CN111929664B - 一种三维激光雷达apd测距v字形标定方法及装置 - Google Patents

一种三维激光雷达apd测距v字形标定方法及装置 Download PDF

Info

Publication number
CN111929664B
CN111929664B CN202011073778.7A CN202011073778A CN111929664B CN 111929664 B CN111929664 B CN 111929664B CN 202011073778 A CN202011073778 A CN 202011073778A CN 111929664 B CN111929664 B CN 111929664B
Authority
CN
China
Prior art keywords
ranging
point
value
apd
laser radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011073778.7A
Other languages
English (en)
Other versions
CN111929664A (zh
Inventor
郝才超
刘定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Dahan Zhengyuan Technology Co ltd
Original Assignee
Beijing Dahan Zhengyuan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Dahan Zhengyuan Technology Co ltd filed Critical Beijing Dahan Zhengyuan Technology Co ltd
Priority to CN202011073778.7A priority Critical patent/CN111929664B/zh
Publication of CN111929664A publication Critical patent/CN111929664A/zh
Application granted granted Critical
Publication of CN111929664B publication Critical patent/CN111929664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请公开一种三维激光雷达APD测距V字形标定方法及装置。所述方法包括打开三维激光雷达,垂直于标定平面进行测距;采集各测距点的多帧测距数据,从多帧测距数据中去除异常值,得到各测距点的距离测量值;根据各测距点的距离测量值和采集的帧数量,计算各测距点的帧平均值;根据各测距点的帧平均值,查找所有V字形点云中的距离最小值;计算V字形点云中各测距点的帧平均值与所述距离最小值的差值,得到各测距点距离测量值的校正值;使用各测距点距离测量值的校正值校正激光雷达各测距点的距离测量值,得到校正结果。采用本申请的技术方案,能够使V字形畸形点云校正为一字形点云,从而提高三维激光雷达测距的精确度。

Description

一种三维激光雷达APD测距V字形标定方法及装置
技术领域
本申请涉及激光雷达测距技术领域,尤其涉及一种三维激光雷达APD测距V字形标定方法及装置。
背景技术
激光扫描测距雷达能够用于检测目标位置,轮廓和速度,激光测距雷达的应用领域逐步拓展,精确测量、导航定位、安全避障,并开始应用于无人驾驶技术,激光扫描雷达是将发射的激光束通过扫描发射形成扫描截面,从而测试出待测物的特征信息。目前三维扫描激光雷达在垂直方向为多层扫描,能够很好的反应待测物的特征信息,适用于多个领域,如无人驾驶的导航,形状轮廓检测。
目前的三维扫描激光雷达多采用多线扫描方式,即发射使用多个激光管顺序发射,结构为多个激光管纵向排列,每个激光管之间有一定的夹角,同时在对称面有相应的接收探测器进行接收,保证每一个接收探测器和发射激光管的视场角相对应,因此在安装调节过程中非常复杂。目前更多的开始使用MEMS( Micro-Electro-Mechanical System,微机电系统)激光雷达,但是MEMS激光雷达在水平和俯仰两个方向的视场角非常大,尤其是水平方向,一般水平方向视场角在40-150°,为了达到大的接收视场,一般都需要使用更大的像面进行接收,但是之前使用的APD((Avalanche Photo Diode,光电二极管))阵列探测器,填充因子较高,探测器之间间隙较大,同时由于MEMS振镜的角度随着温度和电压的变化而变化,使用MEMS振镜提供的角度信息得到点云很不准确。
发明内容
本申请提供了一种三维激光雷达APD测距V字形标定方法,包括:
打开三维激光雷达,垂直于标定平面进行测距;
采集各测距点的多帧测距数据,从多帧测距数据中去除异常值,得到各测距点距离测量值;
根据各测距点距离测量值和采集的帧数量,计算各测距点的帧平均值;
根据各测距点的帧平均值,查找所有V字形点云中的距离最小值;
计算V字形点云中各测距点的帧平均值与所述距离最小值的差值,得到各测距点距离测量值的校正值;
使用各测距点距离测量值的校正值校正激光雷达各测距点距离测量值,得到校正结果。
如上所述的三维激光雷达APD测距V字形标定方法,其中,所述激光雷达包括激光发射器和激光接收器;激光发射器由水平和竖直两个方向的发光控制来覆盖空间区域,激光接收器包括接收镜头和光电探测器;光电探测器在三维激光雷达中为阵列形式,具体为适用于激光雷达测距的多列APD探测器排列组成的APD阵列。
如上所述的三维激光雷达APD测距V字形标定方法,其中,在测距过程中选择控制激光雷达开启APD阵列中的单列探测器,测量标定平面,或者选择采集整个APD阵列,从整个APD阵列中挑选出单列APD数据用于后续分析校正。
如上所述的三维激光雷达APD测距V字形标定方法,其中,从多帧测距数据中去除异常值,具体为去除明显超出预定波动范围的异常点云,以及去除比V字形中央最近距离还近的近距离的异常。
如上所述的三维激光雷达APD测距V字形标定方法,其中,采集各测距点的多帧测距数据具体表示为:
Figure 203709DEST_PATH_IMAGE001
计算各测距点的帧平均值,具体为:
Figure 140441DEST_PATH_IMAGE002
其中,t>0,是点云帧采集次数,n为采集的帧数量,i为点云行号,j为点云列号,
Figure 48354DEST_PATH_IMAGE003
为第t帧各测距点距离测量值,
Figure 386932DEST_PATH_IMAGE004
为各测距点的帧平均值,
Figure 823729DEST_PATH_IMAGE005
为第t帧点云。
如上所述的三维激光雷达APD测距V字形标定方法,其中,查找V字形点云中距离最小值的方式包括:直接查找所有V字形点云中距离最近的点;或者先计算出各V字形点云中最近距离点,然后再进一步找出这些最近距离点中的最小值。
如上所述的三维激光雷达APD测距V字形标定方法,其中,根据各测距点的帧平均值,查找所有V字形点云中的距离最小值,具体为:
Figure 982178DEST_PATH_IMAGE006
其中,i为点云行号,j为点云列号,
Figure 693782DEST_PATH_IMAGE004
是各测距点的帧平均值,
Figure 919489DEST_PATH_IMAGE007
为各测距点的帧平均值中的最小值。
如上所述的三维激光雷达APD测距V字形标定方法,其中,计算V字形点云中各测距点的帧平均值与所述距离最小值的差值,得到各测距点距离测量值的校正值,具体为:
Figure 261609DEST_PATH_IMAGE008
其中,i为点云行号,j为点云列号,
Figure 438512DEST_PATH_IMAGE004
是各测距点的测量值的帧平均值,
Figure 157070DEST_PATH_IMAGE007
为各测距点的帧平均值中的最小值,
Figure 735819DEST_PATH_IMAGE009
为各测距点距离测量值的校正值。
如上所述的三维激光雷达APD测距V字形标定方法,其中,计算V字形点云中各测距点的帧平均值与所述距离最小值的差值,得到各测距点距离测量值的校正值,具体为:
Figure 311156DEST_PATH_IMAGE010
其中,t>0,是点云帧采集次数,i为点云行号,j为点云列号,
Figure 850722DEST_PATH_IMAGE003
为第t帧各测距点距离测量值,
Figure 700866DEST_PATH_IMAGE009
为各测距点测量值的校正值,
Figure 632657DEST_PATH_IMAGE011
为第t帧各测距点校正后的结果值。
本申请还提供一种三维激光雷达APD测距V字形标定装置,所述装置执行上述任一项所述的三维激光雷达APD测距V字形标定方法。
本申请实现的有益效果如下:采用本申请的技术方案,能够使V字形畸形点云校正为一字形点云,从而提高三维激光雷达测距的精确度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为单列APD接收激光水平区域顶视图;
图2为单列APD接收激光区域立体示意图;
图3为光斑与APD几种相对位置关系图;
图4为单线测距校正对比图;
图5为单列APD多线测距校正对比图;
图6为三维激光雷达测距系统的点云校正方法流程图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本申请实施例一提供一种三维激光雷达测距系统,包括激光发射器和激光接收器。其中,激光发射器由水平和竖直两个方向的发光控制来覆盖空间区域,例如MEMS振镜扫描控制等;激光接收器包括接收镜头和光电探测器,接收镜头聚光,在焦点处通过探测器接收并成像,在此过程中将光信号通过光电转换得到电信号;激光从开始发射到遇到目标物体返回,最后到达探测器结束,整个时间可以通过信号发出时间与接收时间差计算得到,由此即可实现激光雷达测距。
其中,光电探测器在三维激光雷达中一般为阵列形式,优选为适用于激光雷达测距的多列APD探测器排列组成的APD阵列;图1是单列APD接收激光水平区域顶视图,图2为单列APD接收激光区域立体示意图,单条探测器具有一定接收面积,形状为长方形,每条探测器负责一定区域的视场范围,从而整个APD阵列能够拼接成较大范围的视场区域,比如水平方向60度,竖直方向20度。
由于APD阵列中探测器条数较少(远少于点云横向分辨率),一般有十几或几十条,因此按其宽边拼接,使短边并列成排,由此能够使实际测量范围较大,并且水平角度分辨率高时,接收到的点云列数远大于APD探测器的条数。其中,每个单条探测器上需要探测多列距离数据,例如,32条APD单条拼接成阵列。阵列的长边由32个短边组成(短边之间有小间隙),对应的水平接收视场角为60度。为了便于计算与理解,这里按30个APD列对应60度来算,即每个APD对应2度视场角。如果激光雷达的角度分辨率为0.2度,则每个APD列需要探测10列数据;如果角度分辨率为0.4度,则每个APD列需要探测5列数据。这里按角度分辨率为0.4度来分析,即取一行数据来看,每个APD中有5个探测距离点,从点云角度看,点云中的一行包含5个点。
图3为光斑与APD几种相对位置关系图。在使用激光雷达测距时,激光经目标物体返回,通过镜头聚光后落到APD探测器上,由于激光光斑与单列APD的宽度相差不大,因此在此宽度上,为了得到5个角度分辨率的测量值,单列APD在宽度方向需要提供5个光斑位置。而且因为角度分辨率是个定值,所以角度细分是均匀的,也就是说APD上面的位置也是均匀分布的,所以通过看重叠关系来确定光斑与APD的相对位置,其中,二者的重叠关系可以让圆形光斑从左到右经过长方形单列APD来分析:
假设光斑直径稍大于单列APD的宽度,单列APD的宽度方向均分为4等分,即5个位置点,其中第1和第5个位置分别是左右两边,第3个位置是APD的宽度的正中间;当光斑中心分别与第1到第5个位置重合时,是对探测器工作的正常位置匹配。然而,当光斑在第1个位置(在边上)时,单列APD只能收到光斑一半能量,当光斑在第3个位置(在中间)时,单列APD只能收到光斑的能量最多,所以从第1到第5位置过程中,单列APD接收到的能量分别是一半、较多、最多、较多、一半。由于接收到的光斑能量对测距离有一定影响,即相同条件下,能量弱时测量值会偏大,也即能量弱时测量距离比能量强时测量距离大,因此可以通过能量损失标定距离偏差,为了能够准确测量能量,本申请采用统计方法分析偏差变化规律,并计算距离偏差用于各测距点校正。
实施例二
在使用实施例一的激光雷达测距系统测量空间平面时,得到的点云往往不是平坦的,而是由多列V字形点云拼接而成的畸变形态,每一列V字形对应于APD阵列中的一条探测器,由于APD阵列中各单条探测器情况相近,因此本申请针对单列APD探测器来分析,经本申请实施例二的校正方法可以得到如图4和5所示的多条“一”字形点云纵向排列,图4为单线测距校正对比图,图5为单列APD多线测距校正对比图。
所述三维激光雷达测距系统的点云校正方法(即将APD阵列探测到的各列V字畸变校正成平坦的“一”字形点云),如图6所示,包括:
步骤610、打开激光雷达,垂直于标定平面进行测距;
在测试过程中可以控制激光雷达,开启APD阵列中的单列探测器,测量标定平面;比如,选择激光雷达视场中心附近的APD单列,测量方向垂直于标定平面(目的使点云对称);
若在测试过程中未控制激光雷达开启单列APD接收数据的话,那么采集到的即是整个APD阵列,需要从整个APD阵列中挑选出单列APD数据用于后续分析校正。
步骤620、采集各测距点的多帧测距数据;
为了避免测量数据的偶然因素,本申请校正时采用数学统计的方法,使校正结果更具有普遍性,因此记录一段时间内重复测量的数据,比如1000帧数据。
步骤630、从多帧测距数据中去除异常值,得到各测距点距离测量值;
具体地,在测量数据中去除异常值,比如近距离的干扰,远距离的离群点等;测量数据在一定范围内波动,当出现明显超出这个波动范围的异常点云时,需要去除掉,特别是近距离的异常,往往比V字形中央最近距离还近,那么可能是其他干扰,并不属于此规律畸变值,因此需要将其剔除。比如,测量距离为5米,数据动态范围是5-5.30米,在1000帧数据中,如果有超出此范围的异常点需要去除掉。
步骤640、根据各测距点距离测量值和采集的帧数量,计算各测距点的帧平均值;
假设单列APD探测器形成的V字形点云共有H * L = M个点(H为行数,L为列数),即单列APD对应每帧数据有M个点,即有H线,每条线上分布L个测距点;例如单列APD对应每帧数据有80个点,即有16线,每条线上分布5个测距点;
其中,点云的帧数据表示为:
Figure 582158DEST_PATH_IMAGE001
式(1)
通过下式计算各测距点的帧平均值:
Figure 468075DEST_PATH_IMAGE002
式(2)
式(1)、(2)中,t>0,是点云帧采集次数,n为采集的帧数量,如1000帧,i为点云行号,j为点云列号,
Figure 590752DEST_PATH_IMAGE003
为第t帧各测距点距离测量值,
Figure 753880DEST_PATH_IMAGE004
为各测距点的帧平均值,
Figure 998916DEST_PATH_IMAGE005
为第t帧点云。
步骤650、根据各测距点的帧平均值,查找所有V字形点云中的距离最小值;
本申请实施例中,查找V字形点云中距离最小值的方式有两种:第一种是直接查找所有V字形点云中距离最近的点;第二种是先计算出各V字形点云中最近距离点,然后再进一步找出这些最近距离中的最小值;
具体地,采用下式计算V字形点云中距离最小值:
Figure 247495DEST_PATH_IMAGE006
式(3)
式(3)中,i为点云行号,j为点云列号,
Figure 236180DEST_PATH_IMAGE004
是各测距点的测量值的帧平均值,
Figure 348754DEST_PATH_IMAGE007
为各测距点的测量值的帧平均值中的最小值。
步骤660、计算V字形点云中各测距点的帧平均值与所述距离最小值的差值,得到各测距点距离测量值的校正值;
为了得到各测距点校正量,假设此列V字形点云中各测距点到激光雷达的距离相同,而且该距离值即为步骤650中统计出来的距离最小值,因此,将此列V字形各测距点距离值减去距离最小值,得到各测距点距离校正值;
具体地,采用下式计算V字形各测距点与最小值的差值:
Figure 702375DEST_PATH_IMAGE008
式(4)
式(4)中,i为点云行号,j为点云列号,
Figure 438250DEST_PATH_IMAGE004
是各测距点的测量值的帧平均值,
Figure 965046DEST_PATH_IMAGE007
为各测距点的测量值的帧平均值中的最小值,
Figure 430663DEST_PATH_IMAGE009
为各测距点测量值的校正值。
步骤670、使用各测距点距离测量值的校正值校正激光雷达各测距点距离测量值,得到校正结果;
在上一步中得到的各测距点距离校正值是一个统计均值,在激光雷达实测数据中,将对应测量值减去此校正值,得到校正后的点云平面;
具体地,采用下式校正激光雷达测量值:
Figure 158447DEST_PATH_IMAGE010
式(5)
式(5)中,t>0,是点云帧采集次数,i为点云行号,j为点云列号,
Figure 912777DEST_PATH_IMAGE003
为第t帧各测距点距离测量值,
Figure 508843DEST_PATH_IMAGE009
为各测距点测量值的校正值,
Figure 501070DEST_PATH_IMAGE011
为第t帧各测距点校正后的结果值。
以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围。都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (10)

1.一种三维激光雷达APD测距V字形标定方法,其特征在于,包括:
打开三维激光雷达,垂直于标定平面进行测距;
采集各测距点的多帧测距数据,从多帧测距数据中去除异常值,得到各测距点距离测量值;
根据各测距点距离测量值和采集的帧数量,计算各测距点的帧平均值;
根据各测距点的帧平均值,查找所有V字形点云中的距离最小值;
计算V字形点云中各测距点的帧平均值与所述距离最小值的差值,得到各测距点距离测量值的校正值;
使用各测距点距离测量值的校正值校正激光雷达各测距点距离测量值,得到校正结果。
2.如权利要求1所述的三维激光雷达APD测距V字形标定方法,其特征在于,所述激光雷达包括激光发射器和激光接收器;激光发射器由水平和竖直两个方向的发光控制来覆盖空间区域,激光接收器包括接收镜头和光电探测器;光电探测器在三维激光雷达中为阵列形式,具体为适用于激光雷达测距的多列APD探测器排列组成的APD阵列。
3.如权利要求2所述的三维激光雷达APD测距V字形标定方法,其特征在于,在测距过程中选择控制激光雷达开启APD阵列中的单列探测器,测量标定平面,或者选择采集整个APD阵列,从整个APD阵列中挑选出单列APD数据用于后续分析校正。
4.如权利要求1所述的三维激光雷达APD测距V字形标定方法,其特征在于,从多帧测距数据中去除异常值,具体为去除明显超出预定波动范围的异常点云,以及去除比V字形中央最近距离还近的近距离的异常。
5.如权利要求1所述的三维激光雷达APD测距V字形标定方法,其特征在于,采集各测距点的多帧测距数据具体表示为:
cloud (t) = d (t) (i,j)
计算各测距点的帧平均值,具体为:
Figure 573570DEST_PATH_IMAGE001
其中,t>0,是点云帧采集次数,n为采集的帧数量,i为点云行号,j为点云列号,
Figure 938953DEST_PATH_IMAGE002
为第t帧各测距点距离测量值,
Figure 144807DEST_PATH_IMAGE003
为各测距点的帧平均值,
Figure 527246DEST_PATH_IMAGE004
为第t帧点云。
6.如权利要求1所述的三维激光雷达APD测距V字形标定方法,其特征在于,查找V字形点云中距离最小值的方式包括:直接查找所有V字形点云中距离最近的点;或者先计算出各V字形点云中最近距离点,然后再进一步找出这些最近距离点中的最小值。
7.如权利要求1所述的三维激光雷达APD测距V字形标定方法,其特征在于,根据各测距点的帧平均值,查找所有V字形点云中的距离最小值,具体为:
Figure 425932DEST_PATH_IMAGE005
其中,i为点云行号,j为点云列号,
Figure 401979DEST_PATH_IMAGE003
是各测距点的帧平均值,
Figure 270577DEST_PATH_IMAGE006
为各测距点的帧平均值中的最小值。
8.如权利要求1所述的三维激光雷达APD测距V字形标定方法,其特征在于,计算V字形点云中各测距点的帧平均值与所述距离最小值的差值,得到各测距点距离测量值的校正值,具体为:
Figure 648469DEST_PATH_IMAGE007
其中,i为点云行号,j为点云列号,
Figure 577111DEST_PATH_IMAGE003
是各测距点的帧平均值,
Figure 774874DEST_PATH_IMAGE006
为各测距点的帧平均值中的最小值,
Figure 650426DEST_PATH_IMAGE008
为各测距点距离测量值的校正值。
9.如权利要求1所述的三维激光雷达APD测距V字形标定方法,其特征在于,使用各测距点距离测量值的校正值校正激光雷达各测距点距离测量值,得到校正结果,具体为:
Figure 7458DEST_PATH_IMAGE009
其中,t>0,是点云帧采集次数,i为点云行号,j为点云列号,
Figure 247947DEST_PATH_IMAGE002
为第t帧各测距点距离测量值,
Figure 792060DEST_PATH_IMAGE008
为各测距点距离测量值的校正值,
Figure 143407DEST_PATH_IMAGE010
为第t帧各测距点校正后的结果值。
10.一种三维激光雷达APD测距V字形标定装置,其特征在于,所述装置执行如权利要求1-9任一项所述的三维激光雷达APD测距V字形标定方法。
CN202011073778.7A 2020-10-10 2020-10-10 一种三维激光雷达apd测距v字形标定方法及装置 Active CN111929664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011073778.7A CN111929664B (zh) 2020-10-10 2020-10-10 一种三维激光雷达apd测距v字形标定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011073778.7A CN111929664B (zh) 2020-10-10 2020-10-10 一种三维激光雷达apd测距v字形标定方法及装置

Publications (2)

Publication Number Publication Date
CN111929664A CN111929664A (zh) 2020-11-13
CN111929664B true CN111929664B (zh) 2020-12-25

Family

ID=73335187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011073778.7A Active CN111929664B (zh) 2020-10-10 2020-10-10 一种三维激光雷达apd测距v字形标定方法及装置

Country Status (1)

Country Link
CN (1) CN111929664B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816993B (zh) * 2020-12-25 2022-11-08 北京一径科技有限公司 激光雷达点云处理方法和装置
CN115032618B (zh) * 2022-08-12 2022-11-25 深圳市欢创科技有限公司 应用于激光雷达的盲区修复方法、装置及激光雷达
CN115079128B (zh) * 2022-08-23 2022-12-09 深圳市欢创科技有限公司 一种激光雷达点云数据去畸变的方法、装置及机器人

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245398A (en) * 1991-06-21 1993-09-14 Eastman Kodak Company Time-multiplexed multi-zone rangefinder
JP3609559B2 (ja) * 1996-10-17 2005-01-12 松下電器産業株式会社 位置検出素子及び距離センサ
KR100767934B1 (ko) * 2006-07-05 2007-10-17 주식회사 대우일렉트로닉스 트랙킹 에러 검출 방법 및 이를 이용한 광정보 재생장치
CN106768399A (zh) * 2016-12-07 2017-05-31 武汉纺织大学 矩形激光光斑能量分布快速检测系统和方法
CN109031253A (zh) * 2018-08-27 2018-12-18 森思泰克河北科技有限公司 激光雷达标定系统及标定方法
CN109443245B (zh) * 2018-11-09 2020-05-26 扬州市职业大学 一种基于单应性矩阵的多线结构光视觉测量方法

Also Published As

Publication number Publication date
CN111929664A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN111929664B (zh) 一种三维激光雷达apd测距v字形标定方法及装置
US10295659B2 (en) Angle calibration in light detection and ranging system
CN108332708B (zh) 激光水平仪自动检测系统及检测方法
US9958263B2 (en) Correction device and correction method for optical measuring apparatus
CN114323571B (zh) 一种光电瞄准系统多光轴一致性检测方法
CN108662984A (zh) 一种基于直角反射镜组的精密位移传感器及其测量方法
US20230305150A1 (en) Adaptive search method for light spot positions, time of flight distance measurement system, and distance measurement method
CN111352120B (zh) 飞行时间测距系统及其测距方法
WO2019100810A1 (zh) 辐射图像校正方法和校正装置及校正系统
US10514447B2 (en) Method for propagation time calibration of a LIDAR sensor
CN100590382C (zh) 大型平台变形量的光电测量方法
CN117008104B (zh) 一种传感器标定补偿方法
CN110807813B (zh) 一种tof模组标定方法、装置及系统
CN112595266A (zh) 一种用于管道检测的缺陷面积计算方法及系统
RU2010123946A (ru) Устройство измерения дефектов устройства формирования изображений с двумя оптоэлектронными датчиками
CN114577336A (zh) 一种光电探测器阵列的标定方法及其系统
JP3630077B2 (ja) 車両用レーダの中心軸検出方法および装置
CN114930191A (zh) 激光测量装置及可移动平台
CN113064139B (zh) 一种高测量精度的激光雷达及其使用方法
JP2007240275A (ja) 距離計測装置・撮像装置、距離計測方法・撮像方法、距離計測プログラム・撮像プログラムおよび記憶媒体
CN111796302B (zh) 一种基于梯形镜片的多指定高度ccd成像系统及方法
CN115037362B (zh) 一种多波长多视场大跨距的同轴度偏差检测装置
CN114777933B (zh) 一种无网格大动态范围哈特曼波前测量装置及测量方法
US20220146679A1 (en) Laser scanning device and method for the three-dimensional measurement of a setting from a great distance
CN108225256B (zh) 光线入射角度测量结果的校准方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant