CN111934361A - 一种源网协调调峰优化策略评估方法 - Google Patents

一种源网协调调峰优化策略评估方法 Download PDF

Info

Publication number
CN111934361A
CN111934361A CN202010746531.0A CN202010746531A CN111934361A CN 111934361 A CN111934361 A CN 111934361A CN 202010746531 A CN202010746531 A CN 202010746531A CN 111934361 A CN111934361 A CN 111934361A
Authority
CN
China
Prior art keywords
wind power
power
cluster
wind
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010746531.0A
Other languages
English (en)
Inventor
赵龙
周强
王定美
张健美
贾东强
路亮
龙虹毓
梁嘉文
吴保华
沈渭程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gannan Power Supply Co Of State Grid Gansu Electric Power Co
State Grid Corp of China SGCC
Chongqing University of Post and Telecommunications
State Grid Gansu Electric Power Co Ltd
Electric Power Research Institute of State Grid Gansu Electric Power Co Ltd
State Grid Beijing Electric Power Co Ltd
Southwest Branch of State Grid Corp
Original Assignee
Gannan Power Supply Co Of State Grid Gansu Electric Power Co
State Grid Corp of China SGCC
Chongqing University of Post and Telecommunications
State Grid Gansu Electric Power Co Ltd
Electric Power Research Institute of State Grid Gansu Electric Power Co Ltd
State Grid Beijing Electric Power Co Ltd
Southwest Branch of State Grid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gannan Power Supply Co Of State Grid Gansu Electric Power Co, State Grid Corp of China SGCC, Chongqing University of Post and Telecommunications, State Grid Gansu Electric Power Co Ltd, Electric Power Research Institute of State Grid Gansu Electric Power Co Ltd, State Grid Beijing Electric Power Co Ltd, Southwest Branch of State Grid Corp filed Critical Gannan Power Supply Co Of State Grid Gansu Electric Power Co
Priority to CN202010746531.0A priority Critical patent/CN111934361A/zh
Publication of CN111934361A publication Critical patent/CN111934361A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/82Energy audits or management systems therefor

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Wind Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种源网协调调峰优化策略评估方法,包括集群风电策略评估和单个风电场策略评估,所述集群风电评估方法包括以下步骤:S1:正常运行下集群风电评估,设
Figure DDA0002608539940000011
为第k个集群风电时段t日前计划指令最优解,若可发功率随机变量
Figure DDA0002608539940000012
的多状态概率分布第b个状态满足
Figure DDA0002608539940000014
则该状态对应调度缺额状态值为
Figure DDA0002608539940000013
状态概率为

Description

一种源网协调调峰优化策略评估方法
技术领域
本发明涉及电力技术领域,特别涉及一种源网协调调峰优化策略评估 方法。
背景技术
电力系统“源-网-荷-储”协调优化模式与技术是指电源、电网、负 荷与储能四部分通过多种交互手段,更经济、高效、安全地提高电力系统 的功率动态平衡能力,从而实现能源资源最大化利用的运行模式和技术, 该模式是包含“电源、电网、负荷、储能”整体解决方案的技术手段。源 网协调作为该模式下最重要的内容,对系统调峰、新能源消纳具有重要作 用。
“源-网协调”要求提高电网对多样化电源的接纳能力,利用先进调 控技术将分散式和集中式的能源供应进行优化组合,突出不同组合之间的 互补协调性,发挥微网、智能配电网技术的缓冲作用,降低接纳新能源电 力给电网安全稳定运行带来的不利影响。
发明内容
本发明的目的在于提供一种源网协调调峰优化策略评估方法,以解决 上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种源网协调调峰优化策 略评估方法,包括集群风电策略评估和单个风电场策略评估,所述集群风电 评估方法包括以下步骤:
S1:正常运行下集群风电评估,设
Figure BDA0002608539930000011
为第k个集群风电时段t日 前计划指令最优解,若可发功率随机变量
Figure BDA0002608539930000021
的多状态概率分布第b个状 态满足
Figure BDA0002608539930000022
则该状态对应调度缺额状态值为
Figure BDA0002608539930000023
状态概 率为
Figure BDA0002608539930000024
对应的弃风功率状态值为0,状态概率为
Figure BDA0002608539930000025
反之若第b个状 态满足
Figure BDA0002608539930000026
则该状态对应弃风功率状态值为
Figure BDA0002608539930000027
状态概 率为
Figure BDA0002608539930000028
对应的调度缺额状态值为0,状态概率为
Figure BDA0002608539930000029
S2:高风险事件集群风电评估:
a1设
Figure BDA00026085399300000210
为CVaR风险指标等效计算函数
Figure BDA00026085399300000211
Figure BDA00026085399300000212
Figure BDA00026085399300000213
最小时,等效计算函数中辅助变量 αS(t),αC(t)的解。由等效计算函数性质可知,
Figure BDA00026085399300000214
即为在置信概率β1,β2下,集群风电调度缺额和弃风功率的VaR指标;
a2定义集群风电高风险调度缺额功率对应的可发功率阈值为
Figure BDA00026085399300000215
认为时段t当集群风电可发功率低于
Figure BDA00026085399300000216
时,在置 信概率β1下,出现了高风险的风电功率调度缺额;
a3定义集群风电高风险弃风功率对应的可发功率阈值为
Figure BDA00026085399300000217
认为时段t当集群风电可发功率高于
Figure BDA00026085399300000218
时,在置信 概率β2下,出现了高风险的弃风功率;
a4集群风电实际可发功率大于等于
Figure BDA00026085399300000219
其小于等于
Figure BDA00026085399300000220
时,认为可发功率处于未发生高风险事件的合理区间;
所述单个风电场评估包括以下步骤:
S5:正常运行下单个风电场评估,设
Figure BDA00026085399300000221
为第k个单个风电场时段t日 前计划指令最优解,若可发功率随机变量
Figure BDA00026085399300000222
的多状态概率分布第b个状 态满足
Figure BDA00026085399300000223
则该状态对应调度缺额状态值为
Figure BDA00026085399300000224
状态概 率为
Figure BDA00026085399300000225
对应的弃风功率状态值为0,状态概率为
Figure BDA00026085399300000226
反之若第b个状 态满足
Figure BDA00026085399300000227
则该状态对应弃风功率状态值为
Figure BDA00026085399300000228
状态概 率为
Figure BDA0002608539930000034
对应的调度缺额状态值为0,状态概率为
Figure BDA0002608539930000035
S6:高风险事件单个风电场评估:
b1设
Figure BDA0002608539930000036
为CVaR风险指标等效计算函数
Figure BDA0002608539930000031
Figure BDA0002608539930000032
最小时,等效计算 函数中辅助变量αS(t),αC(t)的解。由等效计算函数性质可知,
Figure BDA0002608539930000037
即为 在置信概率β1,β2下,单个风电调度缺额和弃风功率的VaR指标;
b2定义单个风电高风险调度缺额功率对应的可发功率阈值为
Figure BDA0002608539930000039
认为时段t当单个风电可发功率低于
Figure BDA0002608539930000038
时,在置 信概率β1下,出现了高风险的风电功率调度缺额;
b3定义单个风电高风险弃风功率对应的可发功率阈值为
Figure BDA00026085399300000310
认为时段t当单个风电可发功率高于
Figure BDA00026085399300000311
时,在置信 概率β2下,出现了高风险的弃风功率;
b4单个风电实际可发功率大于等于
Figure BDA00026085399300000312
其小于等于
Figure BDA00026085399300000313
时,认为可发功率处于未发生高风险事件的合理区间。。
优选的,所述集群风电策略包括集群风电与火电机组协调的调峰控制 策略和集群风电内部多风电场协调的调峰控制策略。
优选的,所述集群风电与火电机组协调的调峰控制策略包括以下步骤:
W1:考虑集群风电安全性和经济性综合风险的目标函数,目标函数通过不考 虑集群风电发电成本来给予风电优先调度权
Figure BDA0002608539930000033
NT为日运行总调度时段数, nvpg为集群风电的个数;ng为火电机组个数
Figure BDA00026085399300000314
为火电机组煤耗成 本($);
Figure BDA00026085399300000315
为第j个火电机组时段t日前计划指令(MW)。
Figure BDA00026085399300000316
为火电机组启停成本($),
Figure BDA00026085399300000317
为火电机组开机变 量,时段t火电机组j由停机变为开机时
Figure BDA00026085399300000318
反之
Figure BDA00026085399300000319
Figure BDA00026085399300000320
为火电 机组停机变量,时段t火电机组j由开机变为停机时
Figure BDA0002608539930000041
W2:集群风电相关约束:
c1:出力调节范围
Figure BDA0002608539930000042
Figure BDA0002608539930000043
Figure BDA0002608539930000044
分别第k个集群风电时段t出力调节范围上下限(MW);
Figure BDA0002608539930000045
为第k个集群风电时段t日前计划功率值(MW);
c2:爬坡率
Figure BDA0002608539930000046
Figure BDA0002608539930000047
Figure BDA0002608539930000048
Figure BDA0002608539930000049
分别为第k个集群风电时段t向上、下的爬坡率极限(MW/m in);
c3:电量利用率约束
Figure BDA00026085399300000410
Figure BDA00026085399300000411
为 第k个集群风电时段t的功率松弛变量(MW),
Figure BDA00026085399300000412
为第k个集群风电日电量 利用率下限占可发功率电量百分比的系数(%),
Figure BDA00026085399300000413
为第k个集群风电时 段t可发功率随机变量(MW),β为约束成立的置信概率。
优选的,所述集群风电内部多风电场协调的调峰控制策略包括以下步 骤:
T1:考虑安全性风险的目标函数最小化日前电量公平性约束的松弛变量,
Figure BDA00026085399300000414
NT为日前运行仿真总时段数,因此NT=96;nk为第k个集群风电内风电场个数;
Figure BDA00026085399300000415
为第i个风电场的CVaR风险指 标(MW),
Figure BDA00026085399300000416
为第i个风电场时段t公平性约束松弛变量(MW),
Figure BDA00026085399300000417
为风 险指标的惩罚成本加权系数($/MW),可根据对风电场安全性高风险的容忍 程度确定
Figure BDA00026085399300000418
Figure BDA00026085399300000419
为松弛变量的惩罚成本加权系数($/MW),若取值满足
Figure BDA00026085399300000420
表明决策对安全性的偏好高于公平性;
T2:电量公平性约束:
d1:集群风电平均电量利用率系数
Figure BDA0002608539930000057
(%),定义
Figure BDA0002608539930000058
第k个集群风电 被上层调度的电量与实际可发电量期望值的比值。
Figure BDA0002608539930000051
Figure BDA0002608539930000059
为第k个集群风电时段t日前计划功率(MW),
Figure BDA00026085399300000510
为第k个集群风电时段 t的可发功率期望值;
d2:风电场电量优先权加权系数
Figure BDA00026085399300000511
(%)引入
Figure BDA00026085399300000512
的目的是在集群风电整 体平均电量利用率
Figure BDA00026085399300000513
的基础上,给予利用小时数低、不确定性低和波动性 低的风电场以电量利用率优先权,令第i个风电场在仿真日NT各时段的不 确定性、波动性概率分布期望值之和为
Figure BDA0002608539930000052
Figure BDA00026085399300000526
则可定义
Figure BDA00026085399300000514
Figure BDA0002608539930000053
Figure BDA00026085399300000515
为截止到 当前运行日开始时段,风电场i的利用小时数(小时);
Figure BDA00026085399300000516
为截止到当前运 行日开始时段,集群风电内所有风电场平均利用小时数(小时);
Figure BDA00026085399300000517
为第 i个风电场时段t不确定性随机变量(MW),
Figure BDA00026085399300000518
为第i个风电场时段t波 动性随机变量(MW),为避免各风电场间电量利用率偏差过大,限定
Figure BDA00026085399300000519
的取 值范围:
Figure BDA0002608539930000054
Figure BDA00026085399300000520
Figure BDA00026085399300000521
的取值上下界,且满足
Figure BDA00026085399300000522
选取
Figure BDA00026085399300000523
为保障总电量利用率小于等于1,给定
Figure BDA00026085399300000524
取值范围:
Figure BDA0002608539930000055
将电量公平性约束表示为的概率形 式,同时为保证存在可行解,引入公平性约束的松弛变量
Figure BDA00026085399300000525
Figure BDA0002608539930000056
求解;
d3:风电场相关约束出力调节范围
Figure BDA0002608539930000061
Figure BDA0002608539930000062
Figure BDA0002608539930000063
分别为第i个 风电场时段t可发功率上下界(MW),由可发功率概率分布在一定置信概率 下的上下分位点求得:
d4:线路及其它约束功率平衡约束
Figure BDA0002608539930000064
Figure BDA0002608539930000065
为 第k个集群风电时段t日前计划指令(MW),
Figure BDA0002608539930000066
为第i个风电场时段t 日前计划指令(MW)。
本发明的技术效果和优点:本发明考虑了各风电场不确定性概率分布 差异,并且以调度缺额风险最小作为优化目标,时段t负向不确定较小、正 向不确定性较大的风电场可获得日前计划分配的优先权,减小了正负偏 差,降低了实际运行中可能出现的风电场调度缺额以及弃风功率,提高风电 场日前计划的安全性和经济性。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所 描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本 发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种源网协调调峰优化策略评估方法,包括集群风电策 略评估和单个风电场策略评估,集群风电评估方法包括以下步骤:
S1:正常运行下集群风电评估,设
Figure BDA0002608539930000067
为第k个集群风电时段t日 前计划指令最优解,若可发功率随机变量
Figure BDA0002608539930000068
的多状态概率分布第b个状 态满足
Figure BDA0002608539930000069
则该状态对应调度缺额状态值为
Figure BDA00026085399300000610
状态概 率为
Figure BDA00026085399300000611
对应的弃风功率状态值为0,状态概率为
Figure BDA00026085399300000612
反之若第b个状 态满足
Figure BDA00026085399300000613
则该状态对应弃风功率状态值为
Figure BDA00026085399300000614
状态概 率为
Figure BDA0002608539930000071
对应的调度缺额状态值为0,状态概率为
Figure BDA0002608539930000072
S2:高风险事件集群风电评估:
a1设
Figure BDA0002608539930000073
为CVaR风险指标等效计算函数
Figure BDA0002608539930000074
Figure BDA0002608539930000075
Figure BDA0002608539930000076
最小时,等效计算函数中辅助变量 αS(t),αC(t)的解。由等效计算函数性质可知,
Figure BDA0002608539930000077
即为在置信概率β1,β2下,集群风电调度缺额和弃风功率的VaR指标;
a2定义集群风电高风险调度缺额功率对应的可发功率阈值为
Figure BDA0002608539930000078
认为时段t当集群风电可发功率低于
Figure BDA0002608539930000079
时,在置 信概率β1下,出现了高风险的风电功率调度缺额;
a3定义集群风电高风险弃风功率对应的可发功率阈值为
Figure BDA00026085399300000710
认为时段t当集群风电可发功率高于
Figure BDA00026085399300000711
时,在置信 概率β2下,出现了高风险的弃风功率;
a4集群风电实际可发功率大于等于
Figure BDA00026085399300000712
其小于等于
Figure BDA00026085399300000713
时,认为可发功率处于未发生高风险事件的合理区间;
单个风电场评估包括以下步骤:
S5:正常运行下单个风电场评估,设
Figure BDA00026085399300000714
为第k个单个风电场时段t日 前计划指令最优解,若可发功率随机变量
Figure BDA00026085399300000715
的多状态概率分布第b个状 态满足
Figure BDA00026085399300000716
则该状态对应调度缺额状态值为
Figure BDA00026085399300000717
状态概 率为
Figure BDA00026085399300000718
对应的弃风功率状态值为0,状态概率为
Figure BDA00026085399300000719
反之若第b个状 态满足
Figure BDA00026085399300000720
则该状态对应弃风功率状态值为
Figure BDA00026085399300000721
状态概 率为
Figure BDA00026085399300000722
对应的调度缺额状态值为0,状态概率为
Figure BDA00026085399300000723
S6:高风险事件单个风电场评估:
b1设
Figure BDA00026085399300000724
为CVaR风险指标等效计算函数
Figure BDA00026085399300000725
Figure BDA00026085399300000726
Figure BDA00026085399300000727
最小时,等效计算 函数中辅助变量αS(t),αC(t)的解。由等效计算函数性质可知,
Figure BDA0002608539930000081
即为 在置信概率β1,β2下,单个风电调度缺额和弃风功率的VaR指标;
b2定义单个风电高风险调度缺额功率对应的可发功率阈值为
Figure BDA0002608539930000082
认为时段t当单个风电可发功率低于
Figure BDA0002608539930000083
时,在置 信概率β1下,出现了高风险的风电功率调度缺额;
b3定义单个风电高风险弃风功率对应的可发功率阈值为
Figure BDA0002608539930000084
认为时段t当单个风电可发功率高于
Figure BDA0002608539930000085
时,在置信 概率β2下,出现了高风险的弃风功率;
b4单个风电实际可发功率大于等于
Figure BDA0002608539930000086
其小于等于
Figure BDA0002608539930000087
时,认为可发功率处于未发生高风险事件的合理区间。。
集群风电策略包括集群风电与火电机组协调的调峰控制策略和集群风 电内部多风电场协调的调峰控制策略。
集群风电与火电机组协调的调峰控制策略包括以下步骤:
W1:考虑集群风电安全性和经济性综合风险的目标函数,目标函数通过不考 虑集群风电发电成本来给予风电优先调度权
Figure BDA0002608539930000088
NT为日运行总调度时段数, nvpg为集群风电的个数;ng为火电机组个数
Figure BDA0002608539930000089
为火电机组煤耗成 本($);
Figure BDA00026085399300000810
为第j个火电机组时段t日前计划指令(MW)。
Figure BDA00026085399300000811
为火电机组启停成本($),
Figure BDA00026085399300000812
为火电机组开机变 量,时段t火电机组j由停机变为开机时
Figure BDA00026085399300000813
反之
Figure BDA00026085399300000814
Figure BDA00026085399300000815
为火电 机组停机变量,时段t火电机组j由开机变为停机时
Figure BDA00026085399300000816
W2:集群风电相关约束:
c1:出力调节范围
Figure BDA00026085399300000817
Figure BDA00026085399300000818
Figure BDA00026085399300000819
分别第k个集群风电时段t出力调节范围上下限(MW);
Figure BDA0002608539930000091
为第k个集群风电时段t日前计划功率值(MW);
c2:爬坡率
Figure BDA0002608539930000092
Figure BDA0002608539930000093
Figure BDA0002608539930000094
Figure BDA0002608539930000095
分别为第k个集群风电时段t向上、下的爬坡率极限(MW/m in);
c3:电量利用率约束
Figure BDA0002608539930000096
Figure BDA0002608539930000097
为 第k个集群风电时段t的功率松弛变量(MW),
Figure BDA0002608539930000098
为第k个集群风电日电量 利用率下限占可发功率电量百分比的系数(%),
Figure BDA0002608539930000099
为第k个集群风电时 段t可发功率随机变量(MW),β为约束成立的置信概率。
集群风电内部多风电场协调的调峰控制策略包括以下步骤:
T1:考虑安全性风险的目标函数最小化日前电量公平性约束的松弛变量,
Figure BDA00026085399300000910
NT为日前运行仿真总时段数,因此NT=96;nk为第k个集群风电内风电场个数;
Figure BDA00026085399300000911
为第i个风电场的CVaR风险指 标(MW),
Figure BDA00026085399300000912
为第i个风电场时段t公平性约束松弛变量(MW),
Figure BDA00026085399300000913
为风 险指标的惩罚成本加权系数($/MW),可根据对风电场安全性高风险的容忍 程度确定
Figure BDA00026085399300000914
Figure BDA00026085399300000915
为松弛变量的惩罚成本加权系数($/MW),若取值满足
Figure BDA00026085399300000916
表明决策对安全性的偏好高于公平性;
T2:电量公平性约束:
d1:集群风电平均电量利用率系数
Figure BDA00026085399300000917
(%),定义
Figure BDA00026085399300000918
第k个集群风电 被上层调度的电量与实际可发电量期望值的比值。
Figure BDA00026085399300000919
Figure BDA00026085399300000920
为第k个集群风电时段t日前计划功率(MW),
Figure BDA00026085399300000921
为第k个集群风电时段t的可发功率期望值;
d2:风电场电量优先权加权系数
Figure BDA0002608539930000101
(%)引入
Figure BDA0002608539930000102
的目的是在集群风电整 体平均电量利用率
Figure BDA0002608539930000103
的基础上,给予利用小时数低、不确定性低和波动性 低的风电场以电量利用率优先权,令第i个风电场在仿真日NT各时段的不 确定性、波动性概率分布期望值之和为
Figure BDA0002608539930000104
Figure BDA0002608539930000105
Figure BDA0002608539930000106
则可定义
Figure BDA0002608539930000107
Figure BDA0002608539930000108
Figure BDA0002608539930000109
为截止到 当前运行日开始时段,风电场i的利用小时数(小时);
Figure BDA00026085399300001010
为截止到当前运 行日开始时段,集群风电内所有风电场平均利用小时数(小时);
Figure BDA00026085399300001011
为第 i个风电场时段t不确定性随机变量(MW),
Figure BDA00026085399300001012
为第i个风电场时段t波 动性随机变量(MW),为避免各风电场间电量利用率偏差过大,限定
Figure BDA00026085399300001013
的取 值范围:
Figure BDA00026085399300001014
Figure BDA00026085399300001015
Figure BDA00026085399300001016
的取值上下界,且满足
Figure BDA00026085399300001017
选取
Figure BDA00026085399300001018
为保障总电量利用率小于等于1,给定
Figure BDA00026085399300001019
取值范围:
Figure BDA00026085399300001020
将电量公平性约束表示为的概率形 式,同时为保证存在可行解,引入公平性约束的松弛变量
Figure BDA00026085399300001021
(MW);
Figure BDA00026085399300001022
求解;
d3:风电场相关约束出力调节范围
Figure BDA00026085399300001023
Figure BDA00026085399300001024
Figure BDA00026085399300001025
分别为第i个 风电场时段t可发功率上下界(MW),由可发功率概率分布在一定置信概率 下的上下分位点求得:
d4:线路及其它约束功率平衡约束
Figure BDA0002608539930000111
Figure BDA0002608539930000112
为 第k个集群风电时段t日前计划指令(MW),
Figure BDA0002608539930000113
为第i个风电场时段t 日前计划指令(MW)。
本发明工作原理:通过考虑各风电场不确定性概率分布差异,并且以调 度缺额风险最小作为优化目标。时段t负向不确定较小、正向不确定性较大 的风电场可获得日前计划分配的优先权,减小了正负偏差,降低了实际运行 中可能出现的风电场调度缺额以及弃风功率,提高风电场日前计划的安全 性和经济性。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限 制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的 技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或 者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作 的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种源网协调调峰优化策略评估方法,包括集群风电策略评估和单个风电场策略评估,其特征在于,所述集群风电评估方法包括以下步骤:
S1:正常运行下集群风电评估,设
Figure FDA00026085399200000119
为第k个集群风电时段t日前计划指令最优解,若可发功率随机变量
Figure FDA00026085399200000120
的多状态概率分布第b个状态满足
Figure FDA0002608539920000011
则该状态对应调度缺额状态值为
Figure FDA0002608539920000012
状态概率为
Figure FDA0002608539920000013
对应的弃风功率状态值为0,状态概率为
Figure FDA0002608539920000014
反之若第b个状态满足
Figure FDA0002608539920000015
则该状态对应弃风功率状态值为
Figure FDA0002608539920000016
状态概率为
Figure FDA0002608539920000017
对应的调度缺额状态值为0,状态概率为
Figure FDA0002608539920000018
S2:高风险事件集群风电评估:
a1设
Figure FDA00026085399200000121
为CVaR风险指标等效计算函数
Figure FDA0002608539920000019
Figure FDA00026085399200000110
Figure FDA00026085399200000111
最小时,等效计算函数中辅助变量αs(t),αc(t)的解。由等效计算函数性质可知,
Figure FDA00026085399200000122
即为在置信概率β1,β2下,集群风电调度缺额和弃风功率的VaR指标;
a2定义集群风电高风险调度缺额功率对应的可发功率阈值为
Figure FDA00026085399200000112
认为时段t当集群风电可发功率低于
Figure FDA00026085399200000123
时,在置信概率β1下,出现了高风险的风电功率调度缺额;
a3定义集群风电高风险弃风功率对应的可发功率阈值为
Figure FDA00026085399200000113
认为时段t当集群风电可发功率高于
Figure FDA00026085399200000114
时,在置信概率β2下,出现了高风险的弃风功率;
a4集群风电实际可发功率大于等于
Figure FDA00026085399200000115
其小于等于
Figure FDA00026085399200000116
时,认为可发功率处于未发生高风险事件的合理区间;
所述单个风电场评估包括以下步骤:
S5:正常运行下单个风电场评估,设
Figure FDA00026085399200000124
为第k个单个风电场时段t日前计划指令最优解,若可发功率随机变量
Figure FDA00026085399200000125
的多状态概率分布第b个状态满足
Figure FDA00026085399200000117
则该状态对应调度缺额状态值为
Figure FDA00026085399200000118
状态概率为
Figure FDA0002608539920000021
对应的弃风功率状态值为0,状态概率为
Figure FDA0002608539920000022
反之若第b个状态满足
Figure FDA0002608539920000023
则该状态对应弃风功率状态值为
Figure FDA0002608539920000024
状态概率为
Figure FDA0002608539920000025
对应的调度缺额状态值为0,状态概率为
Figure FDA0002608539920000026
S6:高风险事件单个风电场评估:
b1设
Figure FDA00026085399200000219
为CVaR风险指标等效计算函数
Figure FDA0002608539920000027
Figure FDA0002608539920000028
最小时,等效计算函数中辅助变量αs(t),αc(t)的解。由等效计算函数性质可知,
Figure FDA0002608539920000029
即为在置信概率β1,β2下,单个风电调度缺额和弃风功率的VaR指标;
b2定义单个风电高风险调度缺额功率对应的可发功率阈值为
Figure FDA00026085399200000210
认为时段t当单个风电可发功率低于
Figure FDA00026085399200000211
时,在置信概率β1下,出现了高风险的风电功率调度缺额;
b3定义单个风电高风险弃风功率对应的可发功率阈值为
Figure FDA00026085399200000212
认为时段t当单个风电可发功率高于
Figure FDA00026085399200000213
时,在置信概率β2下,出现了高风险的弃风功率;
b4单个风电实际可发功率大于等于
Figure FDA00026085399200000214
其小于等于
Figure FDA00026085399200000215
时,认为可发功率处于未发生高风险事件的合理区间。
2.根据权利要求1所述的一种源网协调调峰优化策略评估方法,其特征在于,所述集群风电策略包括集群风电与火电机组协调的调峰控制策略和集群风电内部多风电场协调的调峰控制策略。
3.根据权利要求2所述的一种源网协调调峰优化策略评估方法,其特征在于,所述集群风电与火电机组协调的调峰控制策略包括以下步骤:
W1:考虑集群风电安全性和经济性综合风险的目标函数,目标函数通过不考虑集群风电发电成本来给予风电优先调度权
Figure FDA00026085399200000216
NT为日运行总调度时段数,Nvpg为集群风电的个数;ng为火电机组个数
Figure FDA00026085399200000217
为火电机组煤耗成本($);
Figure FDA00026085399200000218
为第j个火电机组时段t日前计划指令(MW)。
Figure FDA0002608539920000031
为火电机组启停成本($),
Figure FDA0002608539920000032
为火电机组开机变量,时段t火电机组j由停机变为开机时
Figure FDA0002608539920000033
反之
Figure FDA0002608539920000034
Figure FDA0002608539920000035
为火电机组停机变量,时段t火电机组j由开机变为停机时
Figure FDA0002608539920000036
W2:集群风电相关约束:
c1:出力调节范围
Figure FDA0002608539920000037
Figure FDA0002608539920000038
Figure FDA0002608539920000039
分别第k个集群风电时段t出力调节范围上下限(MW);
Figure FDA00026085399200000310
为第k个集群风电时段t日前计划功率值(MW);
c2:爬坡率
Figure FDA00026085399200000311
Figure FDA00026085399200000312
Figure FDA00026085399200000313
Figure FDA00026085399200000314
分别为第k个集群风电时段t向上、下的爬坡率极限(MW/min);
c3:电量利用率约束
Figure FDA00026085399200000315
Figure FDA00026085399200000316
为第k个集群风电时段t的功率松弛变量(MW),
Figure FDA00026085399200000317
为第k个集群风电日电量利用率下限占可发功率电量百分比的系数(%),
Figure FDA00026085399200000318
为第k个集群风电时段t可发功率随机变量(MW),β为约束成立的置信概率。
4.根据权利要求2所述的一种源网协调调峰优化策略评估方法,其特征在于,所述集群风电内部多风电场协调的调峰控制策略包括以下步骤:
T1:考虑安全性风险的目标函数最小化日前电量公平性约束的松弛变量,
Figure FDA00026085399200000319
NT为日前运行仿真总时段数,因此NT=96;nk为第k个集群风电内风电场个数;
Figure FDA00026085399200000320
为第i个风电场的CVaR风险指标(MW),
Figure FDA00026085399200000321
为第i个风电场时段t公平性约束松弛变量(MW),为风险指标的惩罚成本加权系数($/MW),可根据对风电场安全性高风险的容忍程度确定
Figure FDA00026085399200000323
为松弛变量的惩罚成本加权系数($/MW),若取值满足
Figure FDA00026085399200000324
表明决策对安全性的偏好高于公平性;
T2:电量公平性约束:
d1:集群风电平均电量利用率系数
Figure FDA0002608539920000041
定义
Figure FDA0002608539920000042
第k个集群风电被上层调度的电量与实际可发电量期望值的比值。
Figure FDA0002608539920000043
Figure FDA0002608539920000044
为第k个集群风电时段t日前计划功率
Figure FDA00026085399200000423
Figure FDA0002608539920000045
为第k个集群风电时段t的可发功率期望值;
d2:风电场电量优先权加权系数λi W(%)引入λi W的目的是在集群风电整体平均电量利用率
Figure FDA0002608539920000046
的基础上,给予利用小时数低、不确定性低和波动性低的风电场以电量利用率优先权,令第i个风电场在仿真日NT各时段的不确定性、波动性概率分布期望值之和为
Figure FDA0002608539920000047
Figure FDA00026085399200000422
则可定义λi W
Figure FDA0002608539920000048
γi w为截止到当前运行日开始时段,风电场i的利用小时数(小时);
Figure FDA0002608539920000049
为截止到当前运行日开始时段,集群风电内所有风电场平均利用小时数(小时);
Figure FDA00026085399200000410
为第i个风电场时段t不确定性随机变量
Figure FDA00026085399200000424
ΔPi w(t)为第i个风电场时段t波动性随机变量(MW),为避免各风电场间电量利用率偏差过大,限定λi W的取值范围:
Figure FDA00026085399200000411
Figure FDA00026085399200000412
为λiW的取值上下界,且满足
Figure FDA00026085399200000413
选取
Figure FDA00026085399200000414
为保障总电量利用率小于等于1,给定
Figure FDA00026085399200000415
取值范围:
Figure FDA00026085399200000416
将电量公平性约束表示为的概率形式,同时为保证存在可行解,引入公平性约束的松弛变量
Figure FDA00026085399200000417
Figure FDA00026085399200000418
求解;
d3:风电场相关约束出力调节范围
Figure FDA00026085399200000419
Figure FDA00026085399200000420
Figure FDA00026085399200000421
分别为第i个风电场时段t可发功率上下界(MW),由可发功率概率分布在一定置信概率下的上下分位点求得:
d4:线路及其它约束功率平衡约束
Figure FDA0002608539920000051
Figure FDA0002608539920000052
为第k个集群风电时段t日前计划指令(MW),
Figure FDA0002608539920000053
为第i个风电场时段t日前计划指令(MW)。
CN202010746531.0A 2020-07-29 2020-07-29 一种源网协调调峰优化策略评估方法 Pending CN111934361A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010746531.0A CN111934361A (zh) 2020-07-29 2020-07-29 一种源网协调调峰优化策略评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010746531.0A CN111934361A (zh) 2020-07-29 2020-07-29 一种源网协调调峰优化策略评估方法

Publications (1)

Publication Number Publication Date
CN111934361A true CN111934361A (zh) 2020-11-13

Family

ID=73314935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010746531.0A Pending CN111934361A (zh) 2020-07-29 2020-07-29 一种源网协调调峰优化策略评估方法

Country Status (1)

Country Link
CN (1) CN111934361A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769156A (zh) * 2020-12-28 2021-05-07 南昌大学 一种计及大规模海上风电并网的源网荷储协调运行方法
CN113904364A (zh) * 2021-09-18 2022-01-07 北京交通大学 风电集群日前功率调度计划的制定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039977A (zh) * 2017-06-03 2017-08-11 广东博慎智库能源科技发展有限公司 以综合成本最小为目标的电力系统鲁棒调度不确定集构建方法
CN107069830A (zh) * 2017-01-25 2017-08-18 清华大学 提高风电消纳能力的方法及装置
CN107480833A (zh) * 2017-09-05 2017-12-15 清华大学 一种风电发电系统调峰能力评估方法
CN110909959A (zh) * 2019-12-16 2020-03-24 国网青海省电力公司电力科学研究院 一种计及风电运行风险的多能互补电力系统鲁棒优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069830A (zh) * 2017-01-25 2017-08-18 清华大学 提高风电消纳能力的方法及装置
CN107039977A (zh) * 2017-06-03 2017-08-11 广东博慎智库能源科技发展有限公司 以综合成本最小为目标的电力系统鲁棒调度不确定集构建方法
CN107480833A (zh) * 2017-09-05 2017-12-15 清华大学 一种风电发电系统调峰能力评估方法
CN110909959A (zh) * 2019-12-16 2020-03-24 国网青海省电力公司电力科学研究院 一种计及风电运行风险的多能互补电力系统鲁棒优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
叶希 等: "基于集群风电虚拟机组的源端系统分层协调日前计划", 《电力系统自动化》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769156A (zh) * 2020-12-28 2021-05-07 南昌大学 一种计及大规模海上风电并网的源网荷储协调运行方法
CN112769156B (zh) * 2020-12-28 2023-04-07 南昌大学 一种计及大规模海上风电并网的源网荷储协调运行方法
CN113904364A (zh) * 2021-09-18 2022-01-07 北京交通大学 风电集群日前功率调度计划的制定方法
CN113904364B (zh) * 2021-09-18 2024-04-09 北京交通大学 风电集群日前功率调度计划的制定方法

Similar Documents

Publication Publication Date Title
CN106992556B (zh) 一种基于混合电源多时间尺度互补的优化调度方法
WO2022100091A1 (zh) 一种广义源储系统调度的集中控制方法
CN109492861B (zh) 一种梯级水电站群中期电量交易计划分解方法
WO2023065113A1 (zh) 风光水多能互补系统灵活性需求量化及协调优化方法
CN108092324B (zh) 一种风电参与调峰调频的agc控制系统和控制方法
CN112234655A (zh) 一种送端电网安全稳定的源网协调调峰优化方法
CN112465181A (zh) 一种支持源-网-荷-储多元泛在协调的两阶段优化调度方法
CN106058917A (zh) 一种计及光伏发电的电力系统动态经济调度方法
CN110829408B (zh) 基于发电成本约束的计及储能电力系统的多域调度方法
CN104239967A (zh) 一种含风电场的电力系统多目标经济调度方法
Zhang et al. Multi-objective day-ahead optimal scheduling of isolated microgrid considering flexibility
CN113346555B (zh) 一种考虑电量协调的日内滚动调度方法
CN114221338A (zh) 考虑电源灵活性和互补性的多能源电力系统优化调度方法
Tang et al. Optimal operation method for microgrid with wind/PV/diesel generator/battery and desalination
CN111682531B (zh) 基于pl-imocs的风光水火一次能源互补短期优化调度方法和装置
CN111934361A (zh) 一种源网协调调峰优化策略评估方法
CN117239740B (zh) 一种虚拟电厂系统的优化配置与灵活性提升方法及系统
CN114648195A (zh) 一种电网多层级辅助服务中的储能电站智能协同调控办法
CN112909933A (zh) 现货市场环境下含抽水蓄能机组的日内滚动优化调度方法
CN116805803A (zh) 基于自适应mpc的风光储离网制氢系统能量调度方法
CN115360706A (zh) 考虑dr和灵活性供需平衡的源荷储联合调度方法及系统
CN102184468A (zh) 间歇性能源发电有功调度方法
CN105305485A (zh) 一种消纳大规模间歇性能源的安全约束经济调度方法
CN117559526A (zh) 一种基于光储充一体化充电站的拟路由器能量调控方法
Zhang et al. Distributional two-level synergetic unit commitment considering three scheduling states

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201113