CN111912889B - 一种基于电化学法检测氰化氢气体的传感器 - Google Patents

一种基于电化学法检测氰化氢气体的传感器 Download PDF

Info

Publication number
CN111912889B
CN111912889B CN202010769306.9A CN202010769306A CN111912889B CN 111912889 B CN111912889 B CN 111912889B CN 202010769306 A CN202010769306 A CN 202010769306A CN 111912889 B CN111912889 B CN 111912889B
Authority
CN
China
Prior art keywords
reaction chamber
hydrogen cyanide
working electrode
electrode
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010769306.9A
Other languages
English (en)
Other versions
CN111912889A (zh
Inventor
瞿广飞
潘科衡
李军燕
孙楝凯
宁平
赵驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202010769306.9A priority Critical patent/CN111912889B/zh
Publication of CN111912889A publication Critical patent/CN111912889A/zh
Priority to KR1020210089914A priority patent/KR20220016773A/ko
Application granted granted Critical
Publication of CN111912889B publication Critical patent/CN111912889B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/304Gas permeable electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种基于电化学法检测氰化氢气体的传感器,其包括反应室、工作电极、对电极、曝气管、进气管,工作电极、对电极相对设置在反应室内,反应室顶部开有排气口,曝气管下端设置在反应室底部,另一端与气源连接,进气管下端设置在反应室下部,上端进气口设置在反应室外,反应室中放置有电解液,工作电极、对电极分别通过阳极接线头、阴极接线头与电源连接;本发明传感器能快速、精确的检测气体中氰化氢的含量,可应用在工业废气污染的检测以及居住生活环境中有毒气体警报。

Description

一种基于电化学法检测氰化氢气体的传感器
技术领域
本发明属于传感器技术领域,具体涉及一种基于电化学法检测氰化氢气体的传感器。
背景技术
氰化氢是一种众所周知的剧毒气体,对人类身体健康和环境安全都是一种潜在的威胁。人体吸入后会抑制呼吸酶,造成细胞内窒息,同时正常皮肤也能缓慢吸收氰化氢,对人的致死量为1mg/kg;同时在工业废气中也是一种典型的污染物之一,其具有腐蚀性和强毒性,引起管道和设备的腐蚀。
在这样的背景下,氰化氢实时检测显得十分必要;目前检测氰化氢的方法有光学吸收法、质谱法、石英晶体微天平法等,以上方法虽然都测的比较准确但都有各自的缺点,例如设备巨大无法携带、检出时间长等。
发明内容
针对现有技术不足,本发明提供了一种基于电化学法检测氰化氢气体的传感器,其包括反应室、工作电极、对电极、曝气管、进气管,工作电极、对电极相对设置在反应室内,反应室顶部开有排气口,曝气管下端设置在反应室底部,另一端与气源连接,进气管下端设置在反应室下部,上端进气口设置在反应室外,反应室中放置有电解液,工作电极、对电极分别通过阳极接线头、阴极接线头与电源连接。
所述工作电极为厚度3~5mm的泡沫铜片状电极,其由如下方法制备得到:
1)将浓度1~3mol/L的钯离子溶液和浓度1~3mol/L钴离子溶液按体积比1:1~2:1的比例混合,搅拌形成均一溶液;
2)将泡沫铜放入步骤1)溶液中进行电沉积,外加恒电位为-2~-1V,沉积10~20min后,用去离子水清洗泡沫铜,然后置于70~80℃下真空干燥6~8h制得;
其中所述钯离子溶液为含氯化钯、硝酸钯、硫酸钯中的一种或几种的液体;所述钴离子溶液为含氯化钴、硝酸钴、硫酸钴中的一种或几种的液体。
所述对电极为石墨电极、铂电极、金电极中的一种惰性电极。
所述工作电极、对电极间的外加电压为0.5~2V,间距为5~10cm。
上述装置通入曝气管的气体为氧气与氮气的混合气体,氧气的体积含量为5~7.4%,曝气流量为130~200mL/min。
所述电解液为浓度0.5~1mol/L的硫酸钠、硫酸钾中的一种或两种,并投加100g/L的铁碳,铁:碳质量比为1:1~1.5:1,电解液pH为2~5。
被测气体在通入反应室中的电解液后,氰化氢溶于电解液并在工作电极与铁碳的催化氧化下被氧化成CO2、NH3、N2,及少量NO3 -,同时在外加电压下电路中会产生电流,此电流的大小与液相中氰化氢的浓度成正比,通过建立电流强度与氰化氢实际浓度的准确关系,就能得到被测气体中氰化氢的浓度。
本发明的优点和技术效果:
1、检测过程安全,检测后排出的尾气无毒性;
2、本发明传感器能快速、精确的检测气体中氰化氢的含量;可应用在工业废气污染的检测以及居住生活环境中有毒气体警报。
附图说明
图1为本发明传感器的结构示意图;
图2为实施例1的电流强度与氰化氢浓度的关系曲线示意图;
图3为实施例2的电流强度与氰化氢浓度的关系曲线示意图;
图中:1-反应室;2-工作电极;3-对电极;4-曝气管;5-进气管;6-阴极接线头;7-阳极接线头;8-排气口;9-电解液。
具体实施方式
下面结合具体实施方式对本发明进行详细说明,但本发明保护范围不局限于所述内容。
实施例1:本基于电化学法检测氰化氢气体的传感器包括反应室1、工作电极2、对电极3、曝气管4、进气管5,工作电极2、对电极3相对设置在反应室1内,反应室1顶部开有排气口8,曝气管4下端设置在反应室1底部,另一端与气源连接,进气管5下端设置在反应室1下部,上端进气口设置在反应室1外,反应室中放置有电解液9,工作电极2、对电极3分别通过阳极接线头7、阴极接线头6与电源连接;
所述工作电极2为厚度4mm的泡沫铜片状电极,其由如下方法制备得到:
1)将浓度2mol/L的硫酸钯溶液和浓度1mol/L硫酸钴溶液按体积比1.2:1的比例混合,搅拌形成均一溶液;
2)将4mm厚的泡沫铜放入步骤1)溶液中进行电沉积,外加恒电位为-1.5V,沉积15min后,用去离子水清洗泡沫铜,然后置于70℃下真空干燥7h制得;
选用铂网作为对电极,将工作电极与对电极的间距调整为5cm,往曝气管4中通入氧气与氮气的混合气体,氧气的体积含量为6%,流量为150mL/min;在传感器的反应室1内加入0.5mol/L的硫酸钠溶液,使用硫酸将pH调至3,投入铁碳质量比为1.5:1的铁碳(100g/L);
分别从进气管5上端通入浓度为50、100、200、300、500ppm浓度的氰化氢气体,每个浓度气体通入10min后,外加1V的电压进行检测,获得建立电流强度与氰化氢浓度的关系曲线如图2所示,关系方程为:
Figure RE-DEST_PATH_IMAGE001
,其中y为检测气体浓度,单位为ppm;x为检测到的电流大小,单位为A。
通入待测含氰化氢气体,测得的稳定电流为0.0433A,代入上述方程得出被测气体中氰化氢浓度为233ppm。
实施例2:本实施例装置结构同实施例1,不同在于:工作电极2为厚度3mm的泡沫铜片状电极,其由如下方法制备得到:
1)将浓度1mol/L的钯离子溶液(含氯化钯、硝酸钯,质量比1:1)和浓度3mol/L硝酸钴溶液按体积比1:1的比例混合,搅拌形成均一溶液;
2)将3mm厚的泡沫铜放入步骤1)溶液中进行电沉积,外加恒电位为-1.2V,沉积20min后,用去离子水清洗泡沫铜,然后置于80℃下真空干燥6h制得;
选用石墨电极作为对电极,将工作电极与对电极的间距调整为10cm,往曝气管4中通入氧气与氮气的混合气体,氧气的体积含量为5%,流量为170mL/min;在传感器的反应室1内加入1mol/L的硫酸钠与硫酸钾的混合溶液(硫酸钠与硫酸钾质量比1:1),使用硫酸将pH调至2,投入铁碳质量比为1.5:1的铁碳(100g/L);
分别从进气管5上端通入浓度为50、100、200、300、500ppm浓度的氰化氢气体,每个浓度气体通入10min后,外加2V的电压进行检测,获得建立电流强度与氰化氢浓度的关系曲线如图3所示,关系方程为:
Figure RE-RE-DEST_PATH_IMAGE002
,其中y为检测气体浓度,单位为ppm;x为检测到的电流大小,单位为A;
通入待测含氰化氢气体,测得的稳定电流为0.0361A,代入上述方程得出被测气体中氰化氢浓度为126ppm。

Claims (3)

1.一种基于电化学法检测氰化氢气体的传感器,其特征在于:包括反应室(1)、工作电极(2)、对电极(3)、曝气管(4)、进气管(5),工作电极(2)、对电极(3)相对设置在反应室(1)内,反应室(1)顶部开有排气口(8),曝气管(4)下端设置在反应室(1)底部,另一端与气源连接,进气管(5)下端设置在反应室(1)下部,上端进气口设置在反应室(1)外,反应室中放置有电解液(9),工作电极(2)、对电极(3)分别通过阳极接线头(7)、阴极接线头(6)与电源连接;
所述工作电极(2)为厚度3~5mm的泡沫铜片状电极,其由如下方法制备得到:
1)将浓度1~3mol/L的钯离子溶液和浓度1~3mol/L钴离子溶液按体积比1:1~2:1的比例混合,搅拌形成均一溶液;
2)将泡沫铜放入步骤1)溶液中进行电沉积,外加恒电位为-2~-1V,沉积10~20min后,用去离子水清洗泡沫铜,然后置于70~80℃下真空干燥6~8h制得;
所述钯离子溶液为含氯化钯、硝酸钯、硫酸钯中的一种或几种的液体;
所述钴离子溶液为含氯化钴、硝酸钴、硫酸钴中的一种或几种的液体;
通入曝气管的气体为氧气与氮气的混合气体,氧气的体积含量为5~7.4%,曝气流量为130~200mL/min。
2.根据权利要求1所述的基于电化学法检测氰化氢气体的传感器,其特征在于:工作电极(2)、对电极(3)间的外加电压为0.5~2V,间距为5~10cm。
3.根据权利要求1所述的基于电化学法检测氰化氢气体的传感器,其特征在于:电解液为浓度0.5~1mol/L的硫酸钠、硫酸钾中的一种或两种,并投加100g/L的铁碳,铁:碳质量比为1:1~1.5:1,电解液pH为2~5。
CN202010769306.9A 2020-08-03 2020-08-03 一种基于电化学法检测氰化氢气体的传感器 Active CN111912889B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010769306.9A CN111912889B (zh) 2020-08-03 2020-08-03 一种基于电化学法检测氰化氢气体的传感器
KR1020210089914A KR20220016773A (ko) 2020-08-03 2021-07-08 일종 전기화학적 방법을 기반으로 한 시안화 수소가스 검츨 센서

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010769306.9A CN111912889B (zh) 2020-08-03 2020-08-03 一种基于电化学法检测氰化氢气体的传感器

Publications (2)

Publication Number Publication Date
CN111912889A CN111912889A (zh) 2020-11-10
CN111912889B true CN111912889B (zh) 2021-12-24

Family

ID=73286559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010769306.9A Active CN111912889B (zh) 2020-08-03 2020-08-03 一种基于电化学法检测氰化氢气体的传感器

Country Status (2)

Country Link
KR (1) KR20220016773A (zh)
CN (1) CN111912889B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756804A (en) * 1985-12-18 1988-07-12 Hnu Systems, Inc. Method of detecting hydrogen cyanide gas in a gaseous or liquid sample
GB2221537A (en) * 1988-08-02 1990-02-07 Sp Kt Bjuro Konstruirovaniju O Apparatus for measuring hydrogen cyanide vapour content in the air
JP4839166B2 (ja) * 2006-09-21 2011-12-21 東亜ディーケーケー株式会社 シアン濃度測定方法及び測定装置
CN101269297B (zh) * 2008-05-21 2011-09-14 昆明理工大学 一种工业废气中氰化氢的催化氧化净化方法
CN103336041B (zh) * 2013-06-09 2016-03-30 华瑞科学仪器(上海)有限公司 一种hcn电化学传感器
CN109477808B (zh) * 2016-07-12 2021-11-23 霍尼韦尔国际公司 用于检测氰化氢气体的电化学气体传感器
CN109596693A (zh) * 2019-01-31 2019-04-09 荆州市爱尔瑞科技有限公司 一种电化学氰化氢气体传感器

Also Published As

Publication number Publication date
KR20220016773A (ko) 2022-02-10
CN111912889A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
Arredondo et al. Load ratio determines the ammonia recovery and energy input of an electrochemical system
Lacasa et al. Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media
Shi et al. Rigorous and reliable operations for electrocatalytic nitrogen reduction
Vanlangendonck et al. Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants (ELONITA™ technique)
Paik et al. Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode
Xu et al. A urine/Cr (VI) fuel cell—Electrical power from processing heavy metal and human urine
CN103342405A (zh) 一种电化学阴极活化过硫酸盐降解水中有机污染物的方法
Li et al. A novel electrochemical sensor based on nitrite-oxidizing bacteria for highly specific and sensitive detection of nitrites
Dai et al. Performance of sodium bromate as cathodic electron acceptor in microbial fuel cell
CN104330455B (zh) 利用微生物电解池技术在线监测硝态氮浓度的方法与装置
Niu et al. Effects of high ammonia loading and in-situ short-cut nitrification in low carbon‑nitrogen ratio wastewater treatment by biocathode microbial electrochemical system
Wang et al. Bicarbonate enhancing electrochemical degradation of antiviral drug lamivudine in aqueous solution
CN102192942B (zh) 一种快速测定水溶性有机物电子转移能力的方法
Xiang et al. Electro-peroxone with solid polymer electrolytes: A novel system for degradation of plasticizers in natural effluents
Arbab-Zavar et al. Speciation and analysis of arsenic (III) and arsenic (V) by electrochemical hydride generation spectrophotometric method
CN111912889B (zh) 一种基于电化学法检测氰化氢气体的传感器
Zhao et al. Current as an indicator of ammonia concentration during wastewater treatment in an integrated microbial electrolysis cell-Nitrification system
Einaga Application of Boron-doped Diamond Electrodes: Focusing on the Electrochemical Reduction of Carbon Dioxide
CN100429500C (zh) 一种水体化学需氧量的测定方法
Ichiba et al. Effects of test conditions on corrosion reactions and hydrogen absorption in hydrogen embrittlement tests using an ammonium thiocyanate solution
KR102120679B1 (ko) Sf6의 매개 전기화학적 제거 방법, 및 그 시스템
KR102029103B1 (ko) 아산화질소의 매개 전기화학적 환원 방법, 및 그 시스템
CN111638260A (zh) 一种用于水产干制食品中重金属的检测方法
CN108490061A (zh) 一种检测氰化氢和氰化物含量的检测方法
US20200173891A1 (en) Electrochemical methods for sample pretreatment for metals determination and related apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared