CN111936161B - 作为癌症的预防性和诊疗性治疗的ipsc基疫苗 - Google Patents

作为癌症的预防性和诊疗性治疗的ipsc基疫苗 Download PDF

Info

Publication number
CN111936161B
CN111936161B CN201980008834.8A CN201980008834A CN111936161B CN 111936161 B CN111936161 B CN 111936161B CN 201980008834 A CN201980008834 A CN 201980008834A CN 111936161 B CN111936161 B CN 111936161B
Authority
CN
China
Prior art keywords
cells
vaccine
stem cells
pluripotent stem
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980008834.8A
Other languages
English (en)
Other versions
CN111936161A (zh
Inventor
奈杰尔·G·科雷曼
约瑟夫·C·吴
琳内·布伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crolis Bioscience Co ltd
Leland Stanford Junior University
Original Assignee
Crolis Bioscience Co ltd
Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crolis Bioscience Co ltd, Leland Stanford Junior University filed Critical Crolis Bioscience Co ltd
Publication of CN111936161A publication Critical patent/CN111936161A/zh
Application granted granted Critical
Publication of CN111936161B publication Critical patent/CN111936161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/33Fibroblasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55572Lipopolysaccharides; Lipid A; Monophosphoryl lipid A
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55577Saponins; Quil A; QS21; ISCOMS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • A61K2039/585Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/80Vaccine for a specifically defined cancer
    • A61K2039/812Breast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/80Vaccine for a specifically defined cancer
    • A61K2039/876Skin, melanoma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Reproductive Health (AREA)
  • Hematology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

在一个实施方式中,本申请公开了一种用于在患者中治疗癌症的方法,所述方法包括对所述患者接种疫苗,其中所述疫苗包含有效量的获自胚胎来源或者通过来自所述患者的体细胞的重编程所获得的哺乳动物多能干细胞,其中所述接种包括向对其有需要的患者施用哺乳动物多能干细胞的步骤;和用于在癌症治疗中使用的疫苗制剂。

Description

作为癌症的预防性和诊疗性治疗的IPSC基疫苗
相关申请的引用:
本申请根据35 USC 119(e)要求于2018年1月2日提交的临时申请号62/612,826的优先权,其公开内容并入本申请作为参考。
背景技术
近一个世纪之前,研究人员注意到使用胚胎材料免疫导致移植肿瘤的排斥。最近,对多种肿瘤细胞和胚胎细胞识别了共有转录组谱和抗原。这致使产生了胚胎干细胞(ESC)可以用作免疫试剂来促进抗肿瘤应答的设想。
相对于由失活的生物或蛋白产物组成的常规疫苗,全细胞疫苗接种的成功的关键在于大量抗原可以递呈至T细胞,包括未知的抗原。然而,由于在很大程度上与这些疗法有关的伦理学困难,胎儿和胚胎材料作为疫苗诱导抗肿瘤免疫的使用尚未超出动物模型之外。
诱导的多能干细胞(iPSC)的发现使得能够从患者自身组织产生与ESC共有接近相同的基因表达和表面标志物谱的多能细胞,从而克服了主要的伦理学障碍。
由于通过自体同源移植时iPSC的致瘤性(Kooreman and Wu,2010;Okita et al.,2007)和免疫原性(de Almeida et al.,2014;Zhao et al.,2011),其表明了在癌症疫苗接种中的潜在效力,因此iPSC是癌症疫苗接种的有吸引力的候选。重要地,自体同源iPSC可以提供比同种异体ESC更准确和代表性的患者肿瘤抗原组。
发明内容
在一个实施方式中,本申请提供了用于产生预防性或治疗性(诊疗性,therapeutically)靶向多种癌症的癌症疫苗的组合物和方法。在一个方面,通过所述疫苗所产生的抗癌细胞的免疫性将佐剂与iPSC或小内含子质粒(mini-intronic plasmid)-产生的iPSC(MIP-iPSC),如佐剂CpG与iPSC,或者佐剂CpG与MIP-iPSC组合。使用激活大免疫细胞组库(repertoire)以靶向iPSC和癌细胞之间共有的癌症相关或癌症关联表位并提供抵抗癌症出现和/或发展的长期免疫性的小内含子质粒产生了MIP-iPSC。
在另一个方面,所关注的癌症类型是潜在无限的,通过初始中试研究在乳腺癌、黑素瘤、胰腺癌和间皮瘤中显示出有效性。基于iPSC和癌细胞之间在癌症表位中的大的重叠,可以对实体瘤(例如,乳腺癌、肺癌、皮肤癌、成胶质细胞瘤、头颈癌、甲状腺癌、胰腺癌、肝癌、结肠直肠癌、肾癌、胃癌、肉瘤、卵巢癌、膀胱癌、前列腺癌、食道癌、子宫内膜癌、宫颈癌)以及血液癌症(例如,霍奇金淋巴瘤、非霍奇金淋巴瘤、多发性骨髓瘤、脊髓增生病、白血病)发展出免疫性。
在一个实施方式中,提供了用于自体同源癌症疫苗产生和疫苗接种方案的方法,所述方法包括体外产生iPSC基(基于iPSC的,iPSC类)疫苗并接种疫苗,如对受体(受种者,recipient)皮下接种疫苗数周,包括连续数周,例如,连续4周。在一个变化中,每周实施疫苗接种至少连续2周、连续3周、连续4周、连续5周或至少连续6周。在另一个变化中,所述疫苗包含iPSC与佐剂CpG或具有相当性质的任何其它佐剂一起的使用,其中所述佐剂是免疫学试剂,如抗体、肽或小分子,以加强或提高对疫苗的免疫应答。
在一个实施方式中,其中多能干细胞未基因工程化以过表达促炎蛋白(例如,通过使用GM-CSF、INFγ、DNMT抑制剂)或者过表达促免疫原性蛋白(例如,MHC I类、β2m、TAP相关蛋白(Tapasin)或c-Myc/Oct4)。在一个变化中,多能干细胞基因工程化以过表达促炎蛋白(例如,通过使用GM-CSF、INFγ、DNMT抑制剂)或者过表达促免疫原性蛋白(例如,MHC I类、β2m、TAP相关蛋白或c-Myc/Oct4)。用于基因过表达促免疫原性抗原以上调对疫苗的免疫应答的方法描述于Yaddanapudi,K.et al.(2012).Vaccination with embryonic stemcells protects against lung cancer:is abroad-spectrum prophylactic vaccineagainst cancer possible?PLoS ONE 7,e42289中。
在另一个实施方式中,其中多能干细胞基因工程化以过表达一种或多种癌症抗原(例如,CEA、MAGE-1、存活素、p53、HER2-neu、AFP、ras)、促炎蛋白和/或促免疫原性蛋白。在另一个实施方式中,可以使用iPSC从患者自身组织(例如,皮肤、肌肉、脂肪、骨髓、器官、毛发、血液和尿液或者组织组合)产生疫苗,借此产生患者特异性疫苗。
在一个实施方式中,提供了用于治疗患者中癌症的方法,所述方法包括用疫苗对患者疫苗接种,其中所述疫苗包含有效量的获自胚胎来源、或者通过来自该患者或另一位患者或人的体细胞的重编程获得、或者获自iPSC的同种异体来源的哺乳动物多能干细胞,其中所述疫苗接种包括向对其有需要的患者施用哺乳动物多能干细胞的步骤。如本文所使用的,所述方法同样适用于可以被称为用于癌症治疗的患者的任何哺乳动物。
在所述方法的一个变化中,哺乳动物多能干细胞来源于非特异性体细胞。有关用于体细胞重编程的方法和不使用胚胎干细胞用于使任何细胞系的患者特异性干细胞再生的方法的总结,参见Rajasingh,J.Prog.Mol.Biol.Transl.Sci.,2012,111:51-82。在一个变化中,使用病毒和非整合非病毒方法,通过基因组重编程产生iPSC。在另一个变化中,将多能干细胞与佐剂一起配制,如将多能干细胞与佐剂组合或在佐剂中乳化。
在上述方法的一个方面,多能干细胞是诱导的多能干细胞(iPSC)。在所述方法的另一个方面,哺乳动物多能干细胞是未分化的多能干细胞。在所述方法的另一个方面,使用含有4个重编程因子(包括Oct4、c-Myc、KLF-4和Sox2)的小内含子质粒以及可能的shRNAp53的添加产生多能干细胞。在所述方法的一个变化中,多能干细胞未基因工程化以过表达免疫原性蛋白,如通过使用GM-CSF。在所述方法的另一个变化中,多能干细胞基因工程化以过表达癌症抗原、促炎蛋白和/或促免疫原性蛋白。在一个实施方式中,其中多能干细胞基因工程化以过表达促炎蛋白(例如,通过使用GM-CSF、INFg、DNMT抑制剂)或者过表达促免疫原性蛋白(例如,MHC I类、β2m、TAP相关蛋白或c-Myc/Oct4),或者过表达一种或多种癌症抗原(例如,CEA、MAGE-1、存活素、p53、HER2-neu、AFP、ras)或者过表达促炎蛋白和/或促免疫原性蛋白。在另一个实施方式中,其中可以使用iPSC从患者自身组织(例如,皮肤、肌肉、脂肪、骨髓、器官、毛发、血液和尿液或者组织组合)产生疫苗,借此产生患者特异性疫苗。在所述方法的另一个方面,多能干细胞包括部分分化的拟胚体。
在上述方法的另一个方面,干细胞选自由成纤维细胞、角化细胞、外周血细胞和肾上皮细胞组成的组。在所述方法的一个变化中,多能干细胞包含与多能性有关的细胞片段或表位。在另一个变化中,在疫苗接种之前辐照疫苗。在另一个变化中,通过皮下注射施用疫苗并施用小于或等于4周。在所述方法的一个变化中,每周进行疫苗接种。在另一个变化中,可以每天施用疫苗,一周施用几次,如一周两次或三次,或者每两周施用,并且持续时间可以为2、3、4、5、6、7或8周。
在上述方法的另一个方面,佐剂是加强对疫苗的免疫应答的免疫学试剂。相对于在不存在施用本申请所述疫苗的情况下的效果,治疗有效剂量的疫苗可以将体内免疫应答加强或提高至少约10%,至少约20%,至少约30%,至少约50%,至少约75%,至少约90%或更高。用于测量T细胞应答的测定包括(但不限于)迟发型过敏测试、使用肽主要组织相容性复合体四聚体的流式细胞术、淋巴细胞增殖测定、酶联免疫吸附测定(ELISA)、酶联免疫斑点测定(ELISpot)、细胞因子流式细胞术、细胞毒T淋巴细胞(CTL)测定、CTL前体频率测定、T细胞增殖测定、羧基荧光素二乙酸盐琥珀酰亚胺酯测定、多功能T细胞测定、通过定量反转录酶聚合酶链反应(RT-PCR)的细胞因子mRNA的测量和有限稀释分析。评价免疫应答的其它测定包括但不限于基因表达谱分析、一次评价对多个抗原的抗体应答的蛋白微阵列、荧光素酶免疫沉淀、用于在单细胞水平测量免疫系统中的多个胞内信号转导分子以用于淋巴细胞免疫监测的磷酸流式细胞术(phosphoflow)和监测血清中抗体免疫性的表面等离子共振生物传感器。在所述方法的一个变化中,佐剂选自由以下组成的组:CpG、QS21、聚(二(羧基苯氧基)磷腈;脂多糖的衍生物,如单磷酰脂质A、胞壁酰二肽(MDP;Ribi)、苏氨酰-胞壁酰二肽(t-MDP;Ribi);OM-174;霍乱毒素(CT)和利什曼虫伸长因子(Leishmania elongationfactor);或其混合物。
在所述方法的另一个方面,在肿瘤切除术之后作为辅助疗法施用疫苗。在所述方法的一个变化中,结合化疗、其它免疫治疗剂如抗体和小分子(包括含有这些试剂或分子的纳米颗粒)施用疫苗。在另一个变化中,可以在新辅助疗法(术前)、辅助疗法(术后)或者转移性环境中或者在预防性环境中在癌症发生之前提供疫苗。在所述方法的另一个方面,在肿瘤切除术之前作为新辅助疗法施用疫苗。在所述方法的另一个方面,在转移性环境中作为疗法施用疫苗。在所述方法的另一个方面,与单一或多种化疗剂、免疫治疗剂、其它生物制剂和小分子(包括含有这些试剂的纳米颗粒)组合施用疫苗,例如,免疫治疗剂为抗-PDL1、抗-PD1或抗-CTLA4抗体,例如,其它生物制剂和小分子为diprovocim。在所述方法的另一个方面,癌症选自由乳腺癌、黑素瘤和间皮瘤组成的组。在所述方法的另一个方面,癌症选自由以下组成的组:白血病、多发性骨髓瘤、淋巴瘤、脊髓增生病、鳞状细胞癌、腺癌、肉瘤、神经内分泌癌、膀胱癌、皮肤癌、脑和脊髓癌、头颈癌、骨癌、乳腺癌、宫颈癌、结肠癌、直肠癌、子宫内膜癌、胃肠癌、(下)喉癌、食道癌、生殖细胞癌、移行细胞癌、肝癌、肺癌、胰腺癌、肝胆管型肝癌、低分化癌、前列腺癌、眼癌、肾细胞癌、卵巢癌、胃癌、睾丸癌、甲状腺和胸腺癌。
在另一个实施方式中,提供了用多能干细胞癌症疫苗对哺乳动物接种疫苗的方法,所述方法包括:引入哺乳动物多能干细胞,其来自1)胚胎来源,或者2)通过来自受体的体细胞的重编程;和向受体提供多能干细胞。在所述方法的另一个方面,哺乳动物细胞是未分化的多能细胞。
在所述方法的一个方面,使用含有4个重编程因子(包括Oct4、c-Myc、KLF-4和Sox2)的小内含子质粒产生多能干细胞。在所述方法的一个变化中,多能干细胞未基因工程化以过表达免疫原性蛋白,如通过使用GM-CSF。在所述方法的一个变化中,将多能干细胞基因工程化或改变以过表达免疫原性蛋白,如通过使用GM-CSF。
在所述方法的另一个方面,将多能干细胞基因工程化以过表达癌症抗原和/或免疫原性蛋白。在所述方法的另一个方面,多能干细胞选自由成纤维细胞、角化细胞、外周血细胞和肾上皮细胞组成的组。在所述方法的一个变化中,多能干细胞包含与多能性有关的细胞片段或表位。
在上述方法的另一个方面,在疫苗接种之前辐照疫苗。在所述方法的一个变化中,将疫苗皮下注射小于或等于4周的一段时间,如3周、2周或约1周。在另一个变化中,每周进行疫苗接种。在另一个变化中,可以每天进行疫苗接种,一周进行几次,如一周两次或三次,或者每两周进行,并且持续时间可以为2、3、4、5、6、7或8周或更长。
在上述方法的另一个方面,所述疫苗还包括佐剂,所述佐剂是加强对疫苗的免疫应答的免疫学试剂。在上述方法的一个变化中,肿瘤切除术之后的辅助疫苗接种致使产生了干净的切除区(RA)以及免疫系统的重新激活以靶向癌细胞。在以上方法中的每一个的另一个变化中,所述方法提供了肿瘤特异性应答、有效抗原递呈、阳性辅助性T细胞免疫应答中的至少一种并且产生了细胞毒T细胞活性。
在所述方法的一个变化中,所述治疗方法未产生由于疫苗所造成的自身免疫应答迹象;或者所述治疗方法产生由于疫苗所造成的基本不可检测的自身免疫应答迹象。在所述方法的另一个变化中,将疫苗用作肿瘤切除术之后的辅助疗法。在一个变化中,所述方法向患者提供了至少一轮辅助疗法;或者至少两轮(C+I)疫苗辅助疗法,无明显的癌症复发,如黑素瘤或乳腺癌,或者如本文所列举的癌症。在另一个变化中,所述方法致使成熟抗原递呈细胞(APC)的上调和辅助性T细胞的上调。
在另一个变化中,疫苗通过IL-4表达B细胞、TNF-α表达CD11b+GR1hi骨髓细胞的全身上调以及肿瘤促进Th17细胞的减少中的至少一种重新激活免疫系统排斥残余癌细胞,如黑素瘤细胞。在另一个变化中,所述方法致使诱导肿瘤降解,包括肿瘤注射位点和疫苗接种位点附近的降解。在一个变化中,所述方法致使治疗后肿瘤尺寸减小至少10%、20%、30%、40%、50%、75%、85%、90%或大于95%。在另一个变化中,所述方法致使免疫系统初免和免疫系统重新激活并特异性靶向癌细胞。在以上方法中的每一种的另一个变化中,所述方法可以用作多种癌症类型的辅助免疫疗法,并且可以在诊断后1周、2周、3周、4周内或者约5周内有效。在另一个变化中,所述方法提供了预防免疫接种,其使得对多种癌症类型产生有效且特异性的应答。在另一个变化中,有效且特异性的应答由以下产生:淋巴结中的成熟APC的上调、以及随后辅助性T细胞和细胞毒T细胞局部升高;并且经过一段时间以后,辅助性T细胞和细胞毒T细胞还全身升高。在另一个变化中,表达IL-2、IL-4和IL-5的B细胞和T细胞可以指示疫苗接种中的肿瘤消退。
在所述方法的另一个变化中,疫苗接种对多种癌症类型产生了广泛的肿瘤免疫并且为免疫系统提供了大量(可以包括数十并且高达数百或数千)肿瘤抗原。在所述方法的另一个变化中,疫苗接种重新激活免疫系统靶向已确立的癌症而无疗法相关不良影响(例如,自身免疫应答、重量减轻、细胞因子释放综合征及其组合),并且可以在诊断后几周内创建所述方法。因此,所述方法在癌症的常规初步治疗后不久为个性化辅助免疫疗法提供了可行选择。在所述方法的另一个变化中,通过肌内、皮内、皮下、静脉内、动脉内、脾内、结内(intranodal)、肿瘤内或者通过鼻内方法施用疫苗。
在另一个实施方式中,提供了热稳定的疫苗组合物,其包含有效量的获自胚胎来源、或者通过来自哺乳动物的体细胞的重编程所获得的哺乳动物多能干细胞,和任选地,加强对疫苗的免疫应答的佐剂或免疫学试剂。在一个变化中,热稳定的疫苗允许不需要冷链储存的储存,从而使得能够在没有或具有有限冷链储存能力的地区容易地引入疫苗。在一个变化中,所述疫苗还包含有效量(如0.01%至1%wt/wt,0.05%至0.5%wt/wt,0.05%至1%wt/wt或者0.01%至0.5%wt/wt的近似范围)的二醇,如丙二醇、聚乙二醇300和甘油,或其混合物。在另一个变化中,作为标准液体制剂或者作为喷雾干燥制剂,所述疫苗在约35℃稳定长达6个月,长达12个月,长达24个月或者长达36个月。
用于疫苗的干燥方法的一个方面包括喷雾干燥法。例如,喷雾干燥法可以包括从高压喷嘴或者通过使用离心力(如本领域中已知的雾化器)喷雾的方法。可以用于喷雾干燥的气体或空气包括温度足以使具有所期望的含水量的疫苗粉末干燥的加热空气或热空气。在一个方面,气体是惰性气体,如氮气或富氮空气。
在一个方面,热气温度可以为约30℃至50℃,30℃至60℃,30℃至70℃或者约30℃至100℃。可以在高压喷嘴中使用的在处理期间用于喷雾的高压可以包括约10至1,000psi,100至800psi或者200至500psi。可以在可以将干燥疫苗的剩余水或剩余含水量控制在约1%至约6%,1%至5%,2%至6%,3%至6%或者约3%至5%的情况下进行喷雾干燥。
在一个方面,然后可以在来自商业供应商如Buchi、Niro、Yamato Chemical Co.、Okawara Kakoki Co.的常规喷雾干燥设备和类似的可商购的喷雾干燥器中使乳液喷雾干燥。还可以使用喷雾干燥方法,如旋转雾化、加压雾化和双流体雾化。在这些方法中使用的装置的实例包括Parubisu微型喷雾干燥器(Mini-Spray)GA-32和Parubisu喷雾干燥器DL-41(Yamato Chemical Co.)或者喷雾干燥器CL-8、喷雾干燥器L-8、喷雾干燥器FL-12、喷雾干燥器FL-16或者喷雾干燥器FL-20(Okawara Kakoki Co.),其可以用于使用转盘式雾化器的喷雾干燥法。例如,产生本申请所述的粉末的雾化器的喷嘴可以包括1A、1、2A、2、3型喷嘴(Yamato Chemical Co.)或者类似的可商购的喷嘴,其可以用于上述喷雾干燥器。另外,可以将盘式MC-50、MC-65或MC-85(Okawara Kakoki Co.)用作喷雾干燥器的雾化器的转盘。
在另一个方面,获自干燥过程的疫苗粉末可以包含按重量计1%、按重量计5%、按重量计7%、按重量计10%、按重量计20%、按重量计30%、按重量计40%、按重量计50%或更高的平均粒径在约5至1,000微米,约10至500微米,10至350微米,20至250微米,40至200微米或者约50至150微米的范围内的颗粒。在一个方面,获自干燥过程的粉末包含按重量计约1%至10%的平均粒径为50至150微米的颗粒。
在疫苗组合物的另一个方面,多能干细胞是诱导的多能干细胞(iPSC)。在疫苗组合物的另一个方面,哺乳动物多能干细胞是未分化的多能干细胞。在疫苗组合物的另一个方面,干细胞选自成由纤维细胞、角化细胞、外周血细胞和肾上皮细胞组成的组。
在疫苗组合物的另一个方面,佐剂选自由以下组成的组:CpG、QS21、聚(二(羧基苯氧基)磷腈;脂多糖的衍生物,如单磷酰脂质A、胞壁酰二肽(MDP;Ribi)、苏氨酰-胞壁酰二肽(t-MDP;Ribi);OM-174;霍乱毒素(CT)和利什曼虫伸长因子。
在一个变化中,本申请公开了用于治疗患者中癌症的制剂,所述治疗包括用疫苗对所述患者疫苗接种,其中所述疫苗包含有效量的获自胚胎来源、或者通过来自患者的体细胞的重编程所获得的哺乳动物多能干细胞,其中所述疫苗接种包括向对其有需要的患者施用哺乳动物多能干细胞的步骤。
在如本文所列举的方法中的每一种的一个变化中,提供了用于治疗患者中癌症的疫苗接种,其中所述疫苗包含有效量的获自胚胎来源、或者通过来自患者的体细胞的重编程所获得的哺乳动物多能干细胞,其中所述疫苗接种包括向对其有需要的患者施用哺乳动物多能干细胞的步骤。在另一个变化中,疫苗是热稳定的疫苗组合物,其包含有效量的获自胚胎来源、或者通过来自哺乳动物的体细胞的重编程所获得的哺乳动物多能干细胞,和加强对疫苗的免疫应答的佐剂或免疫学试剂。
附图说明
图1是显示通过测量最大B细胞应答对最优疫苗接种日程表的评价的图示。
图2是显示小鼠中乳腺癌和黑素瘤的预防性治疗的体内有效性的图示。
图3是显示致使dLN中抗原递呈升高以及dLN和脾脏中后续效应/记忆T细胞应答的预防接种的图示。
图4是显示C+I疫苗在乳腺癌的原位肿瘤模型中的体外及体内肿瘤特异性性质的图示。
图5是显示TIL显示出具有B细胞和CD4+T细胞抗肿瘤反应的促炎表型的图示。
图6是显示C+I疫苗接种产生类似于肿瘤排斥阳性对照组的全身免疫谱以及疫苗特异性T细胞克隆上调的图示。
图7是显示在肿瘤切除术后,辅助疫苗接种产生了干净的RA和免疫系统对靶标癌细胞的重新激活的图示。
图8包括图形和描述表示,其显示A)作为PBS、CpG和iPSC加CpG疫苗的相对组织影响;B)iPSC+CpG疫苗提高了PBMC中的IL-2+CD45+细胞,而iPSC+CpG疫苗提高了脾脏中的效应记忆CD8+T细胞;C)在胰腺癌细胞刺激72小时之后,iPSC疫苗引起PBMC增殖的结果。
具体实施方式
图1.通过测量最大B细胞应答,评价最优疫苗接种日程表。(a)最优疫苗接种设置为每周C+I疫苗接种,实施4周,如通过结合至DB7的IgG%所评价的,非特异性MEF结合无显著升高(n=3只对照动物,n=4只iPSC初免动物,n=4只C+I初免2周和n=4只C+I初免4周动物,平均值±s.e.m.,使用Tukey多重比较检验进行ANOVA)。(b)PBS接种4周、iPSC接种4周、C+I接种2周或者C+I接种4周的小鼠对胚胎成纤维细胞、iPSC和DB7癌细胞的血清IgG结合的代表性FACS图。作为分化细胞的对照样品,在分析中包括了部分分化的细胞培养物。这通过IgG阳性和阴性细胞显示,其表明IgG结合对于所分析细胞的未分化部分是特异的。C+I接种4周的小鼠对DB7乳腺癌细胞显示出最佳的IgG结合。(c)显示疫苗制备的方案包括对于多能性分选鼠科iPSC,辐射,在佐剂溶液中再混悬并在侧腹位点1至4皮下注射。
图2.小鼠中乳腺癌和黑素瘤的预防性治疗的体内有效性。(a)到第4周,用C+I疫苗对FVB小鼠疫苗接种导致10只小鼠中的7只中的癌细胞完全排斥,并且DB7肿瘤尺寸整体减小(n=10只每组)。(b,c)A中所提供的数据的定量。到第2周,用C+I疫苗对C57BL/6小鼠疫苗接种导致由侵袭性B16F0黑素瘤细胞系所引起的黑素瘤尺寸显著降低(n=8只PBS,n=9只iPSC初免,n=10只CpG初免和n=9只C+I初免)。(d)图C中所提供的肿瘤尺寸数据的定量。b和d中的数据表示为平均值±s.e.m.,使用Tukey多重比较检验进行ANOVA,*p<0.05,**p<0.001,***p<0.001,****p<0.0001)。
图3.预防接种导致dLN中抗原递呈升高以及dLN和脾脏中后续效应/记忆T细胞应答。(a)B16F0引入后2周,iPSC和C+I接种的小鼠显示在C+I接种的小鼠的周围血液中,调节性T细胞(CD4+CD25+FoxP3+)的百分比显著降低并且效应/记忆辅助性T细胞(CD4+CD44+)增加。在该点,仅观察到效应/记忆细胞毒T细胞(CD8+CD44+)的有限上调。(b)C+I组中的dLN具有显著更高的效应/记忆辅助性T细胞百分比和(c)通过成熟抗原递呈细胞(APC),如巨噬细胞(CD11b+F4/80+MHC-II+CD86+)和树突状细胞(CD11c+MHC-II+CD86+)的升高的抗原递呈。(d)C+I接种的FVB小鼠显示在DB7引入后4周,脾脏中激活的细胞毒T细胞(CD8+颗粒酶-B+)的百分比升高。(e)这些小鼠的dLN显示成熟抗原递呈巨噬细胞以及(f)效应/记忆辅助性T细胞和细胞毒T细胞的频率升高。(n=5只每组,平均值±s.e.m.,使用Tukey多重比较检验进行ANOVA,*p<0.05,**p<0.001,***p<0.001,****p<0.0001)。
图4.C+I疫苗在乳腺癌的原位肿瘤模型中的体外及体内肿瘤特异性性质。(a)通过暴露于iPSC裂解液和DB7裂解液,与单独的CpG组(媒介物;n=4)相比,对于C+I接种组(iPSC接种的;n=6)中的脾细胞的免疫细胞激活的双重ELISPOT测定(红色:颗粒酶-β,蓝色:IFN-γ)。(b)与媒介物组相比,C+I接种组中的IFN-γ斑点数目显著升高。(通过AdobePhotoshop软件,基于色差计算斑点。***p<0.001,学生t检验)。(c)在肿瘤接种后3周,在乳腺癌的原位肿瘤模型中,与媒介物小鼠相比,C+I接种小鼠中肿瘤体积的代表性图像。(d)在继承性转移后3周,在乳腺癌的原位肿瘤模型中,与媒介物小鼠相比,在接受来自C+I接种小鼠的脾细胞的继承性转移后,具有肿瘤的小鼠中的肿瘤体积的代表性图像。(e)图C结果的定量显示在3周的过程中,在乳腺癌的原位肿瘤模型中,与媒介物小鼠相比,C+I接种小鼠中肿瘤体积显著减小。(f)与接受来自媒介物接种的小鼠的脾细胞的小鼠(n=8)相比,在来自C+I接种小鼠的脾细胞的继承性转移之后3周的过程中,来自图D的具有肿瘤的小鼠的肿瘤体积显著减小(n=7)。(***p<0.001,单因素ANOVA)。
图5.TIL显示出具有B细胞和CD4+T细胞抗肿瘤反应的促炎表型。(a)在CpG+iPSC(C+I)接种小鼠(n=5)中注射2×106个AC29(A)间皮瘤细胞之后1周,该C+I/A组中的TIL显示如通过CyTOF数据的SPADE分析所评价的,与PBS(P)接种的小鼠(n=5;P/A组)相比,效应/记忆CD4+和CD8+细胞的频率升高并且T-reg数减少。阳性对照组、C+I接种和CpG+AC29(C+A)接种小鼠分别完全排斥iPSC(n=5;C+I/I)和AC29细胞(n=5;C+A/A),且随后单核细胞和巨噬细胞和基质细胞的存在增加。(b)CyTOF数据的Citrus分析显示C+I小鼠中的B细胞和辅助性T细胞丛簇中较高的IL-2、IL-4和IL-5水平导致了肿瘤内免疫应答。
图6.C+I疫苗接种导致了类似于肿瘤排斥阳性对照组的全身免疫谱以及疫苗特异性T细胞克隆的上调。(a)在肿瘤细胞引入后1周,来自不同处理组的血清的Luminex分析显示与PBS对照小鼠(PBS/AC29)相比,阳性对照小鼠(C+I/iPSC,C+A/AC29)中的全身性细胞因子的存在显著较低。C+I/AC29组具有与阳性对照样品类似的趋势(C+I/iPSC和C+A/AC29,使用Tukey多重比较检验进行ANOVA,*p<0.05,*p<0.001,***p<0.001)。(b)在C+I接种小鼠(C+I1至C+I5/AC29)中,在TIL内存在更大的独特的疫苗相关变化,然而PBS接种小鼠(PBS1至5/AC29)在通常存在于淋巴器官中的T细胞中显示出更高的均一性。
图7.在肿瘤切除术后,辅助疫苗接种导致产生了干净的RA和免疫系统对靶标癌细胞的重新激活。(a)将经历R1肿瘤切除术的B16F0具有肿瘤的小鼠随机分成不同的处理组,并用C+I、CpG或PBS中的任一种每周接种疫苗,接种4周。(b)来自切除区(RA)中的皮肤活组织检查(*)的DNA显示在用C+I疫苗进行4轮疫苗接种后,肿瘤细胞的百分比显著降低,如通过ddPCR所评价的。(c)肿瘤切除术后的疫苗接种导致Th17细胞减少(CD4+CD62L+TCR-b+(IL-2/IL-17A);CD4+CD62L+CD44+TCR-b+(IL-17A))和TNF-α表达骨髓细胞(CD11b+CD44+GR1hi(TNF-a))和IL-4表达CD19+CD62L+CD44+B细胞的存在升高(n=8只PBS,n=10只CpG,n=10只C+I,平均值±s.e.m.,使用Tukey多重比较检验进行ANOVA,*p<0.05)。SQ:皮下注射。
提供了用于产生多能载体(MIP)、通过该载体产生iPSC、建立癌症疫苗以及对受试者预防性和治疗性接种疫苗的组合物和方法。
如本文所使用的,癌症疫苗是宿主的多能干细胞与佐剂组合使用以使同一宿主的免疫系统在靶向癌细胞中初免。
宿主通常是哺乳动物,其包括但不限于人、狗、猫或马。实验室动物,如啮齿类是癌症选择研究、表位筛选和机制研究所关注的。大型动物研究,例如,猪和猴是安全性研究所关注的。
出于本发明的目的,多能细胞可以相对于受体是自体同源的、同种异体的或者异种的。
“治疗”是指诊疗性治疗和预防性或预防措施两者。需要治疗的那些包括已患有病症的那些以及其中将要预防病症的那些。在另一个实施方式中,任何病况或病症的“治疗”在某些实施方式中是指存在于受试者中的病况或病症的改善,包括预防性改善。在另一个实施方式中,“治疗”包括至少一种身体参数的改善,其可以是受试者难辨别的。在另一个实施方式中,“治疗”包括病况或病症的物理(例如,可辩别症状的稳定)或生理学(例如,身体参数的稳定)或两者的调节。在另一个实施方式中,“治疗”包括延迟病况或病症的发病。在另一个实施方式中,“治疗”包括减轻或消除病况(例如,疼痛)或者病况(例如,癌症)的一种或多种症状(例如,疼痛),或者延迟病况或病况的一种或多种症状的发展,或者减轻病况或病况的一种或多种症状的严重程度。在另一个实施方式中,“治疗”包括预防性地施用本文所述的疫苗。
出于治疗的目的,“哺乳动物”是指分类为哺乳动物的任何动物,包括人、家畜和农畜以及动物园动物、运动动物或宠物,如狗、马、猫、牛等。在一个方面,哺乳动物是人。
“多能性”和多能干细胞表示这些细胞具有分化为成年生物体中所有类型的细胞的能力。术语“诱导的多能干细胞”涵盖了多能细胞,与胚胎干细胞(ESC)类似的是其可以长时间培养,同时维持分化为生物中所有类型细胞的能力,但是不同于ESC(来源于胚囊的内细胞团)的是其来源于分化的体细胞,即具有较窄、更限定的潜能且在不存在实验操纵的情况下,不能产生生物体中所有类型细胞的细胞。“具有成为iPSC的潜能”表示可以将分化的体细胞诱导成为,即可以重编程成为iPSC。换言之,可以诱导体细胞重新分化以建立具有多能细胞的形态特征、生长能力和多能性的细胞。iPSC具有人ESC样形态,作为扁平集落生长,具有大核质比、限定的边界和明显的核。另外,iPSC表达本领域技术人员已知的一种或多种关键多能性标志物,其包括但不限于碱性磷酸酶、SSEA3、SSEA4、Sox2、Oct3/4、Nanog、TRA160、TRA181、TDGF 1、Dnmt3b、FoxD3、GDF3、Cyp26a1、TERT和zfp42。另外,多能细胞能够形成畸胎瘤。另外,它们能够形成或有助于生物机体中的外胚层、中胚层或内胚层组织。
与3、4、5、6或更多个因子组合,体细胞可以去分化/重编程为表面上与胚胎干细胞(ESC)不可分辨的状态;这些重编程的细胞被称为“诱导的多能干细胞”(iPSC、iPC、iPSCs)并且可以从多种组织产生。
疫苗还可以包含佐剂。在疫苗中有用的佐剂对本领域技术人员是熟知的,并因此,本领域技术人员可以通过回顾本申请常规地进行适当佐剂的选择。有用的佐剂的实例包括但不限于弗氏完全和不完全佐剂、矿物凝胶剂如氢氧化铝、表面活性物质如溶血卵磷脂、普卢兰尼克多元醇类、聚阴离子、肽和油乳化液。在一些实施方式中,疫苗是无菌、无热原、配制为等渗且无颗粒的可注射组合物。可注射组合物所需的纯度标准是熟知的,且用于制备可注射组合物的生产和纯化方法也是熟知的。可以通过本领域中已知的任何方式施用疫苗。可以肠胃外施用药物可注射组合物,即静脉内、皮下和肌内施用。在一些实施方式中,可以鼻内施用药物疫苗组合物或施用至口腔中的组织,如通过舌下施用或施用至口腔组织。
术语“干细胞”是指本身能够复制或自更新且能够发展为多种细胞类型的特化细胞的非特化细胞。经历分裂的干细胞产物是具有与原始细胞相同的能力的至少一个其它细胞。术语“干细胞”旨在涵盖胚胎和成熟干细胞、全能和多能细胞以及自体同源细胞和异源细胞。干细胞及其培养:多能干细胞是来源于任何组织种类(通常胚胎组织,如胎儿或胎前组织)的细胞,所述干细胞具有在适当条件下,产生作为全部3个胚层(内胚层、中胚层和外胚层)的衍生物的不同细胞类型的子代的能力的特征。这些细胞类型可以以已建立的细胞系的形式提供,或者它们可以直接获自原代胚胎组织并立即用于分化。包括NIH人胚胎干细胞登记目录中所列的细胞,例如,hESBGN-01、hESBGN-02、hESBGN-03、hESBGN-04(BresaGen,Inc.);HES-1、HES-2、HES-3、HES-4、HES-5、HES-6(ES Cell International);Miz-hES1(MizMedi Hospital-Seoul National University);HSF-1、HSF-6(位于San Francisco的University of California);和H1、H7、H9、H13、H14(Wisconsin Alumni ResearchFoundation(WiCell Research Institute))。使用病毒或非病毒载体,通过外源过表达多能性标志物(OCT4、SOX2、c-MYC、NANOG和KLF4),借此对转染细胞系诱导多能性,从而产生了诱导的多能干细胞。
当它们尚未定向为特定系时,多能干细胞被认为是未分化的。当它们尚未定向为特定分化系时,ESC被认为是未分化的。这些细胞显示出将它们与胚胎或成体来源的分化的细胞相区分的形态特征。本领域技术人员容易辨别未分化的ESC,并且其通常在细胞集落中以二维微观视图出现且具有高核/质比和明显的核。未分化的ESC表达可以用作检测未分化细胞的存在的标志物的基因,并且其多肽产物可以用作阴性选择的标志物。
术语“治疗”是指减轻、改善、逆转、缓解、抑制其发展或预防疾病或医学病况,如癌症。在另一个方面,该术语还涵盖了预防、疗法和治愈。接受“治疗”或经历“治疗”的受试者或患者是需要这种癌症治疗的任何哺乳动物,其包括灵长类动物和人以及其它哺乳动物,如马、牛、猪和绵羊;和家养哺乳动物和宠物。
重编程:使用产生类似的癌症疫苗性质以预期是由于MIP质粒所造成的结果的MIP或任何载体的重编程细胞。
所关注的体细胞包括但不限于成纤维细胞、血细胞、尿细胞等。
佐剂:佐剂是加强受体免疫系统的免疫应答以靶向多能干细胞的免疫学试剂。佐剂包括在本申请中公开的那些和本领域中已知用于加强受体免疫系统的免疫应答以靶向多能干细胞的那些。术语“佐剂”是指可以刺激免疫应答的任何物质或试剂。一些佐剂可以导致免疫系统细胞的激活。例如,佐剂可以使免疫细胞产生和分泌细胞因子。可以导致免疫系统细胞激活的佐剂的实例包括但不限于本文所述的纳米乳液制剂,从皂树(Qsaponaria)皮纯化的皂苷,如QS21、聚(二(羧基苯氧基)磷腈(PCPP聚合物;Virus ResearchInstitute,USA);脂多糖衍生物,如单磷酰脂质A(MPL;RibiImmunoChem Research,Inc.,Hamilton,Mont.)、胞壁酰二肽(MDP;Ribi)和苏氨酰-胞壁酰二肽(t-MDP;Ribi);OM-174(与脂质A有关的氨基葡萄糖二糖;OM Pharma SA,Meyrin,Switzerland);霍乱毒素(CT)和利什曼虫(Leishmania)伸长因子(一种纯化的利什曼虫蛋白;Corixa Corporation,Seattle,Wash.);或其混合物。例如,本领域中已知的其它佐剂可以包括磷酸铝或氢氧化物盐。在一些实施方式中,例如,将本发明所述的多能干细胞与一种或多种佐剂一起施用。在一些实施方式中,所使用的佐剂描述于US2005158329;US2009010964;US2004047882;或者美国专利号6,262,029。
如本文所使用的,短句“对于加强(或诱导)免疫应答有效的量”(例如,用于诱导或加强免疫应答的组合物)是指在哺乳动物中刺激、产生和/或引起免疫应答所需的剂量水平或量(例如,当施用于哺乳动物时)。如本文所公开的,可以在不同的时间段内在一次或多次施用中施用有效量(例如,通过相同或不同的途径)。应用或剂量不旨在受限于特定制剂或施用途径或时间段。
如本文所使用的,肿瘤相关抗原(TAA)或肿瘤特异性抗原(TSA)是指癌细胞上存在的已知以及未知的抗原/表位。
通过癌症疫苗的最优免疫应答将使宿主免疫系统初免以靶向多能细胞上存在的这些TAA和TSA,并且对表达TAA和TSA的癌症类型提供免疫性。
已知的TAA和TSA包括但不限于EPCAM、CEACAM、TERT、WNK2、存活素等(all Onco;Bushman Lab,University of Pennsylvania)。
疫苗接种的方法:
作为癌症疫苗的来源,多能干细胞可以获自任何哺乳动物种,例如包括人、灵长类动物、马、牛、猪等,但具体地获自人细胞。
使用本领域中已知的标准方法,如以无饲养细胞的条件使多能干细胞生长,直至形成稳定的多能干细胞群。该群应包括>90%纯的多能干细胞百分比,如通过使用磁性抗体分选(MACS)或荧光抗体分选(FACS)的多能干细胞分选所评价的。
可以需要将用于癌症疫苗的细胞剂量(1×106至1×109的范围)对该疫苗所用于的哺乳动物进行调节。在小型啮齿类中,疫苗的有效性设定在2×106个多能干细胞每剂量。
在疫苗接种之前辐照多能干细胞以防止在注射位点形成畸胎瘤。应根据多能干细胞的敏感性或对细胞周期阻滞的耐受性来调整该剂量。对于从小型啮齿类(例如,小鼠)所产生的iPSC,将该剂量设置为6000rads(1000-10000rads的范围)。
疫苗接种位点应在皮下空间以使得适当的抗原递呈至免疫系统。应放置疫苗的位置可以基于受试者的形态而改变,但是应在不同的注射位点进行以避免局部免疫抑制反应。在一个实施方式中,可以在4周的过程中,将所述方法实施每周进行的总计4轮疫苗接种。在另一个实施方式中,可以每天实施所述方法,一周实施几次,或者每两周实施,并且持续时间可以为2、3、4、5、6、7或8周。疫苗接种次数基于受试者对疫苗的免疫应答以及初免条件,并因此,可以因此在治疗期间调整。
在另一个实施方式中,在本发明中,还可以基因改变多能细胞以提高它们的免疫原性性质或者使它们更适合使宿主免疫应答对靶向TSA和TAA初免。
可以结合C+I疫苗使用小分子试剂或生物化合物以提高C+I初免的免疫细胞对癌细胞的细胞毒潜能。例如,这些分子试剂或生物化合物可以包括diprovocim、PD-1或PDL-1抑制剂等。
在一个实施方式中,佐剂的治疗剂量将取决于用于癌症疫苗的佐剂。在使用佐剂CpG的癌症疫苗的原始描述中,将剂量设定在5μM的工作浓度。然而,取决于要治疗的哺乳动物和癌症类型,可以使用佐剂的10倍稀释因数或浓缩因数,如0.05μM、0.03μM、0.01μM;或10μM、30μM或约50μM的浓度。本领域技术人员将理解将对于活性剂的分子量并且还基于佐剂对于特定治疗的有效性来调整这些指南。还可以对于接受疫苗的哺乳动物类型改变剂量。
实验
描述了以下实施例以向本领域技术人员提供如何实施和使用本发明的完整公开和描述,并且以下实施例不意欲限制本发明人所认为的其发明的范围,也不意欲表示以下实验是全部或唯一所实施的实验。已进行了工作以确保相对于所使用数值的准确度(例如,量、温度等),但是应说明一些实验误差和偏差。除非另外说明,否则份数是重量份数,分子量是重均分子量,温度是摄氏度(℃),并且压力在大气压或附近。
已就本发明人所发现或所提议的具体实施方式描述了本发明以包含用于本发明实践的优选模式。本领域技术人员将理解根据本发明公开,可以在不背离本发明的预期范围的情况下,对举例说明的具体实施方式做出多种修改和改变。例如,由于密码子冗余,可以在潜在的DNA序列中做出变化但不影响蛋白序列。此外,由于生物功能等价性的考虑,可以对蛋白质结构做出改变但不影响种类或量的生物作用。所有这些修改旨在包括在所附权利要求的范围内。
对于在本发明实践中有用的一般技术的进一步详细描述,执业医生可以参考细胞生物学、组织培养和胚胎学中的标准教科书和综述。对于组织培养和ESC,读者可能希望参考Teratocarcinomas and embryonic stem cells:A practical approach(E.J.Robertson,ed.,IRL Press Ltd.1987);Guide to Techniques in MouseDevelopment(P.M.Wasserman et al.eds.,Academic Press 1993);Embryonic Stem CellDifferentiation in Vitro(M.V.Wiles,Meth.Enzymol.225:900,1993);Properties anduses of Embryonic Stem Cells:Prospects for Application to Human Biology andGene Therapy(P.D.Rathjen et al.,Reprod.Fertil.Dev.10:31,1998)。
分子和细胞生物化学中的一般方法可见于如下所示的这些标准教科书:Molecular Cloning:A Laboratory Manual,3rd Ed.(Sambrook et al.,HarborLaboratory Press 2001);Short Protocols in Molecular Biology,4th Ed.(Ausubelet al.eds.,John Wiley&Sons 1999);Protein Methods(Bollag et al.,John Wiley&Sons 1996);Nonviral Vectors for Gene Therapy(Wagner et al.eds.,Academic Press1999);Viral Vectors(Kaplift&Loewy eds.,Academic Press 1995);ImmunologyMethods Manual(I.Lefkovits ed.,Academic Press1997);和Cell and Tissue Culture:Laboratory Procedures in Biotechnology(Doyle&Griffiths,John Wiley&Sons 1998)。在本发明公开中提及的用于遗传操纵的试剂、克隆载体和试剂盒可获自商业供应商,如BioRad、Stratagene、Invitrogen、Sigma-Aldrich和ClonTech。
实施例1:
iPSC基癌症疫苗接种:针对癌症的自体同源干细胞疫苗。
我们证明了我们可以将自体同源来源的iPSC的免疫原性和致瘤性利用到癌症疫苗。使用多个小鼠株和多种癌症类型,我们显示了使用iPSC使宿主免疫系统在靶向癌症中初免的体外和体内效力,其完全抑制肿瘤成瘤或显著降低了肿瘤的生长。因此,本发明的疫苗接种方法提供了肿瘤成瘤的完全抑制或者显著降低的肿瘤生长。
此外,我们提供了在不同阶段产生免疫应答的免疫细胞的深入分析。我们还证明了所述疫苗作为肿瘤切除术后的辅助免疫疗法的效力,其致使免疫系统在靶向癌症和将其从切除区中清除中的重新激活。
肿瘤成瘤和发展由逃避免疫系统监督的高度增殖的低免疫原性细胞组成。因此,针对免疫系统在靶向癌症中的重新激活,正在探索癌症治疗领域内的新途径。研究人员试图将其实现的一种方法是通过使用嵌合抗原受体(CAR),其结果是有前景的。该疗法背后的概念是产生癌症特异性抗原受体并将其偶联至效应细胞,例如,T细胞,其中新一代CAR甚至引入了共刺激性途径。然而,结果易变,且患者会发生复发,这可能是由于靶标抗原表达丢失所造成的。解决该问题的方法将在于识别新的肿瘤特异性抗原,但是大量肿瘤抗原仍是未知的。
多能干细胞(PSC)和癌症组织与癌细胞都具有已知的、但也可能是未知的TSA和TAA,并因此它们可以是使免疫系统对靶标癌症初免的潜在试剂。然后,将该细胞用作与靶标癌症类型类似的替代细胞类型。胚胎细胞用于使免疫系统在靶向癌症中初免的应用尚未能在多种类型的癌症的治疗中显示出效力和安全性,并且其依赖于过表达GM-CSF的具有伦理负担的ESC和基因修饰的细胞系作为佐剂的使用(Yaddanapudi et al.,2012)。这些最后的组分使得这些治疗不适合于临床转化。
使用已在肿瘤疫苗接种中证明是成功的FVB株iPSC和佐剂CpG(Gilkeson et al.,1998;Goldstein et al.,2011;Mor et al.,1997;Mukherjee etal.,2007),我们通过CpG-iPSC(C+I)组合观察到了对鼠科乳腺癌(DB7)的有效免疫应答。简言之,我们首先建立了CpG的影响和最优疫苗接种日程表。我们用iPSC或C+I对FVB小鼠初免2周或4周并且在C+I 4周组中发现了对DB7肿瘤裂解液最强的体外T细胞应答。另外,使用C+I组合的4周疫苗接种日程表产生了对DB7最高的IgG结合(80.0±3.4%)并因此将其用于后续疫苗接种轮次(图1A,B)。
在优化疫苗接种日程表之后,我们继续对分成4组的40只FVB小鼠进行疫苗接种:1)PBS,2)仅CpG,3)仅iPSC和4)C+I。在每周1次的4次疫苗接种后,皮下注射5×104个DB7癌细胞并且使用卡尺测量监测肿瘤尺寸。1周后,所有小鼠在注射位点出现类似的病变,其在10只C+I治疗小鼠中的7只中消退,而在其它组中发展成更大的肿瘤(图2A,B)。肿瘤接种后4周,每组处死5只小鼠以分析血液、脾脏和引流淋巴结(dLN)中的免疫谱。将每组中的另外5只小鼠用于长达一年的长期存活研究。在实验结束后的前两周内,由于肿瘤尺寸大于1cm3,因此处死大部分小鼠。然而,C+I处理组中的两只小鼠存活1年并且对iPSC和DB7的抗体滴度与实验开始时类似并且一旦再次引入,能够完全排斥5×104个癌细胞。在该实验中用iPSC来源的内皮细胞初免的对照小鼠不能对DB7细胞系产生IgG应答,借此排除了使用含有FBS的培养基的培养条件可以导致交叉反应性或内源鼠科白血病病毒抗原的可能性。
为了证明我们的疫苗在靶向多种癌症类型中的有效性,使用与C57BL/6小鼠株同基因的黑素瘤细胞系B16F0进行实验。产生了C57BL/6iPSC并且将40只小鼠再分为PBS、CpG、iPSC和C+I组,并且每周处理,处理4周。在此之后,在下背部皮下注射5×104个B16F0细胞。通过卡尺测量的肿瘤生长评价显示在C+I组中,到第2周,肿瘤发展显著降低(图2C,D)。由于对照组中的大肿瘤尺寸,在肿瘤注射后两周,处死小鼠。随后,使用流式细胞术分析血液、dLN和脾脏中的免疫细胞谱。C+I组中的细胞计数分析显示在C57BL/6小鼠中,在肿瘤注射后2周,血液中的调节性T细胞(T-reg)显著减少并且dLN中的效应/记忆辅助性T细胞增加(图3A,B)并且成熟抗原递呈细胞(APC)的百分比增加(图3C)。
在肿瘤排斥的后期(4周),除了它们在dLN中的频率升高外,C+I接种组中的FVB小鼠在脾中具有显著升高的效应/记忆细胞毒T细胞(图3D,F)。通过分离自C+I接种小鼠的脾细胞对DB7肿瘤裂解液应答的IFN-γ的分泌的增加,进一步确认了这些细胞毒T细胞的肿瘤特异性(图4A,B)。如C57BL/6小鼠一样,还在FVB小鼠的dLN中观察到了成熟APC和辅助性T细胞的上调。
C57BL/6和FVB小鼠株两者均在整个研究期间保持健康并且未显示出由于疫苗所造成的自身免疫应答迹象。
在更临床相关的乳腺癌原位模型中评价了C+I疫苗的有效性。与媒介物(vehicle,载体)对照相比,在C+I接种小鼠中,早在癌细胞原位转移后一周,观察到了显著的肿瘤尺寸差异,随后在3周的过程中,肿瘤进一步减小(图4C,E)。使用原位乳腺癌小鼠的其它组,通过将来自C+I接种或者媒介物接种小鼠的脾细胞向这些具有肿瘤的小鼠的继承性转移,测试了体内肿瘤特异性(图4D)。结果与媒介物接种组相比,C+I接种组中的肿瘤尺寸显著降低(图4F)。
作为预防性治疗的模型,我们选择了与CBA/J小鼠同基因的间皮瘤细胞系AC29。产生了CBA/J iPSC并且每周用PBS(P)、CpG和iPSC(C+I)或CpG接种小鼠,接种4周,同时以辐照的AC29癌细胞(C+A)作为阳性对照。随后,皮下注射2×106个AC29细胞(A)或2×106个iPSC(I),并在1周后,分析TIL的免疫谱和TCR序列。使用表型和胞内染色试剂盒,使用通过飞行时间的细胞计数(CyTOF)分析,进行免疫谱分析,其显示与P/A对照相比(分别为21.1%、14.2%和3.0%),在C+I/A组中,效应/记忆CD4+(24.0%)和CD8+T细胞(22.4%)的存在升高,且T-reg降低(1.9%)(图5A)。使用Citrus(聚类识别,表征和回归)分析,与PBS对照组相比,在C+I接种小鼠中发现表达IL-2、IL-4和IL-5的B细胞和T细胞指示了肿瘤消退(图5B)。在接种组中,全身细胞因子水平显著较低,并且发现与肿瘤排斥的阳性对照小鼠相关(C+I/iPSC;C+A/AC29)(图6A)。
PBS对照组中的TCR测序显示了通常存在于胸腺和脾脏中的T细胞克隆中的重叠。相反,C+I组中的TCR在不同小鼠之间更加多样化。另外,在胸腺中通常存在较低频率的克隆,并且在脾中存在更类似的频率,这可能是基于对C+I疫苗的小鼠特异性应答所造成的(图6B)。在C+I组中,存在5只小鼠中的4只所共有的一个TCR克隆,其不存在于任何其它组中,并且在未治疗过的小鼠中也是极其罕见的。
为了评价疫苗作为肿瘤切除术之后的辅助疗法的有效性,我们随后在C57BL/6小鼠的下背部皮下注射了5×104个B16F0肿瘤细胞,并且在2周后,将R2或R1切除肿瘤。在接受两轮C+I疫苗辅助治疗后,R2切除的小鼠在切除区(RA)中无可见的黑素瘤复发,然而PBS对照接种小鼠在RA内具有可见的肿瘤。
在用C+I疫苗(n=10)、CpG(n=10)和PBS(n=8)接种4周的R1切除小鼠中(图7A),使用设计以检测和定量B16F0黑素瘤系的肿瘤-特异性引物分析了dLN和RA。在仅CpG和C+I疫苗组两者中,dLN中的肿瘤负荷降低,这表明了CpG作为通过肿瘤附近的注射诱导肿瘤降解的有效佐剂的效果。在距接种位点更远的位置,仅C+I接种组在RA中具有显著较低的肿瘤复发(图7B)。系统地,通过与对照组相比,免疫系统的重新激活和促进B16黑素瘤的Th17细胞的减少对其进行了解释(图7C)。
方法总结:
动物模型。对于多个实验(参见“CpG+iPSC疫苗制备和免疫”以及“癌症细胞系和移植”节),使用了年轻成年雌性FVB、C57BL/6J和CBA/J小鼠(6-8周大)。将动物随机分配至不同处理组。如果在实验最终期限之前,它们的身体状态需要安乐死,则将具有肿瘤的小鼠排除出实验,这包括肿瘤尺寸大于1cm3,可见的痛苦、疼痛或疾病。所有实验通过了斯坦福大学实验动物管理专家组(APLAC)的批准。
来自成纤维细胞的鼠科iPSC的产生。将来自FVB、C57BL/6J和CBA/J小鼠的成纤维细胞(The Jackson Laboratory,Bar Harbor,Maine)在添加了20%胎牛血清(FBS)和1×NEAA(ThermoFisher Scientific)的DMEM Glutamax(ThermoFisher Scientific,Waltham,MA,USA)中生长。使用TrypLE Express(ThermoFisher Scientific)使成纤维细胞解离,并将1×106个成纤维细胞在电穿孔缓冲液(Neon system,ThermoFisher Scientific)中重悬。用含有4个重编程因子Oct4、Sox2、c-Myc和KLF4的新型密码子优化的小内含子质粒(coMIP)转染细胞(Diecke S,Lu J,Lee J,Termglinchan V,Kooreman NG,Burridge PW,Ebert AD,Churko JM,Sharma A,Kay MA,Wu JC.Sci Rep.2015 Jan 28;5:8081.doi:10.1038/srep08081.PMID:25628230)。转染后,将细胞在辐照的小鼠胚胎饲养(MEF)细胞上铺板并在具有15% FBS、1×NEAA和10ng/ml鼠科白血病抑制因子(mLIF;EMD Millipore,MA,USA)的DMEM中培养。在iPSC集落开始出现之后,将其手动挑取并转移至新鲜的饲养层。长出iPSC集落,并在少量传代后,转移至0.2%明胶涂覆的板上,并使用磁珠分选(Miltenyi,Germany)对SSEA-1进行分选并保留纯的未分化的群体。对于鉴定,将iPSC对Oct4、Nanog、Sox2(Santa Cruz,CA,USA)、SSEA1和c-Myc(EMD Millipore)染色以评价多能性。另外,通过在NOD-SCID小鼠(The Jackson Laboratory)的后肢中移植1×106个iPSC,对所有iPSC系进行畸胎瘤测定。对所有细胞系测试支原体污染并认为是阴性的。
CpG+iPSC疫苗制备和免疫。对于每只小鼠,在注射前,以6,000rads辐照2×106个SSEA-1分选的同基因鼠科iPSC。将细胞在100μl 5μM溶于PBS中的CpG(Invivogen,SanDiego,USA)中混悬,并加载至1/4cc的胰岛素注射器(Terumo)中。根据StanfordUniversity的APLAC的指南,将小鼠置于吸气室中并用在100%氧气中的2%的异氟烷(Isothesia,Butler Schein)以2l/min的递送速度麻醉直至原位反射丧失。通过疫苗在小鼠侧腹中的皮下注射进行免疫,每周改变注射位点。通过体重测量和整体外形的肉眼检查,每周监测小鼠对疫苗的自体反应性的早期迹象。疫苗接种制剂和剂量与预防和辅助治疗实验一样。
癌细胞系和移植。乳腺癌系DB7是Joe Smith(University of Utah,USA)博士赠送的。它来源于FVB小鼠并且是非转移性细胞系。B16F0黑素瘤细胞系购自ATCC(Manassas,VA,USA)并且与C57Bl/6小鼠同基因。它具有向肺的低级淋巴转移潜能。AC29间皮瘤癌系购自Sigma-Aldrich(St.Louis,MO,USA)。对所有细胞系测试支原体污染并认为是阴性的。将癌系在DMEM,10% FBS中在正常培养条件下生长。对于C57BL/6和FVB小鼠,将5×104个癌细胞在100μl PBS中再混悬并在小鼠的下背部皮下注射。对CBA/J小鼠注射2×106个癌细胞。通过卡尺测量每周评价肿瘤生长。在研究结束时,移植肿瘤并对任何转移进行引流淋巴结和肺组织的肉眼检查。
IgG结合测定。用PBS清洗细胞多次,并在添加了2μl来自接种小鼠的血清的100μlFACS缓冲液中再悬浮,并在4℃培育30分钟。按照该程序,将细胞清洗多次并在4℃,与抗IgGFITC第二抗体(ThermoFisher Scientific)培育另外20min。作为同种型对照,包括了对鼠科IgG和IgM预吸附的IgG抗体。然后,使用LSR-II流式细胞仪分析细胞。
通过飞行时间的细胞计数(CyTOF)。根据上述方法,从移植组织分离免疫细胞。用小鼠脾/淋巴结分型试剂盒、小鼠胞内细胞因子I组试剂盒和存活力染料顺铂(Fluidigm,South San Francisco,CA,USA)对细胞染色。将细胞以1×105-1×108个细胞每ml的浓度在MaxPar水中重悬,其中添加了归一化珠(normalization beads)并在CyTOF2(Fluidigm)机器上运行。使用归一化珠对数据进行归一化。使用Cytobank在线软件对数据分析密度归一化事件的生成树进展分析(SPADE)(Mountain View,CA,USA)。
聚类识别,鉴定和回归(Citrus)。简言之,基于分级聚类和正则化回归模型,Citrus从多维数据产生了分层聚类和行为的列表。另外,它可以描述这些聚类的特征(例如,胞内细胞因子)并为新获得的数据或验证样品提供预测模型。作为x轴上的中值表达,对来自这些聚类的分层特征作图(图5B,7C)。使用Cytobank分析CyTOF数据并对活的单细胞设门,然后将FCS文件在来自Citrus 0.8的GUI中上传并以R(3.0.3版)运行脚本。对于暴露于B16F0肿瘤裂解液的脾细胞的分析,以0.2%(567个事件)最小聚类,通过10,000个采样事件进行Citrus分析。对于TIL,Citrus分析基于1,000个采样事件,其具有500个事件的最小聚类。发现聚类特征是有趣的,其cv.min和cv.fdr.约束小于25。
CDKN2A中大基因组缺失的PCR检测。设计引物以检测B16黑素瘤细胞系的CDKN2A中的大缺失的连接。每个25μl的PCR反应溶液含有1.25单位的GXL DNA聚合酶(Clontech)和通过DNeasy Blood&Tissue试剂盒(Qiagen)提取的50-100ng的基因组DNA。然后,通过Sanger测序分析PCR产物,并在NCBI中与基因数据库比对。
通过数字微滴式PCR(ddPCR)对黑素瘤定量肿瘤负荷。设计引物和探针以检测3个对B16黑素瘤细胞系特异的SNP(以红色表示)。在R1肿瘤切除术之后4周,使用DNeasyBlood&Tissue试剂盒(Qiagen),从C57BL/6小鼠的肿瘤切除区和dLN提取DNA。使用40至50ngDNA模板和用于探针的ddPCRTMSupermix,无dUTP(BioRad),使每个ddPCR反应溶液复原至20μL的最终体积。通过使用2种探针定量每个样品:MT探针以评价肿瘤负荷,和 CopyNumber TFRC探针(Mm00000692_cn,ThermoFisher)以评价细胞的量。最终的引物和探针的浓度分别为900nM和250nM。使用QX100微滴产生器,通过20μL PCR反应溶液进行微滴形成。将橡皮垫片放置在柱体上并加载到微滴产生器中。然后,使用多通道移液器将乳液(体积约35μl)缓慢转移至96孔twin.tecTMPCR板(Eppendorf)。然后,根据生产商的规程,以62.5℃的退火温度,用箔片将板热封并将乳液循环至终点。然后,使用BioRad QX100读板器读取样品。对不同的肿瘤负荷量,包括0%、1%、5%、10%、25%、50%、75%、90%、95%、99%和100%产生标准曲线,并使用线性回归方程定量每个DNA样品的肿瘤负荷。以下是用于检测肿瘤负荷的引物和探针的序列:
正向引物,5’ACTAGCCAGAGGATCTTAAAGACT3’;
反向引物,5’GCCATCACTGGAAAGAGAGGC3’;
突变体探针,5’(HEX)CCTGCCCACCCACTCCCCCTTTTT(Blackhole Quencher)3’;(红色表示突变体特异性等位基因)。
T细胞受体(TCR)测序。使用DNeasy Blood&Tissue试剂盒(Qiagen)分离来自浸润AC29肿瘤的TIL的DNA。将样品送至Adaptive Biotechnologies(Seattle,WA,USA)进行概览水平(survey level)TCR测序。提交样品的最小DNA含量为150ng/样品,DNA质量A260/280在1.8至2.0之间。与Adaptive Biotechnologies合作进行了样品之间的数据分析和TCR克隆性评价。提供了每个样品内的TCR克隆列表和它们在DNA样品内的频率。对于T细胞重叠调查,比较了在两个样品组中的5个样品中的4个中出现的克隆的氨基酸序列。来自C+I处理组和PBS对照组的数据普遍处于与类似的平均生产唯一值(productive unique values)相当的水平(PBS:3582.2,CI:3005.4)。
ELISPOT测定。如前所述,分离脾细胞(5×105)并与iPSC或DB7裂解液(35μg)中的任一个共培养37小时的一段时间,然后根据生产商的说明(cat#ELD5819,R&D Systems,Diaclone),通过酶联免疫斑点(ELISPOT)测量颗粒酶-β和IFN-γ的分泌。将AdobePhotoshop CS6软件用于计算IFN-r阳性斑点的尺寸和数目。
脾细胞的继承性转移。将C+I接种(n=20)和媒介物接种(n=20)小鼠处死并分离它们的脾细胞。将脾消化并通过70μm过滤器。然后,通过ACK裂解缓冲液(cat#118-156-101,Quality biology,Inc.)使红细胞裂解并用PBS清洗剩余的脾细胞。然后,将脾细胞溶于200μl PBS溶液并通过尾静脉注射,在乳腺癌的原位模型中静脉内注射。
原位肿瘤模型。将2×106个DB7肿瘤细胞直接注射至FVB小鼠的乳房脂肪垫组织中。癌细胞数目范围基于先前的报道并且在验证模型并实现100%的肿瘤发病率之后,将其设定在2×106个DB7癌细胞。
统计学。如所指明的,将所有的值表示为平均值±s.d.或平均值±s.e.m.。使用GraphPad软件,通过非配对双尾学生t检验或者使用Tukey多重比较检验的单因素/双因素方差分析(ANOVA),适当地评价了组间差异。*P<0.05,**P<0.01,***P<0.001,****P<0.0001。
所有文档,包括在整个专利申请中引用的专利和专利公开的全部公开内容以每篇单独的专利公开或专利申请具体且单独表明作为参考并入一样,以其全部内容作为参考并入本文。

Claims (11)

1.有效量的通过来自患者的体细胞的重编程所获得的哺乳动物多能干细胞在制备用于在所述患者中治疗癌症的疫苗中的用途,所述治疗包括对所述患者接种所述疫苗,其中所述疫苗包含所述有效量的哺乳动物多能干细胞,其中所述接种包括向对其有需要的所述患者施用哺乳动物多能干细胞的步骤,所述体细胞选自成纤维细胞,并且所述癌症选自由乳腺癌、黑素瘤和间皮瘤组成的组。
2.根据权利要求1所述的用途,其中所述多能干细胞是诱导的多能干细胞(iPSC)。
3.根据权利要求1或2所述的用途,其中所述哺乳动物多能干细胞是未分化的多能干细胞。
4.根据权利要求1或2所述的用途,其中使用含有4个重编程因子的小内含子质粒以及可能的shRNA p53的添加产生所述多能干细胞,所述4个重编程因子包括Oct4、c-Myc、KLF-4和Sox2。
5.根据权利要求1或2所述的用途,其中所述疫苗还包含佐剂,所述佐剂是加强对所述疫苗的免疫应答的免疫学试剂。
6.根据权利要求1或2所述的用途,其中根据以下方法中的至少一种施用所述疫苗:a)作为独立的接种;b)作为肿瘤切除术之前的辅助疗法;c)作为肿瘤切除术之后的辅助疗法,d)在转移性环境中;e)在不存在肿瘤或癌症的情况下,作为预防性环境;和f)结合化疗、免疫疗法、靶向疗法,使用生物试剂、使用小分子试剂,以及包含所述生物试剂或小分子试剂的纳米颗粒,或它们的组合。
7.一种热稳定的疫苗组合物在制备用于治疗癌症的疫苗中的用途,其中所述热稳定的疫苗组合物包含有效量的通过来自哺乳动物的体细胞的重编程所获得的哺乳动物多能干细胞,和加强对疫苗的免疫应答的佐剂或免疫学试剂,其中所述体细胞选自成纤维细胞,并且所述癌症选自由乳腺癌、黑素瘤和间皮瘤组成的组。
8.根据权利要求7所述的用途,其中所述多能干细胞是诱导的多能干细胞(iPSC)。
9.根据权利要求7或8所述的用途,其中所述哺乳动物多能干细胞是未分化的多能干细胞。
10.根据权利要求7或8所述的用途,其中所述佐剂选自由以下组成的组:CpG、QS21、聚(二(羧基苯氧基)磷腈、脂多糖的衍生物、OM-174、霍乱毒素和利什曼虫伸长因子。
11.根据权利要求7或8所述的用途,其中所述佐剂选自由以下组成的组:单磷酰脂质A、胞壁酰二肽和苏氨酰-胞壁酰二肽。
CN201980008834.8A 2018-01-02 2019-01-01 作为癌症的预防性和诊疗性治疗的ipsc基疫苗 Active CN111936161B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862612826P 2018-01-02 2018-01-02
US62/612,826 2018-01-02
PCT/US2019/012003 WO2019136038A1 (en) 2018-01-02 2019-01-01 Ipsc-based vaccine as a prophylactic and therapeutic treatment for cancer

Publications (2)

Publication Number Publication Date
CN111936161A CN111936161A (zh) 2020-11-13
CN111936161B true CN111936161B (zh) 2024-06-18

Family

ID=65444317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980008834.8A Active CN111936161B (zh) 2018-01-02 2019-01-01 作为癌症的预防性和诊疗性治疗的ipsc基疫苗

Country Status (10)

Country Link
US (1) US11298380B2 (zh)
EP (1) EP3720482A1 (zh)
JP (2) JP2021509122A (zh)
KR (1) KR20200140238A (zh)
CN (1) CN111936161B (zh)
AU (1) AU2018399641A1 (zh)
CA (1) CA3087254A1 (zh)
MX (1) MX2020006944A (zh)
SG (1) SG11202006160RA (zh)
WO (1) WO2019136038A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020009491A (es) * 2018-03-13 2020-10-28 Univ Leland Stanford Junior Reprogramacion celular transitoria para revertir el envejecimiento celular.
KR20240075776A (ko) 2021-06-01 2024-05-29 클로리스 바이오사이언시스 인코포레이티드 유도 만능 줄기 세포-기반 암 백신
CN113440606A (zh) * 2021-06-02 2021-09-28 深圳市罗湖区人民医院 特异性多能干细胞肿瘤疫苗及其制备方法与应用
EP4384210A1 (en) * 2021-08-13 2024-06-19 Khloris Biosciences, Inc. Ipsc-based vaccine as a prophylactic and therapeutic treatment for cancer
WO2024107420A1 (en) * 2022-11-15 2024-05-23 The Board Of Trustees Of The Leland Stanford Junior University Hypoallogenic-immunogenic pluripotent stem cells as anti-cancer vaccine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009075A2 (en) 1998-08-14 2000-02-24 Galenica Pharmaceuticals, Inc. Chemically modified saponins and the use thereof as adjuvants
DE10012370A1 (de) 2000-03-14 2001-09-27 Chiron Behring Gmbh & Co Adjuvans für Vakzinen
US20050158329A1 (en) 2004-01-21 2005-07-21 Ghosh Swapan K. Novel phytol derived immunoadjuvants and their use in vaccine formulations
CA2504451A1 (en) 2004-08-10 2006-02-10 Geron Corporation Dendritic cell vaccines for treating cancer made from embryonic stem cells
CA2596920C (en) 2005-01-28 2015-05-05 North-West University Lipid and nitrous oxide combination as adjuvant for the enhancement of the efficacy of vaccines
EP2925332A4 (en) * 2012-08-20 2016-12-21 Boris Markosian PLACENTAL IMP THERAPY AGAINST CANCER
US20160024469A1 (en) 2013-07-29 2016-01-28 Allan Yang Wu Non-conventional Cellular Based Immunotherapy
CA3005739A1 (en) 2015-11-18 2017-05-26 Orbis Health Solutions Llc T7 alpha viral vector system
EP3463433A1 (en) 2016-05-25 2019-04-10 Institut National de la Sante et de la Recherche Medicale (INSERM) Methods and compositions for treating cancers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo;Nigel G. Kooreman等;Cell Stem Cell;第22卷(第4期);第501-513页 *

Also Published As

Publication number Publication date
CA3087254A1 (en) 2019-07-11
EP3720482A1 (en) 2020-10-14
WO2019136038A4 (en) 2019-08-15
US11298380B2 (en) 2022-04-12
MX2020006944A (es) 2020-11-09
WO2019136038A1 (en) 2019-07-11
JP2021509122A (ja) 2021-03-18
SG11202006160RA (en) 2020-07-29
AU2018399641A1 (en) 2020-07-16
CN111936161A (zh) 2020-11-13
JP2024026069A (ja) 2024-02-28
US20190290697A1 (en) 2019-09-26
KR20200140238A (ko) 2020-12-15

Similar Documents

Publication Publication Date Title
CN111936161B (zh) 作为癌症的预防性和诊疗性治疗的ipsc基疫苗
JP7408036B2 (ja) ガンを処置するための方法及び組成物
US20070292448A1 (en) Preloaded dendritic cell vaccines for treating cancer
Qiao et al. Tumorigenic and immunogenic properties of induced pluripotent stem cells: a promising cancer vaccine
EP4215604A1 (en) Method for producing regenerated t cells via ips cells
US20170191034A1 (en) A method to up-regulate cancer stem cell markers for the generation of antigen specific cytotoxic effector t cells
US20220298491A1 (en) Pluripotent stem cell derived dendritic cells and engineered dendritic cells for cancer immunotherapy
WO2022220146A1 (ja) T細胞受容体遺伝子を導入するためのiPS細胞により構成される細胞バンク
US20230181708A1 (en) Ipsc-based vaccine as a prophylactic and therapeutic treatment for cancer
TW202235094A (zh) 經回春的t細胞之製造方法、包含彼之組成物、及彼之使用方法
AU2018283319B2 (en) Materials and methods for increasing immune responses
EP4346886A1 (en) Induced pluripotent stem cell-based cancer vaccines
Termini et al. Epstein Barr virus Latent Membrane Protein-1 enhances dendritic cell therapy lymph node migration, activation, and IL-12 secretion
CN117693357A (zh) 基于诱导多能干细胞的癌症疫苗

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant