CN111917135A - 一种智能建筑群电能优化共享方法 - Google Patents

一种智能建筑群电能优化共享方法 Download PDF

Info

Publication number
CN111917135A
CN111917135A CN201910390478.2A CN201910390478A CN111917135A CN 111917135 A CN111917135 A CN 111917135A CN 201910390478 A CN201910390478 A CN 201910390478A CN 111917135 A CN111917135 A CN 111917135A
Authority
CN
China
Prior art keywords
building
electric
power
intelligent building
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910390478.2A
Other languages
English (en)
Inventor
高红均
任文诗
刘友波
刘俊勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201910390478.2A priority Critical patent/CN111917135A/zh
Publication of CN111917135A publication Critical patent/CN111917135A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种智能建筑群电能优化共享方法,搭建了包含风电、光伏、储能设备、电动汽车以及可控负荷等多个设备的智能建筑群系统架构;为了实现智能建筑群内的电能共享,建立以降低智能建筑群与配电网的交易成本、储能设备的运维成本以及电动汽车的电池损耗成本为目标函数的优化共享模型;采用应用较为广泛的Shapley算法将收益按各智能建筑对整个系统交易量的边际贡献进行科学分配;通过对一个包含两个居民楼以及一个商业大厦的典型智能建筑进行算例分析,验证了本方法所提模型的有效性。余电建筑的自身售电收益可以提高,而缺电建筑的自身购电成本得到降低。利用Shapley值法对每栋建筑的收益进行分配,可以充分调动各建筑参与的积极性。

Description

一种智能建筑群电能优化共享方法
技术领域
本发明涉及电力市场配售分离改革领域,具体为一种智能建筑群电能优化共享方法。
背景技术
当今是互联网的时代,我们仍然对电力有着持续增长的需求,因为我们发明了电脑、家电等更多使用电力的产品。不可否认新技术的不断出现使得电力成为人们的必需品。对电力合理分配可以保障各个区域得到有效的电力保障,尤其在智能化的当今社会,更是我们需要面对的问题。
发明内容
本发明的目的在于提供一种智能建筑群电能优化共享方法,
首先,搭建了包含风电、光伏、储能设备、电动汽车以及可控负荷等多个设备的智能建筑群系统架构,并对智能建筑之间以及智能建筑群与配电网之间的能量流动关系进行阐述分析;
其次,为了实现智能建筑群内的电能共享,建立以降低智能建筑群与配电网的交易成本、储能设备的运维成本以及电动汽车的电池损耗成本为目标函数的优化共享模型,该模型考虑了电动汽车预期充电电量的约束,热水器最大可中断时间和最小连续启动时间的约束;并且根据室内外温度传递规律,考虑了室温舒适度的约束;
然后,采用应用较为广泛的Shapley算法将收益按各智能建筑对整个系统交易量的边际贡献进行科学分配;
最后,通过对一个包含两个居民楼以及一个商业大厦的典型智能建筑进行算例分析,验证了本方法所提模型的有效性。
优选的,以智能建筑群与电网的交易总成本、储能设备运行维护成本以及电动汽车的电池损耗成本最低为优化目标,智能建筑群内的每一个智能建筑都可以与其他智能建筑分别进行电能共享,其目标是使盈余的电能在智能建筑群内部消耗,当整个智能建筑群出现电能缺损或盈余时,再跟电网进行交易;
优化目标函数:
Figure BDA0002056317530000021
Figure BDA0002056317530000022
其中,Nh为智能建筑群内建筑物的总数;Δt=15分钟为一个调度时段;T为一天内的总时段数,即T=96;
Figure BDA0002056317530000023
为t时段建筑向电网买、卖电能的价格,本方法中的售电、购电电价均采用TOU;
Figure BDA0002056317530000024
为h建筑在t时段从电网买入的功率;
Figure BDA0002056317530000025
为h建筑在t时段卖给电网的功率;λ储能设备为储能设备运行维护成本的单价;
Figure BDA0002056317530000026
为h建筑的储能设备在t时段的充电功率;
Figure BDA0002056317530000027
为h建筑的储能设备在t时段的放电功率;
Figure BDA0002056317530000028
为电动汽车的电池损耗成本;N电动汽车为智能建筑群内的电动汽车总数目;
Figure BDA0002056317530000029
为第i辆电动汽车的电池购买成本;
Figure BDA00020563175300000210
为第i辆电动汽车的电池在生命周期内的充放电循环次数;
Figure BDA00020563175300000211
为电动汽车i的电池容量大小;
Figure BDA00020563175300000212
为第i辆电动汽车可用电池放电深度;
Figure BDA0002056317530000031
Figure BDA0002056317530000032
为电动汽车的额定充、放电功率;η电动汽车ch和η电动汽车dis分别为电动汽车的充、放电效率;
智能建筑内部功率平衡约束:
Figure BDA0002056317530000033
其中,
Figure BDA0002056317530000034
为t时段h建筑从k建筑购买量;
Figure BDA0002056317530000035
为t时段h建筑给k建筑售电量;
Figure BDA0002056317530000036
为h建筑的电动汽车在t时段的放电功率;
Figure BDA0002056317530000037
为h建筑的电动汽车在t时段的充电功率;ηDC-AC为逆变过程中的电能转换效率;
Figure BDA0002056317530000038
为h建筑的PV在t时段预测出力;ηAC-DC为整流过程中的电能转换效率;
Figure BDA0002056317530000039
为h建筑的风电设备在t时段的预测出力;
Figure BDA00020563175300000310
为h建筑的不可控负荷大小;
Figure BDA00020563175300000311
分别是h建筑的空调与热水器在t时段的功率。储能设备、PV以及和它们连接的直流母线一起视为直流系统;因此存在着交直流的转换效率问题,所以本方法在式(3)中计算PV的出力、储能设备的充放电功率时需要乘上相应的交直流转换效率;
智能建筑间的购售电平衡约束:
Figure BDA00020563175300000312
Figure BDA00020563175300000313
Figure BDA00020563175300000314
其中,
Figure BDA00020563175300000315
Figure BDA00020563175300000316
为0-1变量;式(4)表示t时段h建筑从k建筑买的电量值与同一时段k建筑卖给h建筑的电量值相等;式(5)、(6)保证同一时间段h与k建筑交互的功率必须小于线路允许的最大功率值
Figure BDA0002056317530000041
智能建筑与主网电能交易约束:
Figure BDA0002056317530000042
Figure BDA0002056317530000043
Figure BDA0002056317530000044
其中,
Figure BDA0002056317530000045
Figure BDA0002056317530000046
为0-1变量,保证同一时间段智能建筑与电网交互的功率必须小于电网允许的最大功率值,如式(7)-(8)所示;式(9)表示智能建筑与电网的交易买卖状态在同一时段只有一种情况发生;
储能设备约束:
Figure BDA0002056317530000047
Figure BDA0002056317530000048
Sh,0=Sh,T (12)
Figure BDA0002056317530000049
Figure BDA00020563175300000410
Figure BDA00020563175300000411
其中,
Figure BDA00020563175300000412
Figure BDA00020563175300000413
为h建筑的储能设备在时段t和t-1的储能容量;η储能设备ch为储能设备的充电效率;η储能设备dis为储能设备的放电效率;
Figure BDA00020563175300000414
分别h建筑的储能设备储能容量的最小值、最大值;Sh,0、Sh,T分别为h建筑的储能设备的初始状态和终止状态;
Figure BDA00020563175300000415
Figure BDA00020563175300000416
分别是h建筑的储能设备在t时段处于充电和放电状态的0-1变量,
Figure BDA0002056317530000051
取1表示充电,
Figure BDA0002056317530000052
取1表示放电;
Figure BDA0002056317530000053
Figure BDA0002056317530000054
分别是h建筑的储能设备的最大充电、放电功率;如式(12)所示,调度周期首末两个时段的储能设备容量保持一致是为了保证调度的连续性;式(15)保证储能设备不能同时进行充放电;
电动汽车约束:
为了表达的清晰,就一栋建筑内的电动汽车模型进行说明,其他建筑使用的电动汽车模型是相同的;
1)单辆电动汽车充放电模型:
假设该智能建筑群中有N电动汽车辆电动汽车,由于各用户使用电动汽车的需求不同,所以各电动汽车的参数不同。对于任意一辆电动汽车i∈N电动汽车,其相关参数为:
Figure BDA0002056317530000058
其中,Ti,b和Ti,d分别为车辆i接入智能建筑群的起始时间和预期离开的时间;
Figure BDA0002056317530000055
为车辆i的起始电池容量,
Figure BDA0002056317530000056
为车辆i离开智能建筑群时期望的电池容量;
Figure BDA0002056317530000057
Yi,t=Bi,t×Wi,t (18)
Xi,t=Ai,t×Wi,t (19)
Ai,t+Bi,t≤1 (20)
其中,Wi,t表示t时段电动汽车i是否到家的0-1变量,通过蒙特卡洛法获得用户的基本出行数据,0表示电动汽车未在家,1表示电动汽车已到家;Xi,t、Yi,t为电动汽车i在t时段的最终充电、放电状态;Ai,t、Bi,t为0-1变量,其中Ai,t取1代表电动汽车i在t时段充电,Bi,t取1代表电动汽车i在t时段放电;式(20)表示电动汽车i在时段t只能处于充电或放电中的一种情况;
2)电动汽车群充放电模型:
Figure BDA0002056317530000061
Figure BDA0002056317530000062
Figure BDA0002056317530000063
Figure BDA0002056317530000064
其中,
Figure BDA0002056317530000065
为单个智能建筑内的电动汽车总数目;
Figure BDA0002056317530000066
为t时段h建筑内电动汽车群的最大充放电功率;
3)电动汽车电池容量模型:
在本方法中将参与调度的电动汽车动力电池均假设成锂电池。根据锂电池的充、放电等相关特性的研究,将模型作适当的简化:在单个时段内,将锂电池视为恒功率充放电,不考虑自放电率的影响,建立了如下电动汽车电池模型和约束条件:
Figure BDA0002056317530000067
Figure BDA0002056317530000068
Figure BDA0002056317530000069
其中,
Figure BDA0002056317530000071
为车辆i在t时段的电池容量,
Figure BDA0002056317530000072
Figure BDA0002056317530000073
分别为车辆i的电池容量最小值和最大值。对无记忆性的锂电池进行间断充电不会对其寿命造成影响,因此本方法忽略对锂电池寿命约束的考虑,仅使用式(25)将电动汽车i在t时段的容量设定在一定的上下限内,对其寿命起到保护作用,式(27)表示电动汽车离开时,其电池的剩余容量需满足车主期望;
空调约束:
空调、热水器等都属于带有热泵性质的负荷,它们都属于温控负荷。短时间暂停使用空调和热水器并不会对用户的生活产生严重影响,本方法基于室内外温度传递规律,建立了以约束室内温度波动范围和空调功率的数学模型,为了表达的清晰,就一栋建筑内的空调模型进行说明,其他建筑的空调模型也是相同的,空调用电特性建模公式为:
Figure BDA0002056317530000074
Figure BDA0002056317530000075
Figure BDA0002056317530000076
Figure BDA0002056317530000077
其中,
Figure BDA0002056317530000078
为t时段m空调的功率;
Figure BDA0002056317530000079
为t时段m空调的功率最大值;
Figure BDA00020563175300000710
为t时段室内温度;ω为室内温度变化的惯性系数;t时间段内室外环境温度为恒定值
Figure BDA00020563175300000711
η为热传导效率;A为热传导系数;
Figure BDA00020563175300000712
为t时段室内温度设定值;ΔT为最大温度偏移量;
Figure BDA00020563175300000713
为t时段h建筑的功率;
Figure BDA0002056317530000081
为单个智能建筑内空调的总数;
热水器约束:
为了表达的清晰,就一栋建筑内的热水器模型进行说明,其他建筑的热水器模型也是相同的。本方法以约束热水器最大可中断时间、最小连续启动时间和开关状态来描述热水器负荷的特征;
1)最大可中断时间和最小连续启动时间约束
假设热水器开启时其功率为一个恒定值pW,t时间段内室外环境温度为恒定值
Figure BDA0002056317530000082
用户可承受的水温区间为
Figure BDA0002056317530000083
根据热水器的热动力学模型可以得到热水器的最大可中断时间
Figure BDA0002056317530000084
和最小连续启动时间
Figure BDA0002056317530000085
即:
Figure BDA0002056317530000086
Figure BDA0002056317530000087
其中,ε=e-τ/Tc为散热系数,其中τ为控制时间,Tc为时间常数;η为热水器能效比,ηpW为热水器的额定制热量;A为导热系数;
2)开关状态的约束
Figure BDA0002056317530000088
Figure BDA0002056317530000089
Figure BDA00020563175300000810
Figure BDA00020563175300000811
Figure BDA00020563175300000812
其中,
Figure BDA0002056317530000091
分别表示热水器i在t时段末开关机状态的0-1变量,1表示“是”,0表示“否”;
Figure BDA0002056317530000092
表示t时段热水器i的运行状态;
Figure BDA0002056317530000093
为单个智能建筑内热水器的总数,式(34)说明在同一时刻热水器i不可能既开机又关机;式(36)表示热水器的最小运行时间不能小于τon;式(37)表示热水器的最大运行时间不能大于τoff
优选的,优化模型下,CO需要保证用户获得公正公平的经济效益,因此采用Shapley值法解决由于各建筑做出的贡献不同而导致其得到的收益不均的问题,当集群内的各智能建筑充分合作时,将按照统一调度方式确定各建筑之间以及各建筑与电网之间的交换电量,并使用Shapley值法分配给它们相应的收益,收益相对于它们各自独立运行时有所增加,并且这些建筑使用其他购售电方式都不会得到更大的利益,将智能建筑群内的n个建筑表示为参与博弈的n个向量集合,n维的分配向量称为合作博弈的“解”,对于合作博弈(N,v),集群内部参与博弈的用户的编号集合为N={1,2,…,n},在优化模型中是指由CO调度的建筑;v为量化智能建筑群内利益的特征函数,本方法中表示由参与调度的智能建筑组成的集群的经济成本,即式(1),给予每个参与的智能建筑i∈N一个实值参数fi,形成n维向量f=(f1,f2,…,fn)且其满足
Figure BDA0002056317530000094
那么就称f是集群s的一个分配方案;
基于分配的定义,对于单个用户而言,fi≥v({i})表示用户参与合作时的收益不会小于非合作时的收益,如果fi<v({i}),那么用户i将得到与非合作时相比更少的收益,则该用户不会参与合作,对于集群而言,
Figure BDA0002056317530000101
表示每个用户的分配之和不能超过集体剩余v(N);
模型中,应用Shapley值法为各个参与合作的智能建筑分配收益的计算规则需要满足条件:
Figure BDA0002056317530000102
Figure BDA0002056317530000103
在式(40)显然满足的前提下,智能建筑群合作时的收益比各建筑单独运行时的收益之和要多,因此式(41)是成立的;
式(40)(41)成立后,对每个参与合作的建筑的收益运用Shapley值法来进行计算,任意一个建筑的分配收益vi的计算公式为:
Figure BDA0002056317530000104
Figure BDA0002056317530000105
其中,si是集群中的所有子集集合;ω(|s|)是加权因子;|s|是子集s中的用户数量;v(s)是集合s的收益;v(s/i)是除去智能建筑i之后的集合s所获得的总收益。
与现有技术相比,本发明的有益效果是:与各建筑直接与配电网进行交易的模式相对比,本方法提出的合作模型下能提高集群整体总收益,利用Shapley值法得到的各个建筑的收益可表现为两个方面:余电建筑的自身售电收益可以提高,而缺电建筑的自身购电成本得到降低。利用Shapley值法对每栋建筑的收益进行分配,可以充分调动各建筑参与的积极性。本方法的优化模型为混合整数线性规划问题,本方法的整个算法在MATLAB 2016a平台下程序实现,并采用当前较为广泛应用的商业软件包CPLEX12.6进行可靠求解。
附图说明
图1为智能建筑群外部模型;
图2为智能建筑内部模型图;
图3为模型流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
一种智能建筑群电能优化共享方法,
首先,搭建了包含风电、光伏、储能设备、电动汽车以及可控负荷等多个设备的智能建筑群系统架构,并对智能建筑之间以及智能建筑群与配电网之间的能量流动关系进行阐述分析;
其次,为了实现智能建筑群内的电能共享,建立以降低智能建筑群与配电网的交易成本、储能设备的运维成本以及电动汽车的电池损耗成本为目标函数的优化共享模型,该模型考虑了电动汽车预期充电电量的约束,热水器最大可中断时间和最小连续启动时间的约束;并且根据室内外温度传递规律,考虑了室温舒适度的约束;
然后,采用应用较为广泛的Shapley算法将收益按各智能建筑对整个系统交易量的边际贡献进行科学分配;
最后,通过对一个包含两个居民楼以及一个商业大厦的典型智能建筑进行算例分析,验证了本方法所提模型的有效性。
以智能建筑群与电网的交易总成本、储能设备运行维护成本以及电动汽车的电池损耗成本最低为优化目标,智能建筑群内的每一个智能建筑都可以与其他智能建筑分别进行电能共享,其目标是使盈余的电能在智能建筑群内部消耗,当整个智能建筑群出现电能缺损或盈余时,再跟电网进行交易;
优化目标函数:
Figure BDA0002056317530000121
Figure BDA0002056317530000122
其中,Nh为智能建筑群内建筑物的总数;Δt=15分钟为一个调度时段;T为一天内的总时段数,即T=96;
Figure BDA0002056317530000123
为t时段建筑向电网买、卖电能的价格,本方法中的售电、购电电价均采用TOU;
Figure BDA0002056317530000124
为h建筑在t时段从电网买入的功率;
Figure BDA0002056317530000125
为h建筑在t时段卖给电网的功率;λ储能设备为储能设备运行维护成本的单价;
Figure BDA0002056317530000126
为h建筑的储能设备在t时段的充电功率;
Figure BDA0002056317530000127
为h建筑的储能设备在t时段的放电功率;
Figure BDA0002056317530000131
为电动汽车的电池损耗成本;N电动汽车为智能建筑群内的电动汽车总数目;
Figure BDA0002056317530000132
为第i辆电动汽车的电池购买成本;
Figure BDA0002056317530000133
为第i辆电动汽车的电池在生命周期内的充放电循环次数;
Figure BDA0002056317530000134
为电动汽车i的电池容量大小;
Figure BDA0002056317530000135
为第i辆电动汽车可用电池放电深度;
Figure BDA0002056317530000136
Figure BDA0002056317530000137
为电动汽车的额定充、放电功率;η电动汽车ch和η电动汽车dis分别为电动汽车的充、放电效率;
智能建筑内部功率平衡约束:
Figure BDA0002056317530000138
其中,
Figure BDA0002056317530000139
为t时段h建筑从k建筑购买量;
Figure BDA00020563175300001310
为t时段h建筑给k建筑售电量;
Figure BDA00020563175300001311
为h建筑的电动汽车在t时段的放电功率;
Figure BDA00020563175300001312
为h建筑的电动汽车在t时段的充电功率;ηDC-AC为逆变过程中的电能转换效率;
Figure BDA00020563175300001313
为h建筑的PV在t时段预测出力;ηAC-DC为整流过程中的电能转换效率;
Figure BDA00020563175300001314
为h建筑的风电设备在t时段的预测出力;
Figure BDA00020563175300001315
为h建筑的不可控负荷大小;
Figure BDA00020563175300001316
分别是h建筑的空调与热水器在t时段的功率。本方法把图2中储能设备、PV以及和它们连接的直流母线一起视为直流系统;因此存在着交直流的转换效率问题,所以本方法在式(3)中计算PV的出力、储能设备的充放电功率时需要乘上相应的交直流转换效率;
智能建筑间的购售电平衡约束:
Figure BDA00020563175300001317
Figure BDA0002056317530000141
Figure BDA0002056317530000142
其中,
Figure BDA0002056317530000143
Figure BDA0002056317530000144
为0-1变量;式(4)表示t时段h建筑从k建筑买的电量值与同一时段k建筑卖给h建筑的电量值相等;式(5)(6)保证同一时间段h与k建筑交互的功率必须小于线路允许的最大功率值
Figure BDA0002056317530000145
智能建筑与主网电能交易约束:
Figure BDA0002056317530000146
Figure BDA0002056317530000147
Figure BDA0002056317530000148
其中,
Figure BDA0002056317530000149
Figure BDA00020563175300001410
为0-1变量,保证同一时间段智能建筑与电网交互的功率必须小于电网允许的最大功率值,如式(7)-(8)所示;式(9)表示智能建筑与电网的交易买卖状态在同一时段只有一种情况发生;
储能设备约束:
Figure BDA00020563175300001411
Figure BDA00020563175300001412
Sh,0=Sh,T (12)
Figure BDA00020563175300001413
Figure BDA00020563175300001414
Figure BDA00020563175300001415
其中,
Figure BDA0002056317530000151
Figure BDA0002056317530000152
为h建筑的储能设备在时段t和t-1的储能容量;η储能设备ch为储能设备的充电效率;η储能设备dis为储能设备的放电效率;
Figure BDA0002056317530000153
分别h建筑的储能设备储能容量的最小值、最大值;Sh,0、Sh,T分别为h建筑的储能设备的初始状态和终止状态;
Figure BDA0002056317530000154
Figure BDA0002056317530000155
分别是h建筑的储能设备在t时段处于充电和放电状态的0-1变量,
Figure BDA0002056317530000156
取1表示充电,
Figure BDA0002056317530000157
取1表示放电;
Figure BDA0002056317530000158
Figure BDA0002056317530000159
分别是h建筑的储能设备的最大充电、放电功率;如式(12)所示,调度周期首末两个时段的储能设备容量保持一致是为了保证调度的连续性;式(15)保证储能设备不能同时进行充放电;
电动汽车约束:
为了表达的清晰,就一栋建筑内的电动汽车模型进行说明,其他建筑使用的电动汽车模型是相同的;
1)单辆电动汽车充放电模型:
假设该智能建筑群中有N电动汽车辆电动汽车,由于各用户使用电动汽车的需求不同,所以各电动汽车的参数不同。对于任意一辆电动汽车i∈N电动汽车,其相关参数为:
Figure BDA00020563175300001510
其中,Ti,b和Ti,d分别为车辆i接入智能建筑群的起始时间和预期离开的时间;
Figure BDA00020563175300001511
为车辆i的起始电池容量,
Figure BDA00020563175300001512
为车辆i离开智能建筑群时期望的电池容量;
Figure BDA00020563175300001513
Yi,t=Bi,t×Wi,t (18)
Xi,t=Ai,t×Wi,t (19)
Ai,t+Bi,t≤1 (20)
其中,Wi,t表示t时段电动汽车i是否到家的0-1变量,通过蒙特卡洛法获得用户的基本出行数据,0表示电动汽车未在家,1表示电动汽车已到家;Xi,t、Yi,t为电动汽车i在t时段的最终充电、放电状态;Ai,t、Bi,t为0-1变量,其中Ai,t取1代表电动汽车i在t时段充电,Bi,t取1代表电动汽车i在t时段放电;式(20)表示电动汽车i在时段t只能处于充电或放电中的一种情况;
2)电动汽车群充放电模型:
Figure BDA0002056317530000161
Figure BDA0002056317530000162
Figure BDA0002056317530000163
Figure BDA0002056317530000164
其中,
Figure BDA0002056317530000165
为单个智能建筑内的电动汽车总数目;
Figure BDA0002056317530000166
为t时段h建筑内电动汽车群的最大充放电功率;
3)电动汽车电池容量模型:
在本方法中将参与调度的电动汽车动力电池均假设成锂电池。根据锂电池的充、放电等相关特性的研究,将模型作适当的简化:在单个时段内,将锂电池视为恒功率充放电,不考虑自放电率的影响,建立了如下电动汽车电池模型和约束条件:
Figure BDA0002056317530000171
Figure BDA0002056317530000172
Figure BDA0002056317530000173
其中,
Figure BDA0002056317530000174
为车辆i在t时段的电池容量,
Figure BDA0002056317530000175
Figure BDA0002056317530000176
分别为车辆i的电池容量最小值和最大值。对无记忆性的锂电池进行间断充电不会对其寿命造成影响,因此本方法忽略对锂电池寿命约束的考虑,仅使用式(25)将电动汽车i在t时段的容量设定在一定的上下限内,对其寿命起到保护作用,式(27)表示电动汽车离开时,其电池的剩余容量需满足车主期望;
空调约束:
空调、热水器等都属于带有热泵性质的负荷,它们都属于温控负荷。短时间暂停使用空调和热水器并不会对用户的生活产生严重影响,本方法基于室内外温度传递规律,建立了以约束室内温度波动范围和空调功率的数学模型,为了表达的清晰,就一栋建筑内的空调模型进行说明,其他建筑的空调模型也是相同的,空调用电特性建模公式为:
Figure BDA0002056317530000177
Figure BDA0002056317530000178
Figure BDA0002056317530000179
Figure BDA00020563175300001710
其中,
Figure BDA0002056317530000181
为t时段m空调的功率;
Figure BDA0002056317530000182
为t时段m空调的功率最大值;
Figure BDA0002056317530000183
为t时段室内温度;ω为室内温度变化的惯性系数;t时间段内室外环境温度为恒定值
Figure BDA0002056317530000184
η为热传导效率;A为热传导系数;
Figure BDA0002056317530000185
为t时段室内温度设定值;ΔT为最大温度偏移量;
Figure BDA0002056317530000186
为t时段h建筑的功率;
Figure BDA0002056317530000187
为单个智能建筑内空调的总数;
热水器约束:
为了表达的清晰,就一栋建筑内的热水器模型进行说明,其他建筑的热水器模型也是相同的。本方法以约束热水器最大可中断时间、最小连续启动时间和开关状态来描述热水器负荷的特征;
1)最大可中断时间和最小连续启动时间约束
假设热水器开启时其功率为一个恒定值pW,t时间段内室外环境温度为恒定值
Figure BDA0002056317530000188
用户可承受的水温区间为
Figure BDA0002056317530000189
根据热水器的热动力学模型可以得到热水器的最大可中断时间
Figure BDA00020563175300001810
和最小连续启动时间
Figure BDA00020563175300001811
即:
Figure BDA00020563175300001812
Figure BDA00020563175300001813
其中,ε=e-τ/Tc为散热系数,其中τ为控制时间,Tc为时间常数;η为热水器能效比,ηpW为热水器的额定制热量;A为导热系数;
2)开关状态的约束
Figure BDA00020563175300001814
Figure BDA00020563175300001815
Figure BDA0002056317530000191
Figure BDA0002056317530000192
Figure BDA0002056317530000193
其中,
Figure BDA0002056317530000194
分别表示热水器i在t时段末开关机状态的0-1变量,1表示“是”,0表示“否”;
Figure BDA0002056317530000195
表示t时段热水器i的运行状态;
Figure BDA0002056317530000196
为单个智能建筑内热水器的总数,式(34)说明在同一时刻热水器i不可能既开机又关机;式(36)表示热水器的最小运行时间不能小于τon;式(37)表示热水器的最大运行时间不能大于τoff;
优化模型下,CO需要保证用户获得公正公平的经济效益,因此采用Shapley值法解决由于各建筑做出的贡献不同而导致其得到的收益不均的问题,当集群内的各智能建筑充分合作时,将按照统一调度方式确定各建筑之间以及各建筑与电网之间的交换电量,并使用Shapley值法分配给它们相应的收益,收益相对于它们各自独立运行时有所增加,并且这些建筑使用其他购售电方式都不会得到更大的利益,将智能建筑群内的n个建筑表示为参与博弈的n个向量集合,n维的分配向量称为合作博弈的“解”,对于合作博弈(N,v),集群内部参与博弈的用户的编号集合为N={1,2,…,n},在优化模型中是指由CO调度的建筑;v为量化智能建筑群内利益的特征函数,本方法中表示由参与调度的智能建筑组成的集群的经济成本,即式(1),给予每个参与的智能建筑i∈N一个实值参数fi,形成n维向量f=(f1,f2,…,fn)且其满足
Figure BDA0002056317530000201
那么就称f是集群s的一个分配方案;
基于分配的定义,对于单个用户而言,fi≥v({i})表示用户参与合作时的收益不会小于非合作时的收益,如果fi<v({i}),那么用户i将得到与非合作时相比更少的收益,则该用户不会参与合作,对于集群而言,
Figure BDA0002056317530000202
表示每个用户的分配之和不能超过集体剩余v(N);
模型中,应用Shapley值法为各个参与合作的智能建筑分配收益的计算规则需要满足条件:
Figure BDA0002056317530000203
Figure BDA0002056317530000204
在式(40)显然满足的前提下,智能建筑群合作时的收益比各建筑单独运行时的收益之和要多,因此式(41)是成立的;
式(40)(41)成立后,对每个参与合作的建筑的收益运用Shapley值法来进行计算,任意一个建筑的分配收益vi的计算公式为:
Figure BDA0002056317530000205
Figure BDA0002056317530000206
其中,si是集群中的所有子集集合;ω(|s|)是加权因子;|s|是子集s中的用户数量;v(s)是集合s的收益;v(s/i)是除去智能建筑i之后的集合s所获得的总收益。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (3)

1.一种智能建筑群电能优化共享方法,其特征在于:
首先,搭建了包含风电、光伏、储能设备、电动汽车以及可控负荷等多个设备的智能建筑群系统架构,并对智能建筑之间以及智能建筑群与配电网之间的能量流动关系进行阐述分析;
其次,为了实现智能建筑群内的电能共享,建立以降低智能建筑群与配电网的交易成本、储能设备的运维成本以及电动汽车的电池损耗成本为目标函数的优化共享模型,该模型考虑了电动汽车预期充电电量的约束,热水器最大可中断时间和最小连续启动时间的约束;并且根据室内外温度传递规律,考虑了室温舒适度的约束;
然后,采用应用较为广泛的Shapley算法将收益按各智能建筑对整个系统交易量的边际贡献进行科学分配;
最后,通过对一个包含两个居民楼以及一个商业大厦的典型智能建筑进行算例分析,验证了本方法所提模型的有效性。
2.根据权利要求1所述的一种智能建筑群电能优化共享方法,其特征在于:以智能建筑群与电网的交易总成本、储能设备运行维护成本以及电动汽车的电池损耗成本最低为优化目标,智能建筑群内的每一个智能建筑都可以与其他智能建筑分别进行电能共享,其目标是使盈余的电能在智能建筑群内部消耗,当整个智能建筑群出现电能缺损或盈余时,再跟电网进行交易;
优化目标函数:
Figure FDA0002056317520000011
Figure FDA0002056317520000022
其中,Nh为智能建筑群内建筑物的总数;Δt=15分钟为一个调度时段;T为一天内的总时段数,即T=96;
Figure FDA0002056317520000023
为t时段建筑向电网买、卖电能的价格,售电、购电电价均采用TOU;
Figure FDA0002056317520000024
为h建筑在t时段从电网买入的功率;
Figure FDA0002056317520000025
为h建筑在t时段卖给电网的功率;λ储能设备为储能设备运行维护成本的单价;
Figure FDA0002056317520000026
为h建筑的储能设备在t时段的充电功率;
Figure FDA0002056317520000027
为h建筑的储能设备在t时段的放电功率;
Figure FDA0002056317520000028
为电动汽车的电池损耗成本;N电动汽车为智能建筑群内的电动汽车总数目;
Figure FDA0002056317520000029
为第i辆电动汽车的电池购买成本;
Figure FDA00020563175200000210
为第i辆电动汽车的电池在生命周期内的充放电循环次数;
Figure FDA00020563175200000211
为电动汽车i的电池容量大小;
Figure FDA00020563175200000212
为第i辆电动汽车可用电池放电深度;
Figure FDA00020563175200000213
Figure FDA00020563175200000214
为电动汽车的额定充、放电功率;η电动汽车ch和η电动汽车dis分别为电动汽车的充、放电效率;
智能建筑内部功率平衡约束:
Figure FDA00020563175200000215
其中,
Figure FDA00020563175200000216
为t时段h建筑从k建筑购买量;
Figure FDA00020563175200000217
为t时段h建筑给k建筑售电量;
Figure FDA00020563175200000218
为h建筑的电动汽车在t时段的放电功率;
Figure FDA00020563175200000219
为h建筑的电动汽车在t时段的充电功率;ηDC-AC为逆变过程中的电能转换效率;
Figure FDA0002056317520000031
为h建筑的PV在t时段预测出力;ηAC-DC为整流过程中的电能转换效率;
Figure FDA0002056317520000032
为h建筑的风电设备在t时段的预测出力;
Figure FDA0002056317520000033
为h建筑的不可控负荷大小;
Figure FDA0002056317520000034
分别是h建筑的空调与热水器在t时段的功率;储能设备、PV以及和它们连接的直流母线一起视为直流系统;存在着交直流的转换效率问题,式(3)中计算PV的出力、储能设备的充放电功率时需要乘上相应的交直流转换效率;
智能建筑间的购售电平衡约束:
Figure FDA0002056317520000035
Figure FDA0002056317520000036
Figure FDA0002056317520000037
其中,
Figure FDA0002056317520000038
Figure FDA0002056317520000039
为0-1变量;式(4)表示t时段h建筑从k建筑买的电量值与同一时段k建筑卖给h建筑的电量值相等;式(5)(6)保证同一时间段h与k建筑交互的功率必须小于线路允许的最大功率值
Figure FDA00020563175200000310
智能建筑与主网电能交易约束:
Figure FDA00020563175200000311
Figure FDA00020563175200000312
Figure FDA00020563175200000313
其中,
Figure FDA00020563175200000314
Figure FDA00020563175200000315
为0-1变量,保证同一时间段智能建筑与电网交互的功率必须小于电网允许的最大功率值,如式(7)-(8)所示;式(9)表示智能建筑与电网的交易买卖状态在同一时段只有一种情况发生;
储能设备约束:
Figure FDA0002056317520000041
Figure FDA0002056317520000042
Sh,0=Sh,T (12)
Figure FDA0002056317520000043
Figure FDA0002056317520000044
Figure FDA0002056317520000045
其中,
Figure FDA0002056317520000046
Figure FDA0002056317520000047
为h建筑的储能设备在时段t和t-1的储能容量;η储能设备ch为储能设备的充电效率;η储能设备dis为储能设备的放电效率;
Figure FDA0002056317520000048
分别h建筑的储能设备储能容量的最小值、最大值;Sh,0、Sh,T分别为h建筑的储能设备的初始状态和终止状态;
Figure FDA0002056317520000049
Figure FDA00020563175200000410
分别是h建筑的储能设备在t时段处于充电和放电状态的0-1变量,
Figure FDA00020563175200000411
取1表示充电,
Figure FDA00020563175200000412
取1表示放电;
Figure FDA00020563175200000413
Figure FDA00020563175200000414
分别是h建筑的储能设备的最大充电、放电功率;如式(12)所示,调度周期首末两个时段的储能设备容量保持一致是为了保证调度的连续性;式(15)保证储能设备不能同时进行充放电;
电动汽车约束:
为了表达的清晰,就一栋建筑内的电动汽车模型进行说明,其他建筑使用的电动汽车模型是相同的;
1)单辆电动汽车充放电模型:
假设该智能建筑群中有N电动汽车辆电动汽车,由于各用户使用电动汽车的需求不同,所以各电动汽车的参数不同,对于任意一辆电动汽车i∈N电动汽车,其相关参数为:
Figure FDA0002056317520000051
其中,Ti,b和Ti,d分别为车辆i接入智能建筑群的起始时间和预期离开的时间;
Figure FDA0002056317520000052
为车辆i的起始电池容量,
Figure FDA0002056317520000053
为车辆i离开智能建筑群时期望的电池容量;
Figure FDA0002056317520000054
Yi,t=Bi,t×Wi,t (18)
Xi,t=Ai,t×Wi,t (19)
Ai,t+Bi,t≤1 (20)
其中,Wi,t表示t时段电动汽车i是否到家的0-1变量,通过蒙特卡洛法获得用户的基本出行数据,0表示电动汽车未在家,1表示电动汽车已到家;Xi,t、Yi,t为电动汽车i在t时段的最终充电、放电状态;Ai,t、Bi,t为0-1变量,其中Ai,t取1代表电动汽车i在t时段充电,Bi,t取1代表电动汽车i在t时段放电;式(20)表示电动汽车i在时段t只能处于充电或放电中的一种情况;
2)电动汽车群充放电模型:
Figure FDA0002056317520000055
Figure FDA0002056317520000056
Figure FDA0002056317520000061
Figure FDA0002056317520000062
其中,
Figure FDA0002056317520000063
为单个智能建筑内的电动汽车总数目;
Figure FDA0002056317520000064
为t时段h建筑内电动汽车群的最大充放电功率;
3)电动汽车电池容量模型:
参与调度的电动汽车动力电池均假设成锂电池,根据锂电池的充、放电等相关特性的研究,将模型作适当的简化:在单个时段内,将锂电池视为恒功率充放电,不考虑自放电率的影响,建立了如下电动汽车电池模型和约束条件:
Figure FDA0002056317520000065
Figure FDA0002056317520000066
Figure FDA0002056317520000067
其中,
Figure FDA0002056317520000068
为车辆i在t时段的电池容量,
Figure FDA0002056317520000069
Figure FDA00020563175200000610
分别为车辆i的电池容量最小值和最大值,对无记忆性的锂电池进行间断充电不会对其寿命造成影响,忽略对锂电池寿命约束的考虑,仅使用式(25)将电动汽车i在t时段的容量设定在一定的上下限内,对其寿命起到保护作用,式(27)表示电动汽车离开时,其电池的剩余容量需满足车主期望;
空调约束:
空调、热水器等都属于带有热泵性质的负荷,它们都属于温控负荷,短时间暂停使用空调和热水器并不会对用户的生活产生严重影响,基于室内外温度传递规律,建立了以约束室内温度波动范围和空调功率的数学模型,为了表达的清晰,就一栋建筑内的空调模型进行说明,其他建筑的空调模型也是相同的,空调用电特性建模公式为:
Figure FDA0002056317520000071
Figure FDA0002056317520000072
Figure FDA0002056317520000073
Figure FDA0002056317520000074
其中,
Figure FDA0002056317520000075
为t时段m空调的功率;
Figure FDA0002056317520000076
为t时段m空调的功率最大值;Tt in为t时段室内温度;ω为室内温度变化的惯性系数;t时间段内室外环境温度为恒定值Tt out;η为热传导效率;A为热传导系数;Tt set,in为t时段室内温度设定值;ΔT为最大温度偏移量;
Figure FDA0002056317520000077
为t时段h建筑的功率;
Figure FDA0002056317520000078
为单个智能建筑内空调的总数;
热水器约束:
为了表达的清晰,就一栋建筑内的热水器模型进行说明,其他建筑的热水器模型也是相同的,约束热水器最大可中断时间、最小连续启动时间和开关状态来描述热水器负荷的特征;
1)最大可中断时间和最小连续启动时间约束:
假设热水器开启时其功率为一个恒定值pW,t时间段内室外环境温度为恒定值Tt out,用户可承受的水温区间为
Figure FDA0002056317520000079
根据热水器的热动力学模型可以得到热水器的最大可中断时间
Figure FDA00020563175200000710
和最小连续启动时间
Figure FDA0002056317520000081
即:
Figure FDA0002056317520000082
Figure FDA0002056317520000083
其中,ε=e-τ/Tc为散热系数,其中τ为控制时间,Tc为时间常数;η为热水器能效比,ηpW为热水器的额定制热量;A为导热系数;
2)开关状态的约束
Figure FDA0002056317520000084
Figure FDA0002056317520000085
Figure FDA0002056317520000086
Figure FDA0002056317520000087
Figure FDA0002056317520000088
其中,
Figure FDA0002056317520000089
分别表示热水器i在t时段末开关机状态的0-1变量,1表示“是”,0表示“否”;
Figure FDA00020563175200000810
表示t时段热水器i的运行状态;
Figure FDA00020563175200000811
为单个智能建筑内热水器的总数,式(34)说明在同一时刻热水器i不可能既开机又关机;式(36)表示热水器的最小运行时间不能小于τon;式(37)表示热水器的最大运行时间不能大于τoff
3.根据权利要求2所述的一种智能建筑群电能优化共享方法,其特征在于:优化模型下,CO需要保证用户获得公正公平的经济效益,采用Shapley值法解决由于各建筑做出的贡献不同而导致其得到的收益不均的问题,当集群内的各智能建筑充分合作时,将按照统一调度方式确定各建筑之间以及各建筑与电网之间的交换电量,并使用Shapley值法分配给它们相应的收益,收益相对于它们各自独立运行时有所增加,并且这些建筑使用其他购售电方式都不会得到更大的利益,将智能建筑群内的n个建筑表示为参与博弈的n个向量集合,n维的分配向量称为合作博弈的“解”,对于合作博弈(N,v),集群内部参与博弈的用户的编号集合为N={1,2,…,n},在优化模型中是指由CO调度的建筑;v为量化智能建筑群内利益的特征函数,表示由参与调度的智能建筑组成的集群的经济成本,即式(1),给予每个参与的智能建筑i∈N一个实值参数fi,形成n维向量f=(f1,f2,…,fn)且其满足
Figure FDA0002056317520000091
那么就称f是集群s的一个分配方案;
基于分配的定义,对于单个用户而言,fi≥v({i})表示用户参与合作时的收益不会小于非合作时的收益,如果fi<v({i}),那么用户i将得到与非合作时相比更少的收益,则该用户不会参与合作,对于集群而言,
Figure FDA0002056317520000092
表示每个用户的分配之和不能超过集体剩余v(N);
模型中,应用Shapley值法为各个参与合作的智能建筑分配收益的计算规则需要满足条件:
Figure FDA0002056317520000101
Figure FDA0002056317520000102
在式(40)显然满足的前提下,智能建筑群合作时的收益比各建筑单独运行时的收益之和要多,因此式(41)是成立的;
式(40)、(41)成立后,对每个参与合作的建筑的收益运用Shapley值法来进行计算,任意一个建筑的分配收益vi的计算公式为:
Figure FDA0002056317520000103
Figure FDA0002056317520000104
其中,si是集群中的所有子集集合;ω(|s|)是加权因子;|s|是子集s中的用户数量;v(s)是集合s的收益;v(s/i)是除去智能建筑i之后的集合s所获得的总收益。
CN201910390478.2A 2019-05-10 2019-05-10 一种智能建筑群电能优化共享方法 Pending CN111917135A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910390478.2A CN111917135A (zh) 2019-05-10 2019-05-10 一种智能建筑群电能优化共享方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910390478.2A CN111917135A (zh) 2019-05-10 2019-05-10 一种智能建筑群电能优化共享方法

Publications (1)

Publication Number Publication Date
CN111917135A true CN111917135A (zh) 2020-11-10

Family

ID=73242299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910390478.2A Pending CN111917135A (zh) 2019-05-10 2019-05-10 一种智能建筑群电能优化共享方法

Country Status (1)

Country Link
CN (1) CN111917135A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994063A (zh) * 2021-04-29 2021-06-18 重庆大学 基于储能有序充电和智能软开关控制模型的配电网优化运行方法
JP7221370B1 (ja) 2021-12-06 2023-02-13 株式会社日立パワーソリューションズ 電力管理装置
CN116799774A (zh) * 2022-12-28 2023-09-22 深圳市佳泰业建设有限公司 一种智能建筑配电系统的配电方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994063A (zh) * 2021-04-29 2021-06-18 重庆大学 基于储能有序充电和智能软开关控制模型的配电网优化运行方法
JP7221370B1 (ja) 2021-12-06 2023-02-13 株式会社日立パワーソリューションズ 電力管理装置
JP2023083633A (ja) * 2021-12-06 2023-06-16 株式会社日立パワーソリューションズ 電力管理装置
CN116799774A (zh) * 2022-12-28 2023-09-22 深圳市佳泰业建设有限公司 一种智能建筑配电系统的配电方法
CN116799774B (zh) * 2022-12-28 2024-03-12 深圳市佳泰业建设有限公司 一种智能建筑配电系统的配电方法

Similar Documents

Publication Publication Date Title
Nan et al. Optimal residential community demand response scheduling in smart grid
CN106779291B (zh) 智能用电园区需求响应策略
AlSkaif et al. Reputation-based joint scheduling of households appliances and storage in a microgrid with a shared battery
Liu et al. Online energy sharing for nanogrid clusters: A Lyapunov optimization approach
Sun et al. Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls
Li et al. Optimal demand response based on utility maximization in power networks
CN109286187B (zh) 一种面向多主体利益均衡的微网日前经济调度方法
Fan et al. A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level
CN111008739B (zh) 一种热电联产虚拟电厂优化调控及收益分配方法及系统
Farinis et al. Integrated energy management system for Microgrids of building prosumers
CN107612041B (zh) 一种考虑不确定性的基于事件驱动的微电网自动需求响应方法
CN111917135A (zh) 一种智能建筑群电能优化共享方法
CN107069773B (zh) 基于需求侧资源统一状态模型的负荷平滑控制方法
CN109685396B (zh) 一种计及公共楼宇需求响应资源的配电网能量管理方法
Srithapon et al. Predictive control and coordination for energy community flexibility with electric vehicles, heat pumps and thermal energy storage
CN113328432A (zh) 一种家庭能量管理优化调度方法及系统
CN114862252A (zh) 可调负荷多层聚合调度潜力分析方法、系统、设备及介质
Singh et al. Optimal battery utilization for energy management and load scheduling in smart residence under demand response scheme
CN115800294A (zh) 一种灵活性资源聚合建模及协调控制方法
Tiwari et al. Optimal scheduling of home appliances under automated demand response
CN108182487A (zh) 基于粒子群优化和本德尔分解的家庭能量数据优化方法
Rajendhar et al. A Water Filling Energy distributive algorithm based HEMS in coordination with PEV
Bandyopadhyay et al. Energetic potential for demand response in detached single family homes in Austin, TX
CN111552181B (zh) 一种综合能源服务模式下的园区级需求响应资源配置方法
Albouys-Perrois et al. A Co Simulation Of Photovoltaic Power Generation And Human Activity For Smart Building Energy Management And Energy Sharing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination