条的前述边界之间的间隔,可以小于或等于1mm。这就是说,特别是出于生产率的原因,本发明不排除各个通道的高度和/或宽度可以更大,例如分别等于0.5mm和5mm,甚至更大,这使用足够厚的金属条来进行,只要合适的焊接功率,特别是合适的激光功率可用以能够通过如本发明所述的熔合来焊接层即可。
由此,根据本发明的交换器的通道壁与在这些通道中循环的流体之间的交换被最大化,同时限制交换体积,以便不影响其中集成有交换器的装置的热力学性能水平,该装置诸如为斯特林马达,当交换体积增加时,该装置的功率降低,该交换体积也称为“死区”,因为它对应于在各个操作时刻存在于通道中的流体的量。
此外,使用通过三个叠置层的组来界定根据本发明的热交换器的各个通道的金属条层,使得可以控制通道壁的表面状态,特别是界定各个通道的两个面的表面状态,该两个面由通过前述插入层分开的两个层形成。特别地,表面粗糙度Ra可以小于或等于0.8μm,甚至小于或等于0.3μm。这样,限制了在通道中循环的流体的压头损失,并且减小了流体紧靠通道壁的边界层厚度,这增加了热交换。
此外,本发明提供了:每组三个叠置层界定各个通道的热交换器的叠置层,在各个通道的任一侧上并且全部沿着该通道焊接到彼此。由此,使各个通道可靠地紧密。另外,这些焊接通过将层直接彼此熔合来进行,这相当于说这些焊接是在没有添加金属的情况下进行的:这保证了各个通道具有高的耐压性且通过冶金连续性控制热导率。
权利要求2至5中指定了根据本发明的交换器的另外有利特征。
根据本发明的热交换器可以设计为同流换热器,同时允许通过组成该交换器的层在单独通过交换器的两种流体之间进行热交换。为此,本发明提供了:这种同流换热器是根据权利要求6的。
由此,本发明使得由金属条层组成的交换器的主体可以具有非常高的热导率,例如当层的条由铜或诸如CuZn2的铜基合金制成时大约为300W/m.°K:这种高热导率值降低了通过交换器的两种流体之间的温差,因此提高了同流换热器的效率。当由于交换器的层之间的熔焊产生的冶金连续性而为整个交换器保留该热导率值时,该效果甚至更加显著。此外,根据本发明的同流换热器的分层结构使得可以限制分离第一通道和第二通道的材料厚度,这有助于两种流体之间的热交换,记住:壁的热阻与壁的厚度成比例。
权利要求7和8中指定了根据本发明的同流交换器的另外有利特征。
本发明还涉及一种用于制造如上所述的同流换热器的方法,该方法在权利要求9中限定。
此外,根据本发明的热交换器可以被设计为回热器,该回热器允许流体与交换器的壁之间的两级热交换:在第一阶段,流体在通道内部循环,使得从流体朝向壁进行热交换,并且将热能存储在其中;在流体在交换器外部经历了变换,特别是温度、压力或相变类型的变换之后,流体第二次在交换器中沿相反方向循环,使得交换器的壁将热能的全部或部分返回到在第一阶段已经存储在那里的流体。为此,本发明提供了:这种回热器是根据权利要求10的。
本发明使得可以由于在各层中交替条而在回热器内获得各向异性的热导率,这些条的相应金属具有彼此不同的热导率,这种条的交替平行于通道中的流体的流动方向设置,交换器的层每组三个叠置层地界定这些通道。传导条和隔热条在各层中的这种交替使得交换器的纵向热导率,即平行于各层的条的交替的方向的热导率可以最小,并且特别地相对地,使得交换器的横向热导率,即垂直于各层的条的交替方向的热导率,可以最大。通过限制根据本发明的回热器的纵向热导率,特别是与仅由单一金属,该单一金属具有在用于本发明的回热器的两种金属的相应热导率之间的中间热导率,组成的交换器相比,在交换器的通道出现在其上的两相对侧之间的交换器层中减少由于传导产生的热能损失:由于在使用期间,回热器与诸如热和冷同流换热器的热源和冷源相关联,纵向热导率的最小化使得可以限制通过回热器发生在这些热源与冷源之间的热泄漏,该热源和冷源分别设置在流体经由交换器的通道在其间循环的通道的相对端部处;特别地,通过在交换器的层中交替隔热条和传导条,通过创建接近从冷源的冷温度到热源的热温度的温度的线性演变的温度稳定期,最大化了热源与和冷源之间的能量存储,同时最小化回热器层中的传导损失。通过增加横向热导率,特别是与仅由单一金属,该单一金属具有在用于本发明的回热器的两种金属的相应热导率之间的中间热导率,组成的交换器相比,关于其热导率和其热容量同时提高了回热器的热扩散,即回热器与其环境交换热能的能力,以及称为扩散率的交换动态,即交换器将温度信号从一点传输到另一点的能力,特别是与仅由单一金属,该单一金属具有在用于本发明的回热器的两种金属的相应热导率之间的中间热导率,组成的交换器相比。
权利要求11和12中指定了根据本发明的回热器的另外有利特征。
本发明还涉及一种用于制造如上所述的回热器的方法,该方法在权利要求13中限定。
权利要求14中限定了该方法的一个附加的有利特征。
【附图说明】
本发明将在阅读以下描述时更佳地理解,该以下描述仅被提供为示例,并且参见附图来进行,附图中:
图1是根据本发明的热交换器的第一实施例,即同流换热器的立视图;
图2是图1的交换器的一部分(图1中的方框II)的立体图;
图3是图2的平面III中的局部剖视图;
图4是例示了用于制造图1的交换器的方法的第一步骤的立体图;
图5至图8是类似于图4的视图,分别例示了制造方法的连续步骤;
图9是沿着图8的平面IX的截面,例示了在图8所例示的步骤之后实施的制造方法的步骤;
图10是类似于图9的视图,例示了在图9所例示的步骤之后的制造方法的另一步骤;
图11是根据本发明的热交换器的第二实施例,即回热器的立视图;
图12是图11的交换器的一部分,图11中的方框XII的立体图;
图13是图12的平面XIII中的局部剖视图;
图14是例示了用于制造图11的交换器的方法的第一步骤的立体图;
图15是类似于图14的视图,例示了图14所例示步骤的变型实施例;以及
图16至图20是类似于图14的视图,分别例示了制造方法的连续步骤。
【具体实施方式】
图1至图3示出了热交换器100。该交换器100是同流换热器,其允许通过交换器的主体101在通过主体101的第一流体与第二流体之间传递热能,而在第一流体与第二流体之间没有任何混合。
如下文概述,主体101由金属制成,并且具有将参考正交坐标系描述的三维形状,该正交坐标系具有分别标记为X-X、Y-Y和Z-Z的轴线。
交换器100包括用于第一流体循环的通道C和用于第二流体循环的通道C’两者。如下文详细描述的,通道C和C'由交换器的主体101界定,沿着轴线X-X彼此平行地纵向延伸,这些通道C和C’中的每一个沿着轴线X-X彼此相对地将通道的相应端彼此连接。在使用期间,即当交换器100被供应有第一流体和第二流体以便在这两种流体之间进行热交换时,第一流体在通道C中的每一个的相对轴向端之间在这些通道C中自由循环,而第二流体在通道C'中的每一个的相对轴向端之间在这些通道C'中自由循环。
在图1至图3所考虑的示例性实施例中,交换器100的通道C全部具有相同的横截面,即在垂直于其轴线X-X的平面中的截面,该横截面不同于通道C’的相同横截面。更具体地,在这里考虑的示例中,通道C’的横截面大于通道C的横截面:实际上,出于稍后将关注谁的原因,通道C和C’在交换器100的主体101内沿着轴线Z-Z对齐并且相对于彼此布置,以便形成一模式,该模式将通道C’中的一个和沿着轴线Z-Z布置在与模式的通道C’相同的水平处的若干通道C相关联,模式的通道C或者全部布置在模式的通道C’的沿着轴线Y-Y的相同轴向侧上,或者在模式的通道C’的沿着轴线Y-Y在两侧上特别是对半分布,与附图所考虑的示例中相同。上述模式在交换器100内都可以沿轴线Y-Y方向和轴线Z-Z方向重复几次:在图1所示的示例中,所考虑的模式将通道C’中的一个与一百一十个通道C相关联,其中五十五个通道C位于所考虑的通道C’的沿着轴线Y-Y的一侧上,而另外五十五个通道C位于所考虑的通道C’的沿着轴线Y-Y的另一轴向侧上,该模式重复至少九次,即沿着轴线Z-Z至少三次并且沿着轴线Y-Y至少三次。
作为图1至图3所示的适合于将一百一十个通道C和一个通道C’相关联的模式的非限制性示例,前述第一流体是气态氦,以大约25巴的平均压力在通道C中循环,而前述第二流体是传热油,以大约一巴的平均压力和大约600°K的温度在通道C’中循环,第二流体的温度在其循环通过主体101期间降低,以便将热功率转让给第一流体。
现在回到交换器100的主体101的描述,图2示出了该主体101由多个平坦的层L组成,各个层在垂直于轴线Z-Z的几何平面中延伸,并且多个层L沿着轴线Z-Z彼此叠置。各个层L由金属条B组成:同一层L的条B都沿着垂直于轴线Z-Z的方向纵向延伸,并且彼此相邻,而不必在所考虑的层的平面中接触,各个层L的每个条B被设置为占据对应层沿着轴线Z-Z的整个厚度。所有的条B由金属制成,特别是铜或铜基合金,特别是CuZn2。此外,如下文详细描述的,主体101的层L彼此固定,同时彼此熔焊:更具体地,主体101的任何层L和直接叠置在其上的层L在没有添加金属的情况下通过条的仅部分熔合而彼此熔焊,同时注意确保条的尚未被熔焊的相应部分保持其边缘几何形状并且沿着轴线Z-Z保持彼此抵靠,以便保持层之间的冶金连续性,如在WO2017/121746中详细说明的,读者可以在其中参考这方面的另外说明。将记住,由于层L彼此熔焊,而没有添加金属,因此交换器100的主体101完全由这些层L的条B的金属组成。
主体101的层L被布置为限定如以下正要描述的通道C和如稍后详细描述的通道C’。
由此,如图3中清楚地示出的,各个通道C整体上由主体101的层L中的直接彼此叠置的三个层限定。如果进一步考虑例如在图3的中间整体示出的通道C,则该通道C仅由以下层限定:
-第一层L,在图3中表示为L1.C;
-第二层L,表示为L2.C,该第二层沿着轴线Z-Z直接叠置在层L1.C上;以及
-第三层L,表示为L3.C,该第三层直接叠置在层L2.C上。
由此,层L2.C沿着轴线Z-Z直接插入层L1.C与L3.C之间。
沿着轴线Z-Z,上述通道C仅由层L1.C和L3.C限定。更具体地,层L1.C具有面F.L1.C,该面沿着轴线Z-Z朝向层L2.C和L3.C,并且对于层L1.C,该面界定通道C。在这里考虑的示例性实施例中,面F.L1.C由层L1.C的条B1.L1.C形成,该条沿着轴线X-X纵向延伸,并且如图3清楚所示,该条在通道C的沿着轴线Y-Y的任一侧上伸出。层L3.C又具有面F.L3.C,该面沿着轴线Z-Z朝向层L1.C和L2.C,由此沿着轴线Z-Z面向面F.L1.C,并且对于层L3.C,该面界定通道C。在这里考虑的示例性实施例中,该面F.L3.C由层L3.C的条B1.L3.C形成,该条沿着轴线X-X纵向延伸,并且如图3清楚所示,该条在通道C的沿着轴线Y-Y的任一侧上伸出。由此,面F.L1.C和F.L3.C沿着轴线Z-Z彼此相对布置,同时彼此分开一定距离,该距离对应于通道C沿着轴线Z-Z的尺寸。
沿着轴线Y-Y,上述通道C仅由层L2.C界定,更具体地,由该层L2.C的两个边缘E1.L2.C和E2.L2.C界定,这两个层平行于轴线X-X并且横向于层L2.C的平面布置。边缘E1.L2.C和E2.L2.C沿着轴线Y-Y彼此相对,同时分开一定距离,该距离对应于通道C的沿着轴线Y-Y的尺寸。边缘E1.L2.C由层L2.C的条B1.L2.C形成,该条在通道C的沿着轴线Y-Y的两个轴向侧中的一个上沿着轴线X-X纵向延伸。边缘E2.L2.C又由层L2.C的另一个条形成,该条标记为B2.L2.C,类似于条B1.L2.C,沿着轴线X-X纵向延伸,但位于通道C的沿着轴线Y-Y的、与条B1.L2.C位于的通道C的轴向侧相对的轴向侧。由此,分别形成在层L2.C处界定通道C的边缘E1.L2.C和E2.L2.C的层L2.C的条B1.L2.C和B2.L2.C在通道C的沿着轴线Y-Y的任一侧上分别纵向延伸。
实际上,由于各层C的条B在其对应层的平面中延伸,同时占据相应层的整个厚度,因此应当理解,是条B1.L1.C的两个主面中的一个形成面F.L1.C,并且是条B1.L3.C的两个主面中的一个形成面F.L3.C,同时是条B1.L2.C的两个侧段中的一个形成边缘E1.L2.C,并且是条B2.L2.C的两个侧段中的一个形成边缘E2.L2.C。
为了使通道C紧密并保证耐压性,一方面,将条B1.L2.C和B2.L2.C在相应的熔合区域Z1.C和Z2.C上熔焊到层L1.C,熔合区域Z1.C和Z2.C在通道的沿着轴线X-X彼此相对的端之间在通道的整个长度上连续延伸,并且如图3清楚所示,沿着轴线Y-Y位于通道C的任一侧上,另一方面,将条B1.L2.C和B2.L2.C在相应的熔合区域Z3.C和Z4.C上熔焊到层L3.C,熔合区域Z3.C和Z4.C在通道的相对端之间在通道的整个长度上连续延伸,并且沿着轴线Y-Y位于通道C的任一侧上。在图中考虑的示例性实施例中,如图3清楚所示,熔合区域Z1.C和Z2.C分别设置在条B1.L1.C的在通道C的沿着轴线Y-Y的任一侧上分别伸出的侧部与条B1.L2.C和条B2.L2.C之间,而熔合区域Z3.C和Z4.C分别制作在条B1.L3.C的在通道C的沿着轴线Y-Y的任一侧上分别伸出的部分与条B1.L2.C和条B2.L2.C之间。
由于该主体的层L沿着轴线Z-Z堆叠,所以上述关于通道C的划界的前述考虑适用于主体101的各个其它通道C,理解,悬于三层的组的其它两层之上的层限定通道C之中的给定通道,换言之,该通道的第三层,诸如上述通道C的层L3.C形成堆叠中的下一通道的第一层,即该层由三层的组中的其它两层覆盖限定了悬于前述通道上的通道。特别地,除了在交换器100的相同模式内沿着轴线Z-Z彼此相距最远的两个通道C之外,各个通道C可以仅通过类似于条B1.L1.C和B1.L3.C的两个条的沿着轴线Z-Z彼此面向的相应面并且通过类似于条B1.L2.C和B2.L2.C的两个条的沿着轴线Y-Y彼此相对的相应侧段界定。特别是由于与主体101的制造有关系的原因,通道C的被具有相同模式的其它通道C覆盖的第一层可以偏离前述考虑,而是由在该层内具有与其它通道C的第一相应层内的条B的布置不同的布置的条B组成。同样,通道C的覆盖所有具有相同模式的其它通道C的第三层可以不具有与上述通道C相同的元件,而由具有与其它通道C的第三层的条B的布置不同的布置的条B组成。在所有情况下,类似于在上面详细考虑的通道C的区域Z1.C、Z2.C、Z3.C和Z4.C,熔合区域设置在与各个通道C相关的三层之间,注意,出于可见性的原因,除了区域Z1.C、Z2.C、Z3.C和Z4.C之外,图3中未示出这些各个熔合区域。
关于通道C’,各个通道由主体101的层L中的至少五个直接彼此叠置的层甚至多于五个直接叠置的层共同限定。由此,如果进一步考虑例如在图2中整体且在图3中部分示出的通道C’,则该通道C’仅由以下层限定:
-第一层L,在图3中表示为L1.C’;
-第二层L,表示为L2.C’;以及
-几个叠置层L的组,表示为GL.C’,该组沿着轴线Z-Z直接插入层L1.C’与L2.C’之间。
沿着轴线Z-Z,上述通道C仅由层L1.C’和L2.C’界定。更具体地,层L1.C’具有面F.L1.C’,该面沿着轴向Z-Z朝向叠置层组GL.C’和层L2.C’,并且对于层L1.C’,界定通道C’。在这里考虑的示例性实施例中,该面F.L1.C’由层L1.C’的条B.L1.C’形成,该条沿着轴线X-X纵向延伸,并且沿着轴线Y-Y直接彼此并置,如图2清楚所示。层L2.C’又具有面F.L2.C’,该面沿着轴线Z-Z朝向叠置层组GL.C和层L1.C’,由此沿着轴线Z-Z面向面F.L1.C’并且对于层L2.C,该面界定通道C’。在这里考虑的示例性实施例中,该面F.L2.C’由层L2.C’的条B.L2.C’形成,该条沿着轴线Y-Y纵向延伸,并且沿着轴线X-X直接彼此并置,如图2清楚所示。由此,面F.L1.C’和F.L2.C’沿着轴线Z-Z彼此相对地布置,同时彼此分开一定距离,该距离与通道C’沿着轴线Z-Z的尺寸相对应。
沿着轴线Y-Y,上述通道C’仅由叠置层组GL.C’界定,更具体地,由叠置层组GL.C’的边缘E1.GL.C’和E2.GL.C’界定,这些边缘中的每一个都平行于轴线X-X并且横向于对应层的平面布置。边缘E1.GL.C’沿着轴线Y-Y与边缘E2.GL.C’相对,同时分开一定距离,该距离对应于通道C’沿该轴线Y-Y的尺寸。
边缘E1.GL.C’由叠置层组GL.C’的条B1.GL.C’的侧段形成,该侧段在通道C’的沿着轴线Y-Y的两个轴向侧中的一个上沿着轴线X-X纵向延伸。边缘E2.GL.C’又由叠置层组的条B2.GL.C’的侧段形成,该侧段也沿着轴线X-X纵向延伸,但是位于通道C’的沿着轴线Y-Y的与条B1.GL.C’位于其中的通道C’的轴向侧相对的轴向侧上。
根据与以上开发的考虑类似的考虑,条B1.GL.C’和B2.GL.C’中的每一个都熔焊到组GL.C的层,该层直接叠置在条所属的层上,或者在没有该层的情况下,叠置到层L1.C’或层L2.C’,条B1.GL.C’和B2.GL.C’中的每一个的这种熔焊在熔合区域上进行,这些熔合区域在通道C’的沿着轴线X-X彼此相对的端之间在通道C’的整个长度上连续延伸。总体上,层L1.C’和L2.C’与叠置层组GL.C’的条B1.GL.C’和B2.GL.C’之间的各个熔合区域在通道C’的整个长度上连续延伸,并且沿着轴线Y-Y分布在通道C’的任一侧上,以便使通道C’紧密并保证其耐压性。图3的右部中示出这些熔合区域的一部分。
应当注意,如图3清楚所示,条B1.GL.C’包括上面详细描述的通道C的条B2.L2.C以及与对应堆叠的其他通道C的该条B2.L2.C类似的条。同样,条B2.GL.C’包括通道C的条,这些条类似于上面详细描述的通道C的条B1.L2.C,位于通道C’的沿着轴线Y-Y的与图3所示的通道C所位于的轴向侧相对的轴向侧上。更一般地,应当理解,通道C’部分由与各个通道C相关联的第二层的条界定,这些条形成在该第二层处界定该通道C的边缘。因此,如图3清楚所示,各个通道C仅通过与各个通道C相关联的第二层的条中的一个沿着轴线Y-Y与通道C’分开,这限制了分开通道C和C’的材料的厚度,以便促进分别在通道C和C’中循环的两种流体之间的热交换。
类似前面对通道C的描述,前面关于上面考虑的通道C’的划界的考虑适用于主体101的各个其它通道C’,这是由于该主体的层L沿着轴线Z-Z堆叠。
至此已经详细描述的同流换热器100的主体101的结构使得可以将通道C的尺寸定制为微通道。特别地,与各个通道C相关联的第二层可以有利地设置为具有小于或等于0.1mm的厚度,即沿着轴线Z-Z的尺寸,并且形成所考虑的通道C的侧向边缘的该第二层的条可以有利地沿着轴线Y-Y分开1mm或甚至小于1mm:各个通道C的横截面于是具有小于或等于0.1mm2的面积。同时,通道C沿着轴线X-X纵向延伸可以为几毫米甚至几厘米的尺寸。因此,对于通道C,它们的交换表面与它们的交换体积之间的比率可以非常高,通常大于10000m2/m3
此外,同样关于具有主体101的叠置层的结构,界定通道C和C’的壁的表面状态可以受控。特别地,面,并且如果适用,和界定各个通道C的边缘(诸如上述通道C的面F.L1.C和F.L3.C以及边缘E1.L2.C和E2.L2.C)的表面粗糙度Ra有利地小于或等于0.8μm,甚至小于或等于0.3μm。实际上,这种表面粗糙度由用于制造主体101的条B的表面状态和/或可以在主体101的制造期间实施的表面重修操作产生,如下文提及。当然,对表面粗糙度的这种控制可以有利地应用于通道C’。对于界定通道C和/或C’的面以及如果适用,对于界定这些通道C和/或C’的边缘的这种表面状态使得可以显著地降低压头损失,而且降低在这些通道中循环的流体的边界层厚度。
此外,交换器100的整个主体101由金属制成,这些层L的条B由金属制成,记住:条在没有添加金属的情况下彼此熔焊:由此,主体101在该主体的所有点处具有相同的热导率,该热导率等于组成条B的金属的热导率。由此,当条B由CuZn2合金制成时,主体101在所有点处具有约300W/m.°K的热导率。
为了制造交换器100,可以实施增材制造方法,即通过为各个层提供沉积层的条、然后焊接这些条来逐层地反复生产主体101的方法,焊接操作例如能够通过施加激光束和/或通过电阻来实施。为了满足精加工要求(如果适用),该方法有利地通过用于材料去除的操作、通过磨蚀、机加工或激光烧蚀来完成。
现在将根据图4至图10描述用于制造交换器100的这种方法的一个示例。
如图4所示,第一步骤包括在平坦的金属基板P上沉积条b1、b2、b3等的第一层l1,该金属基板P垂直于轴线Z-Z取向,并且实际上基本上是水平的。作为示例,条b1、b2等中的每一个由CuZn2制成,沿着轴线X-X纵向延伸几厘米,特别是延伸对应于交换器100的有用且必要长度的长度,并且具有约2mm×0.1mm的矩形横截面。如图4所示,条b1、b2等沿着轴线Y-Y直接彼此并置,同时通过任何适当的方式,特别是通过焊接线z1、z2等保持在基板上的适当位置。
在图5所例示的第二步骤期间,可以将层11的该组条与基板P熔焊。该步骤的实施细节在WO2017/121746中给出,读者可参考该专利。
在图6所示的第三步骤期间,使用通过磨蚀、机械加工或激光烧蚀作用的专用工具T,通过材料去除使层l1的上表面平坦化。这里,该步骤的实施细节也在WO2017/121746中给出。
在接下来的步骤期间,将标记为l2的新的条层沉积在层l1上并将其与该层l1熔焊,层l2的条沿着轴线Y-Y纵向延伸,换言之,相对于层l1的条的纵向方向偏移90°。这里,WO2017/121746也提供了对应的说明。
可以沉积并熔焊几个其它层,这重复分别由图6和图7例示的步骤来进行。作为示例,由此一个接一个地进行五层l1至l5,由此叠置的五层在图8中示出。在实施由该图8例示的步骤之前,在类似于图6所述的表面重修步骤期间将层l5的上表面平坦化,特别是使用工具T。
在图8例示的步骤期间,将在层l5上新制得的层l6的条b1、b2、b3和b4沉积在层l5上并且将其与该层l5熔焊。层l6的条b1、b2、b3和b4各自沿着轴线X-X纵向延伸。
在转到图9所示的步骤之前,将层l6的条b1、b2、b3和b4的上表面平坦化,这里再次特别使用工具T,并且更一般地,根据与上面关于图6所述的考虑类似的考虑。在图9例示的步骤期间,在层l6上沉积标记为l7的新层。特别地,如图9所示,在层l6的条b1和b2上沉积层l7的沿着轴线X-X纵向延伸的条b1、b2和b3。
特别是通过比较图9与图2和图3,可以理解,上述层l5、l6和l7分别对应于界定通道C中的第一个的第一层、第二层和第三层,该第一个通道在图9中表示为c1。特别地,上述层l6的条b1和b2分别对应于用于通道C1的条B1.L2.C和B2.L2.C。同样地,层l7的条b2对应于用于通道C1的条B1.L3.C。因此,还应当理解,在图8所例示的步骤期间,在分别对应于用于通道C1的熔合区域Z1.C和Z2.C的两个熔合区域z1和z2上进行条b1和b2与层l5之间的熔焊。同样,在分别对应于用于通道C1的熔合区域Z3.C和Z4.C的熔合区域z3和z4上进行在图9所例示的步骤期间进行的层l7在层l6的条b1和b2上的焊接。
而且通过比较图9与图2和图3,应当理解,上述层l5、l6和l7参与界定通道C’中的第一通道,在图9中表示为c’1。特别地,层l6的条b2和层l7的条b3形成通道c’1的边缘:由于在该示例性制造方法中使用的条都具有相同的宽度,所以必须对层l6的条b2和层l7的条b3进行表面重修。在图8中,层l6的条b2的表面重修以混合线指示,标记为r1。在图9中,层l7的条b3的表面重修也以混合线指示,标记为r1。实际上,用于对应的表面重修操作的实施术语关于本发明不是限制性的,能够使用任何适当的表面重修工具。同样,这些表面重修操作的实施时刻可以不同于以上关于图8和图9所述的实施时刻。
图10例示了随后的步骤,在该步骤期间,将标记为l8的新层沉积并熔合在层l7上。应当理解,通过由此重复以上关于图8、图9和图10所述的操作,可以生产交换器100的主体101的所有层L,同时考虑到先前关于界定这些通道C和C’的说明书给出的详细说明,在该主体101中界定通道C和C’。
图11至图13示出了热交换器200。该交换器200是回热器,该回热器允许流体与交换器的主体201之间的两级热交换。在第一级中,流体循环通过交换器200的主体201,同时朝向主体201执行流体中的热交换,使得热能存储在主体201中。在交换器200的外部,流体经历了变换,特别是温度、压力或相变类型的变换,然后在第二级中,流体沿相反方向循环通过主体201,同时执行从主体201朝向流体的热交换,使得在第一级期间已经存储在主体201中的热能的全部或部分返回到流体。
类似于主体101,主体201由金属制成,并且具有将参考正交坐标系描述的三维形状,该正交坐标系具有轴线X-X、Y-Y和Z-Z。
类似于交换器100,交换器200包括用于循环上述流体的通道C。交换器200还包括通道C’,该通道不是用于流体的循环,而是用于容纳绝热体,绝热体的性质关于本发明不限制,并且仅在图11中示意性地指示。类似于交换器100,交换器200的通道C和C’由该交换器的主体201界定,沿着轴线X-X彼此平行地纵向延伸,这些通道C和C’中的每一个沿着轴线X-X彼此相对地将通道的相应端彼此连接。在使用期间,交换器200与诸如热同流换热器和冷同流换热器的热源和冷源相关联,前述流体经由交换器200的通道C在热源与冷源之间循环。实际上,通道C的位于主体201的沿着轴线X-X的一侧上的所有轴向端在交换器200的外部连接到冷源,而通道C的处于交换器200的沿着轴线X-X的另一轴向侧处的所有相对轴向端在交换器200的外部连接到热源。由此,流体可以经由通道C通过在通道C中自由流动而从冷源循环到热源,反之从热源到冷源亦然。
在图11至图13所考虑的示例性实施例中,交换器200的通道C和通道C’的相对布置与交换器100的通道C和C’的相对布置相同。因此,参考之前在这方面给出的精度,特别是参考与将通道C’中的一个和通道C中的若干关联的模式有关的说明。此外,作为适合于图11至图13所示的将一百一十个通道C和一个通道C’关联的模式的非限制性示例,前述流体是气态氦,在大约25巴的平均压力下在通道C中循环,在热源处具有约600°K的温度且在冷源处具有约300°K的温度。于是接收在通道C’中的绝热体可以是例如陶瓷粉末。
现在回到交换器200的主体201的描述,图12示出了该主体201完全类似于交换器100的主体101,由多个层L组成,这些层是平坦的并且沿着轴线Z-Z叠置。类似于主体101,主体201的各个层L由金属条组成,各个层L的这些条中的每一个被设置为占据对应层的沿着轴线Z-Z的整个厚度。相反,与交换器100的金属条B不同,交换器200的各层L的条都沿着轴线Y-Y纵向延伸,同时沿着轴线X-X彼此直接并置,如图12清楚所示。另外,交换器200的各层L的条不都由相同的金属组成,而是相反,分成两类条,它们的成分金属彼此不同:由此,交换器200的各层L包括由第一金属组成的条B1和由第二金属组成的条B2,第一金属和第二金属通过以下事实彼此不同:第一金属具有不同于第二金属的热导率。在各个层L处,条B1和条B2沿着轴线X-X彼此直接并置,同时交替:换言之,沿着轴线X-X,一个条B1跟随一个条B2,该条B2又跟随一个条B1,等等,如图12清楚所示。此外,不同层L的条B1沿着轴线Z-Z彼此叠置,并且这些层的条B2也沿着轴线Z-Z彼此叠置:换言之,沿着轴线Z-Z,一层L的一个条B1由下一层的一个条B1覆盖,等等;对于条B2也是如此。
作为非限制性示例,条B1由铜或诸如CuZn2的铜基合金制成,条B2由钛或诸如TA6V的钛基合金制成。由此,条B2的热导率大约比条B1的热导率的五十分之一。在该示例中,条B1可以被描述为传导条,而条B2可以被描述为隔热条。不管选择两种不同的什么金属来分别组成条B1和条B2,都应当理解,由于这些条在叠置层L内的布置,主体201具有用于主体201的各向异性热导率。特别地,可以为主体201限定两种不同的热导率,即纵向热导率和横向热导率,纵向热导率对应于与层L处的条B1和B2的交替方向平行(换言之,与轴线X-X平行)的热导率,横向热导率对应于与层L中的条B1和B2的交替方向垂直(换言之,与轴线Y-Y平行)的热导率。
与主体101类似,主体201的层L被布置为限定通道C和通道C’两者。
对于通道C,参考前面对于交换器101特别是关于图2和图3给出的详细描述。由此,通过重复使用相同的参考,图12和图13例示了以下事实:交换器200的各个通道C整体由主体201的层L中直接彼此叠置的三层限定,由此,各个通道C仅由以下部分界定:
-第一层L1.C的面F.L1.C和第三层L3.C的面F.L3.C,该第三层由第二层L2.C与第一层L1.C分离;和
-层L2.C的边缘E1.L2.C和E2.L2.C。
与交换器200的通道C的面F.L1.C和F.L3.C以及边缘E1.L2.C和E2.L2.C有关的几何特性与上面对于交换器100的通道C给出的几何特性相同。相反,由于交换器200的各层L的所有条B1和B2沿着轴线Y-Y纵向延伸,因此交换器200的这些面和这些边缘的组成不同。更具体地,应当理解,交换器200的各个通道C的面F.L1.C和F.L3.C中的每一个由对应层L1的条B1和B2的纵向部分的、沿着轴线X-X的连续部分形成。此外,对于各个通道C,与通道相关联的层L2.C的第一条B1和第二条B2中的每一个沿着其长度局部中断,以便形成界定通道C的边缘E1.L2.C和E2.L2.C,如图13清楚所示。
根据与上述试图使各个通道C紧密并保证其耐压性的考虑类似的考虑,各个通道C的层L2.C的条B1和B2在熔合区域Z1.C、Z2.C、Z3.C和Z4.C上熔焊到对应的层L1.C和对应的层L3.C,这些熔合区域类似于上面对于交换器100描述的具有相同附图标记的熔合区域。根据特定于交换器200的一个有利的可选规定,如图13中对于一个通道C清楚可见的,与各个通道C相关联的层L2.C的各个条B1与关联层L1.C和L3.C的相应第一条B1完全熔焊,这些第一条沿着轴线Z-Z与层L2.C的所考虑的条B1叠置,理解,对于各个通道C的层L2.C的各个条B2也是如此:这样,改善了沿着轴线Z-Z的、条B1之间的冶金连续性和条B2之间的冶金连续性。
关于交换器200的各个通道C’,也参考上面关于交换器100的通道C’的划界给出的说明。特别地,应当理解,特别是根据图13,交换器200的各个通道C’由界定通道C的所有叠置层的条B1和B2界定。
由于在交换器200的主体201的各个层L中的条B1和B2的交替,当通道沿着该交替的方向纵向延伸时,交换器200的纵向热导率受到限制,同时该交换器的横向热导率增加。这样,在热源与冷源之间通过交换器200的热泄漏被显著地减少,使得同时交换器的扩散和扩散率高。对于类似交换器200的回热器类型的交换器而言是明显的这些优点,与通道C的感兴趣的几何特性相关联,特别是高的交换表面/交换体积比,这些几何特性在上面对于交换器100进行了详细描述。
为了制造交换器200,可以实施增材制造方法,完全类似于交换器100。现在将根据图14至图20描述用于制造交换器200的这种方法的一个示例。
如图14所示,该方法的第一步骤包括沉积第一层l1,其中,由上述第一金属组成的条b1-1、b1-2等与由上述第二金属组成的条b2-1、b2-2等交替。层l1沉积在平坦的金属基板P上,该金属基板P垂直于轴线Z-Z取向,并且实际上基本上是水平的。各个条沿着轴线Y-Y纵向延伸,并且具有测为大约2mm×0.1mm的矩形横截面。如图14所示,条b1-1、b2-1、b1-2、b2-2、b1-3等沿着轴线X-X直接彼此并置,同时通过任何适当的方式,特别是通过焊接z1、z2等在不添加金属的情况下保持在基板上的适当位置。
图15例示了该第一步骤的变型实施例。根据该变型,层l1的条的侧边缘不是像图14中那样沿着轴线X-X彼此直接并置,而是各个条的侧边缘被布置为沿着轴线Z-Z与沿着该边缘延伸的相邻条重叠。条之间的这种边缘重叠试图改善由第一金属组成的条和由第二金属组成的条的相应金属之间的冶金连续性。
在图16所例示的第二步骤期间,可以将层11的该组条与基板P熔焊。该步骤的实施细节在WO2017/121746中给出,读者可参考该专利。
在图17所示的第三步骤期间,使用通过磨蚀、机械加工或激光烧蚀作用的专用工具T,通过材料去除使层l1的上表面平坦化。这里,该步骤的实施细节也在WO2017/121746中给出。
在图18例示的下一步骤期间,将条b1-1、b2-1、b1-2、b2-2等的新层l2沉积在层l1上,使得条沿着轴线Y-Y纵向延伸,由第一金属组成的层l2的条b1-1、b1-2等沉积并与层l1的条b1-1、b1-2等熔焊,而由第二金属构成的层l2的条b2-1、b2-2等沉积并与层l1的条b2-1、b2-2等熔焊。在WO2017/121746中详细描述了层l1和l2的叠置条之间的这些沉积和熔焊操作。当然,层l2在层l1上的沉积可以根据图15中所示的变型来进行。
重复分别由图17和图18例示的步骤,可以沉积并熔焊几个其它层,在沉积下一层之前通过去除材料使各个新沉积层的上表面平坦化。作为示例,由此一个接一个地进行五层l1至l5,由此叠置的五层在图19中示出。在实施由图19例示的步骤之前,在类似于图17所述的表面重修步骤期间通过去除材料来将层l5的上表面平坦化,特别是使用工具T。
在图19例示的步骤期间,将在层l5上新制得的层l6的条b1-1、b2-1、b1-2、b2-2等沉积在层l5上并且将其与该层l5熔焊,这类似于图18对于层l2例示的步骤。在转到图20所示的包括沉积新层l7的步骤之前,通过去除材料将层l6的条的上表面平坦化,这里特别是再次使用工具T,并且另外,层l6的条b1-1、b2-1、b1-2、b2-2等中的每一个沿着其长度在沿着条的若干水平上局部中断,如图19所示。为此,将一个或若干加工工具U应用在层l6上,以便通过去除材料加工那里的条的对应中断。各自沿着条的长度局部地制成的条的这些中断沿着轴线X-X进行,以便在这些条中界定用于形成一些通道C的通道c1、c2、c3和c4的相应边缘、以及用于形成一个通道C’的通道c’1的相应边缘。
一旦完成了对界定在层l6处的通道c1、c2、c3和c4中的至少一个的加工,就将层l7沉积并熔合在层l6上,这完成对这些通道c1、c2、c3和c4的界定。该层l7也通过去除材料以在其中界定通道c’1的边缘、通过在通道c’1处沿着层l7的各个条的长度局部中断该条来加工,如图20例示。实际上,为了产生通道c’1而进行的层的加工可以在与刚刚描述的加工不同的时刻进行。
在所有情况下,应当理解,通过重复以上关于图19和图20所述的操作,可以生产交换器200的主体201的所有层L,同时考虑到先前关于界定这些通道C和C’的说明书给出的详细说明,在该主体201中界定通道C和C’。

Claims (14)

1.一种热交换器(100;200),
包括用于流体循环的通道(C),这些通道在所述通道的相应相对端之间沿着第一轴线(X-X)纵向延伸,并且在通道中,所述流体用于沿着所述第一轴线在所述端之间流动,所述热交换器包括多个层(L),这些层是平坦的并且沿着第二轴线(Z-Z)彼此叠置,该第二轴线既垂直于所述层的相应平面又垂直于所述第一轴线(X-X),
其特征在于:所述多个层中的每个层由金属条(B;B1、B2)组成,使得同一层的条全部沿着垂直于所述第二轴线(Z-Z)的方向纵向延伸,并且在所考虑的层的平面中彼此相邻而不必接触,所述多个层中的每个层的各个条占据对应层的沿着所述第二轴线(Z-Z)的整个厚度,
并且各个所述通道(C)由所述多个层中的第一层、第二层和第三层共同限定,与各个通道相关联的所述第二层(L2.C)沿着所述第二轴线(Z-Z)直接插入与该通道相关联的所述第一层(L1.C)与所述第三层(L3.C)之间,使得各个通道由以下部分界定:
-与该通道相关联的所述第一层的面(F.L1.C),该面沿着所述第二轴线(Z-Z)面向与该通道相关联的所述第二层和所述第三层,
-与该通道相关联的所述第三层的面(F.L3.C),该面沿着所述第二轴线面向与该通道相关联的所述第一层和所述第二层,并且
-与该通道相关联的所述第二层的边缘(E1.L2.C、E2.L2.C),这些边缘被布置为平行于所述第一轴线(X-X)并且横向于该第二层的平面,这些边缘由该第二层的条(B1.L2.C、B2.L2.C;B1、B2)形成,这些条在熔合区域(Z1.C、Z2.C、Z3.C、Z4.C)上被熔焊到与该通道相关联的所述第一层和所述第三层,这些熔合区域在所述通道的相对端之间在所述通道的整个长度上连续延伸,并且沿着垂直于所述第一轴线和所述第二轴线的第三轴线(Y-Y)位于所述通道的任一侧上。
2.根据权利要求1所述的热交换器(100;200),其特征在于:与各个通道(C)相关联的所述第二层(L2.C)具有小于或等于0.1 mm的厚度,并且与各个通道相关联的所述边缘(E1.L2.C、E2.L2.C)沿着所述第三轴线(Y-Y)相距1 mm或小于1 mm。
3.根据权利要求1或2所述的热交换器(100;200),其特征在于:与各个通道(C)相关联的所述第一层(L1.C)的所述面(F.L1.C)和所述第三层(L3.C)的所述面(F.L3.C)具有小于或等于0.8μm的表面粗糙度Ra。
4.根据权利要求3所述的热交换器(100;200),其特征在于:与各个通道(C)相关联的所述边缘(E1.L2.C、E2.L2.C)具有小于或等于0.8μm的表面粗糙度Ra。
5.根据权利要求1或2所述的热交换器(100;200),其特征在于:与各个通道(C)相关联的所述第一层(L1.C)的所述面(F.L1.C)和所述第三层(L3.C)的所述面(F.L3.C)以及与该通道相关联的所述边缘(E1.L2.C、E2.L2.C)具有小于或等于0.3μm的表面粗糙度Ra。
6.根据前述权利要求中任意一项所述的热交换器(100),
其特征在于:所述通道是用于循环第一流体的第一通道(C),
对于各个第一通道(C),与该第一通道相关联的所述第二层(L2.C)的、形成在该第二层处界定所述第一通道的所述边缘(E1.L2.C、E2.L2.C)的条是第一条(B1.L2.C)和第二条(B2.L2.C),这两个条沿着所述第一轴线(X-X)纵向延伸并且分别在所述第一通道的沿着所述第三轴线(Y-Y)的任一侧上延伸,并且
所述热交换器(100)包括用于循环第二流体的至少一个第二通道(C’):
-该第二通道在所述第二通道的相应的相对端之间沿着所述第一轴线(X-X)纵向地延伸,
-在该第二通道中,所述第二流体用于沿着所述第一轴线在所述第二通道的所述端之间流动,并且
-该第二通道布置在沿着所述第二轴线(Z-Z)与所述第一通道(C)中的至少一些相同的水平,同时部分地由与所述第一通道中的所述至少一些相关联的所述第二层(L2.C)的所述第一条或所述第二条(B1.L2.C、B2.L2.C)界定。
7.根据权利要求6所述的热交换器(100),其特征在于:对于各个第一通道(C),与该第一通道相关联的所述第一层(L1.C)的所述面(F.L1.C)由该第一层的条(B1.L1.C)形成,该条沿着所述第一轴线(X-X)纵向延伸,并且沿着所述第三轴线(Y-Y)在该第一通道的任一侧上伸出,以便与和该第一通道相关联的所述第二层(L2.C)的所述第一条和所述第二条(B1.L2.C、B2.L2.C)叠置并焊接在所述对应的熔合区域(Z1.C、Z2.C)上,并且
对于各个第一通道,与该第一通道相关联的所述第三层(L3.C)的所述面(F.L3.C)由该第三层的条(B1.L3.C)形成,该条沿着所述第一轴线(X-X)纵向延伸,并且沿着所述第三轴线(Y-Y)在该第一通道的任一侧上伸出,以便与和该第一通道相关联的所述第二层的所述第一条和第二条叠置并焊接在所述对应的熔合区域(Z3.C、Z4.C)上。
8.根据权利要求6或7所述的热交换器(100),其特征在于:所述或各个第二通道(C’)由第一层和第二层以及所述多个层(L)中的叠置层的组共同限定,与该第二通道相关联的所述叠置层的组(GL.C’)沿着所述第二轴线(Z-Z)直接插入与该第二通道相关联的第一层(L1.C’)与第二层(L2.C’)之间,使得所述或各个第二通道由以下部分界定:
-与该第二通道相关联的所述第一层的面(FL1.C’),该面沿着所述第二轴线面向与所述第二通道相关联的所述第三层和所述叠置层的组(GL.C’);
-与该第二通道相关联的所述第二层的面(FL2.C’),该面沿着所述第二轴线面向与所述第二通道相关联的所述第一层和所述叠置层的组;以及
-与该第二通道相关联的所述叠置层的组(GL.C’)的边缘(E1.GL.C’、E2.GL.C’),这些边缘各自布置为平行于所述第一轴线(X-X)并且横向于该叠置层的组中的层的相应平面,这些边缘由所述叠置层的组的层的条形成,这些条:
-沿着所述第一轴线(X-X)纵向延伸,
-在所述叠置层的组的各个层处,在熔合区域上熔焊到所述组的直接叠置在所考虑的层上的层,或者熔焊到所述第一层或所述第二层,这些熔合区域在所述第二通道的相对端之间在该第二通道的整个长度上连续延伸,并且沿着所述第三轴线(Y-Y)位于该第二通道的任一侧上,并且
-包括所述至少一些第一通道(C)中的每一个的所述第二层(L2.C)的所述第一条和/或所述第二条(B1.L2.C、B2.L2.C)。
9.一种用于制造根据权利要求6至8中任意一项所述的热交换器(100)的方法,
其中,所述热交换器(100)的所述多个层中的层(L)被一个接一个地制造,使得所述多个层中的新制造的每个层沿着所述第二轴线(Z-Z)叠置在所述多个层中的先前制造的层上,或者在没有该先前制造的层的情况下叠置在垂直于所述第二轴线的平坦金属基板(P)上,
其中,为了产生各个第一通道,依次提供:
i)在沉积与该第一通道相关联的所述第一层(L1.C)之后,将该第一层在其沿着所述第二轴线(Z-Z)背对先前制造的层的面上平坦化,或者在没有该层的情况下,在其与所述基板(P)相对的面上平坦化,
ii)将与该第一通道相关联的所述第二层(L2.C)的所述第一条和所述第二条(B1.L2.C、B2.L2.C)沉积在该第一层上,同时使其沿着所述第一轴线(X-X)并且分别在待制造的所述第一通道的沿着所述第三轴线(Y-Y)的任一侧上纵向延伸,并且在用于这些第一层和第二层的所述熔合区域(Z1.C、Z2.C)上与该第一层熔焊,
iii)将该第二层在其沿着所述第二轴线(Z-Z)背对所述第一层的面上平坦化,以及
iv)将与该第一通道相关联的所述第三层沉积在所述第二层的所述第一条和所述第二条上,并且在用于所述第二层和所述第三层的所述熔合区域(Z3.C、Z4.C)上与这些条熔焊,
并且其中,通过使用先前制造的第一通道的所述第三层作为要制造的第一通道的第一层并且通过重复步骤i)、ii)、iii)和iv),一个接一个地制造所述第一通道中的至少一些。
10.根据权利要求1至5中任意一项所述的热交换器(200),其特征在于:对于各个通道,与该通道相关联的所述第一层的条、与该通道相关联的所述第二层的条以及与该通道相关联的所述第三层的条沿着所述第三轴线(Y-Y)纵向延伸,并且分布成由第一金属制成的第一条(B1)和由第二金属制成的第二条(B2),所述第一金属具有与所述第二金属不同的热导率,这些第一条和第二条在与所述通道相关联的所述第一层、所述第二层和所述第三层中的每一层处布置为沿着所述第一轴线(X-X)交替,使得与所述通道相关联的所述第一层、所述第二层和所述第三层的所述第一条(B1)沿着所述第二轴线(Z-Z)叠置,并且与所述通道相关联的所述第一层、所述第二层和所述第三层的所述第二条(B2)沿着所述第二轴线叠置,
并且对于各个通道,与该通道相关联的所述第二层(L2.C)的所述第一条和所述第二条(B1、B2)中的每一个沿着其长度局部中断,以便形成界定该通道的边缘(E1.L2.C、E2.L2.C)。
11.根据权利要求10所述的热交换器(200),其特征在于:对于各个通道(C):
-与该通道相关联的所述第二层(L2.C)的各个所述第一条(B1)与和所述通道相关联的所述第一层的所述第一条以及所述第三层(L3.C)的所述第一条完全熔焊,所述第二层的该第一条与所述第一层的所述第一条叠置,所述第二层的该第一条与所述第三层的所述第一条叠置,这形成用于所述第一层和所述第二层的所述熔合区域(Z1.C、Z2.C),并且
-与该通道相关联的所述第二层的各个所述第二条(B2)与和该通道相关联的所述第一层的所述第二条以及和该通道相关联的所述第三层的所述第二条完全熔焊,所述第二层的该第二条与所述第一层的所述第二条叠置,所述第二层的该第二条与所述第三层的所述第二条叠置,这形成用于所述第二层和所述第三层的所述熔合区域(Z3.C、Z4.C)。
12.根据权利要求10或11所述的热交换器(200),
其特征在于:所述通道是用于循环所述流体的第一通道(C),
并且所述热交换器(200)还包括用于隔热的至少一个第二通道(C’):
-该第二通道在该第二通道的相应的相对端之间沿着所述第一轴线(X-X)纵向地延伸,
-在该第二通道中接收隔热体,并且
-该第二通道布置在沿着所述第二轴线(Z-Z)与所述第一通道(C)中的至少一些相同的水平处,同时由所述至少一些第一通道的所述第一层、所述第二层和所述第三层的所述第一条和所述第二条(B1、B2)界定。
13.一种用于制造根据权利要求10至12中任意一项所述的热交换器(200)的方法,
其中,所述热交换器(200)的所述多个层中的层被一个接一个地制造,使得所述多个层中的新制造的每个层沿着所述第二轴线(Z-Z)叠置在所述多个层中的先前制造的层上,或者在没有该先前制造的层的情况下叠置在垂直于所述第二轴线的平坦金属基板(P)上,
其中,为了产生各个通道,依次提供:
i)在沉积与该通道相关联的所述第一层(L1.C)的所述第一条和所述第二条(B1、B2)之后,将该第一层在其沿着所述第二轴线(Z-Z)背对先前制造的所述层的面上平坦化,或者在没有该层的情况下,在其与所述基板(P)相对的面上平坦化,
ii)将与该通道相关联的所述第二层(L2.C)的所述第一条(B1)沉积在该第一层的所述第一条上并与该第一条熔焊,并且将该第二层的所述第二条(B2)沉积在该第一层的所述第二条上并与该第二条熔焊,同时形成用于所述第一层和所述第二层的熔合区域(Z1.C、Z2.C),
iii)将该第二层在其沿着所述第二轴线背对该第一层的面上平坦化,并且通过去除该第二层中的材料来加工要制造的所述通道,该去除通过沿着该第二层的所述第一条和所述第二条(B1、B2)中的每一个的长度局部中断该条来进行,以及
iv)将与该通道相关联的所述第三层的所述第一条(B1)沉积在该第二层的所述第一条上并与该第一条熔焊,并且将该第三层的所述第二条(B2)沉积在该第三层的所述第二条上并与该第二条熔焊,同时形成用于所述第二层和所述第三层的熔合区域(Z3.C、Z4.C),
并且其中,通过使用先前制造的通道的所述第三层作为要制造的通道的第一层并且通过重复步骤i)、ii)、iii)和iv),一个接一个地制造所述通道(C)中的至少一些。
14.根据权利要求13所述的方法,其中,在步骤ii)和iv)期间,沉积所述第一条(B1)和所述第二条(B2),使得各个条的侧向边缘沿着所述第二轴线(Z-Z)与沿着该侧向边缘延伸的所述条重叠。
CN201980023105.XA 2018-03-09 2019-03-08 热交换器和用于制造这种热交换器的方法 Active CN111936814B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1852050A FR3078773B1 (fr) 2018-03-09 2018-03-09 Echangeur thermique, ainsi que procede de fabrication d'un tel echangeur thermique
FR1852050 2018-03-09
PCT/EP2019/055865 WO2019170868A1 (fr) 2018-03-09 2019-03-08 Echangeur thermique, ainsi que procédé de fabrication d'un tel échangeur thermique

Publications (2)

Publication Number Publication Date
CN111936814A true CN111936814A (zh) 2020-11-13
CN111936814B CN111936814B (zh) 2022-04-01

Family

ID=62751022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980023105.XA Active CN111936814B (zh) 2018-03-09 2019-03-08 热交换器和用于制造这种热交换器的方法

Country Status (7)

Country Link
US (1) US20200400378A1 (zh)
EP (1) EP3762670B1 (zh)
KR (1) KR102639065B1 (zh)
CN (1) CN111936814B (zh)
ES (1) ES2912026T3 (zh)
FR (1) FR3078773B1 (zh)
WO (1) WO2019170868A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19740502A1 (de) * 1997-09-15 1999-03-18 Fraunhofer Ges Forschung Verfahren zur Herstellung von Bauteilen mit einem oberflächennahen Durchfluß- und Verteilungssystem für Flüssigkeiten und/oder Gase
US20040098854A1 (en) * 2002-11-27 2004-05-27 Schmitt Stephen C. Method of fabricating multi-channel devices and multi-channel devices therefrom
CN1795044A (zh) * 2002-11-27 2006-06-28 维罗西股份有限公司 微通道器件、制造微通道器件的方法以及进行单元操作的工艺
CN1813166A (zh) * 2003-05-30 2006-08-02 环球油品公司 用于制造钎焊热交换器的方法和热交换器设备
DE102007048206A1 (de) * 2007-10-08 2009-04-09 Wieland-Werke Ag Strukturiertes metallisches Band oder Schichtblech und Verfahren zur Herstellung von metallischem Band oder Schichtblech
US20150137412A1 (en) * 2013-11-20 2015-05-21 Carl Schalansky Method of using additive materials for production of fluid flow channels
FR3046559A1 (fr) * 2016-01-12 2017-07-14 Inetyx Procede et installation de fabrication d'un objet tridimensionnel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL269034A (zh) * 1960-09-09 1900-01-01
US3517731A (en) * 1967-09-25 1970-06-30 United Aircraft Corp Self-sealing fluid/fluid heat exchanger
US4017347A (en) * 1974-03-27 1977-04-12 Gte Sylvania Incorporated Method for producing ceramic cellular structure having high cell density
US3940301A (en) * 1974-08-01 1976-02-24 Caterpillar Tractor Co. Method of manufacturing an open cellular article
JPH05699Y2 (zh) * 1985-11-29 1993-01-11
US4822660A (en) * 1987-06-02 1989-04-18 Corning Glass Works Lightweight ceramic structures and method
DE102008052875A1 (de) * 2008-10-23 2010-04-29 Linde Ag Plattenwärmetauscher
US9091049B2 (en) * 2010-08-24 2015-07-28 James Walker Ventilated structural panels and method of construction with ventilated structural panels
US10415901B2 (en) * 2016-09-12 2019-09-17 Hamilton Sundstrand Corporation Counter-flow ceramic heat exchanger assembly and method
US20180071950A1 (en) * 2016-09-12 2018-03-15 Hamilton Sundstrand Corporation Method of manufacturing a heat exchanger
US10553522B1 (en) * 2018-08-13 2020-02-04 International Business Machines Corporation Semiconductor microcooler
US11940232B2 (en) * 2021-04-06 2024-03-26 General Electric Company Heat exchangers including partial height fins having at least partially free terminal edges

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19740502A1 (de) * 1997-09-15 1999-03-18 Fraunhofer Ges Forschung Verfahren zur Herstellung von Bauteilen mit einem oberflächennahen Durchfluß- und Verteilungssystem für Flüssigkeiten und/oder Gase
US20040098854A1 (en) * 2002-11-27 2004-05-27 Schmitt Stephen C. Method of fabricating multi-channel devices and multi-channel devices therefrom
CN1717295A (zh) * 2002-11-27 2006-01-04 巴特勒纪念研究院 制造多通道装置的方法及由此制成的多通道装置
CN1795044A (zh) * 2002-11-27 2006-06-28 维罗西股份有限公司 微通道器件、制造微通道器件的方法以及进行单元操作的工艺
CN1813166A (zh) * 2003-05-30 2006-08-02 环球油品公司 用于制造钎焊热交换器的方法和热交换器设备
DE102007048206A1 (de) * 2007-10-08 2009-04-09 Wieland-Werke Ag Strukturiertes metallisches Band oder Schichtblech und Verfahren zur Herstellung von metallischem Band oder Schichtblech
US20150137412A1 (en) * 2013-11-20 2015-05-21 Carl Schalansky Method of using additive materials for production of fluid flow channels
FR3046559A1 (fr) * 2016-01-12 2017-07-14 Inetyx Procede et installation de fabrication d'un objet tridimensionnel

Also Published As

Publication number Publication date
KR102639065B1 (ko) 2024-02-21
CN111936814B (zh) 2022-04-01
KR20200127244A (ko) 2020-11-10
WO2019170868A1 (fr) 2019-09-12
EP3762670B1 (fr) 2022-03-30
EP3762670A1 (fr) 2021-01-13
FR3078773B1 (fr) 2020-09-18
FR3078773A1 (fr) 2019-09-13
US20200400378A1 (en) 2020-12-24
ES2912026T3 (es) 2022-05-24

Similar Documents

Publication Publication Date Title
US7850061B2 (en) Method for making a component including fluid flow channels
CN102575905B (zh) 用于制造热交换器板束的方法
US6544662B2 (en) Process for manufacturing of brazed multi-channeled structures
US10281219B2 (en) Plate laminated type heat exchanger
ES2339407T3 (es) Procedimiento de fabricacion de un dispositivo de tipo intercambiador de calor de carburo de silicio y dispositivo de carburo de silicio realizado mediante el procedimiento.
EP3339793B1 (en) Heat-exchanger with header welded to the core
DE102012202723B4 (de) Kühlsystem und Verfahren zum Herstellen eines Kühlsystems
GB2552956A (en) Heat exchanger device
JPH0676872B2 (ja) ヒートシンク
CN1983290B (zh) 确定板式热交换器强度、制造板式热交换器及制造技术设备的方法
CN111936814B (zh) 热交换器和用于制造这种热交换器的方法
EP3610215A1 (en) Integration of ultrasonic additive manufactured thermal structures in brazements
JPH0634283A (ja) 宇宙用熱交換器の製作方法
JP2020521640A (ja) 微細間隙を伴う部品をロウ付けまたは充填する方法、および該方法で得られる熱交換器
JP6743846B2 (ja) 積層型熱交換器、および、その積層型熱交換器の製造方法
DE19740818A1 (de) Plattenförmiger Wärmeaustauscher
JP7206609B2 (ja) 金属積層体及び金属積層体の製造方法
JP2003185376A (ja) 冷却液/空気熱交換器コアアセンブリ
CN211205018U (zh) 盒形层叠换热器
JP2005180806A (ja) 熱交換器およびその製造方法
CN207147280U (zh) 层叠式螺盘换热器
CN107735172A (zh) 包括彼此之间具有薄壁的通道的热交换器和/或热交换器‑反应器
CN113474101A (zh) 热交换器及相关制造方法
WO2024061816A1 (en) Heat exchanger module, heat exchanger welding method and heat exchanger assembly
WO2024079808A1 (ja) 冷却床部材及び冷却床部材の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant