CN111903048A - 变换器 - Google Patents

变换器 Download PDF

Info

Publication number
CN111903048A
CN111903048A CN201980022033.7A CN201980022033A CN111903048A CN 111903048 A CN111903048 A CN 111903048A CN 201980022033 A CN201980022033 A CN 201980022033A CN 111903048 A CN111903048 A CN 111903048A
Authority
CN
China
Prior art keywords
converter
bridge
switch
energy source
primary energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980022033.7A
Other languages
English (en)
Other versions
CN111903048B (zh
Inventor
D·J·斯里马维塔纳
G·R·卡尔拉
M·诺伊布格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Auckland Uniservices Ltd
Original Assignee
Auckland Uniservices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auckland Uniservices Ltd filed Critical Auckland Uniservices Ltd
Publication of CN111903048A publication Critical patent/CN111903048A/zh
Application granted granted Critical
Publication of CN111903048B publication Critical patent/CN111903048B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/563Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including two stages of regulation at least one of which is output level responsive, e.g. coarse and fine regulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/55Capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/40Means for preventing magnetic saturation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

本公开涉及一种升压型有源桥式变换器,其与用于电感式或电容式(无线)功率传输系统的变换器具有特别的但是并非唯一的相关性。根据实施例,提出了一种AC‑AC变换器。该AC‑AC变换器包括桥式电路,该桥式电路包括至少两个半桥式变换器,每个半桥式变换器包括位于上端处的第一开关和位于下端处的第二开关,连接到每个半桥式变换器的电容器,该半桥式变换器在其相应的第一开关与第二开关之间彼此连接,每个半桥式变换器的上端可连接至初级能源,其中该变换器可操作以提供可控的AC输出。

Description

变换器
技术领域
本公开涉及一种升压型有源桥式变换器,其与用于电感式或电容式(无线)功率传输系统的变换器具有特别的但是并非唯一的相关性。
背景技术
在过去的十年中,感应功率传输(Inductive Power Transfer,IPT)技术已在许多需要无线功率传输的工业应用和消费者应用中得到越来越多的应用,这主要是由于其以安全、可靠和方便的方式提供高水平功率传输的能力。这些应用包括为自动导引车辆(AGV)供电;材料处理;为便携式电子设备充电并为生物医学设备供电。但是,迄今为止,IPT最重要的应用是电动车辆(EV)充电。
这些应用中的大多数,包括EV充电,都需要来自公用电网的能量。但是,将能量从公用电网变换为适合驱动IPT系统的初级磁耦合器的形式仍然是一个挑战。IPT系统通常使用三个功率变换阶段,如图9所示。第一阶段是并网(grid-tied)变换器,其负责根据IEC61000-3-2控制电网电流,并且调节直流链(DC-link)电容器两端的电压。硬直流链电压用作下一阶段主IPT变换器的输入,该变换器通常是电压源逆变器(Voltage SourceInverter,VSI),例如双有源桥(Dual Active Bridge,DAB)。替代地,可以使用电流源逆变器(Current Source Inverter,CSI),例如推挽变换器,但是要以较大的DC电感器为代价。初级逆变器的输出(其是高频电压或电流)为初级补偿网络和初级磁耦合器Lpt馈电。由于初级磁耦合器和次级磁耦合器的高漏电感,因此需要补偿网络来降低汲取的无功功率(reactive power),从而使初级IPT变换器高效运行。由于初级磁耦合器和次级磁耦合器通过互感M磁耦合,因此Lpt中存在的高频电流会在次级磁耦合器Lst两端感应出电压。感应的电压导致电流从次级补偿网络流出并流入次级变换器,次级变换器对高频电流进行整流和滤波,从而仅允许将直流分量(DC component)输送到EV电池。
在单向IPT系统中,次级变换器可以简单地是二极管整流器,然后是无源滤波器。但是,有源整流器可以用于提高效率和功率调节能力,以及实现双向功率传输。尽管这是最常用的IPT系统的体系结构,但是它具有许多缺点,导致更高的成本、更低的功率密度和降低的可靠性。这些缺点包括由于多个变换阶段而导致的组件数量过多、较大的输入滤波器电感器以及较大的直流链。
作为一种解决方案,以前已经研究了使用矩阵变换器来代替并网变换器和IPT初级变换器。与标准的全桥相反,可以控制矩阵变换器以从低频电网电压直接生成高频AC电压,因此无需并网变换器。此外,利用IPT系统的电流源特性来消除输入滤波器电感器。相反,双向开关的使用需要非常精确的开关时间,因此需要复杂的数字控制器来确保对于高频电流始终存在续流路径。替代地,过去也已经研究了软直流链方法。这种方法类似于常规的多阶段方法;但是,在直流链处使用的电容最小。结果,在直流链处的电压是电网电压的全波整流版本。这是有利的,因为它允许初级IPT变换器再次通过利用IPT系统的电流源特性来控制电网电流。此外,使用标准的单向开关有助于降低对开关精度的约束。尽管上述两种方法在常规方法的各个方面进行了改进,但是缺少任何低频能量存储元件(例如,较大的直流链电容)会限制可用于驱动初级磁耦合器的电压,并且还允许两倍电网频率的功率纹波(power ripple)传播到EV电池。这两个因素都会导致整个系统的电流应力较高,从而导致效率降低。
此外,上述方法的局限性可以主要归因于典型应用中发现的有限的电源和输出电压。增加这些系统的工作电压可能是一种简单但是昂贵的解决方案。例如,可以使用附加的功率变换器来升压/降压电源/负载电压,但是,增加的组件数量和降低的效率会导致不希望的解决方案。
本公开旨在通过提供一种改进的电路拓扑结构来克服以上提出的一个或多个问题,从而解决在先前开发的IPT系统中发现的一些缺点。
在已经参考专利说明书、其他外部文件或其他信息源的本说明书中,这通常是出于提供讨论本公开的特征的上下文的目的。除非另有特别说明,否则对此类外部文件的引用不应解释为承认此类文件或此类信息源在任何管辖范围内都是现有技术,或者构成本领域公知常识的一部分。
发明目的
本公开的目的是提供一种变换器,该变换器将至少以某种方式克服现有系统的缺点,或者将至少提供现有系统的有用替代。
通过以下描述,本公开的其他目的将变得显而易见。
发明内容
因此,一方面,本公开可以广义地认为是包括一种AC-AC变换器,所述AC-AC变换器包括桥式电路,所述桥式电路包括至少两个半桥式变换器,
每个半桥式变换器包括位于上端处的第一开关和位于下端处的第二开关,连接到每个半桥式变换器的电容器,
所述半桥式变换器在其相应的第一开关与第二开关之间彼此连接,每个半桥式变换器的所述上端可连接至初级能源,其中所述变换器可操作以提供可控的AC输出。
优选地,所述第一开关和所述第二开关被配置为对所述电容器充电和放电,并且调节供应到所述AC输出的电流。
优选地,所述第一开关和所述第二开关被配置为提供自然续流路径。
在一个实施例中,所述初级能源包括电感元件。
优选地,所述初级能源还包括所述电感元件和AC电源。
优选地,所述电感元件适于在所述初级能源与所述AC输出之间传输能量。
优选地,控制通过电感元件的电流以控制每个电容器的电压。
优选地,所述半桥式变换器中的至少一个包括补偿网络,所述补偿网络连接在初级能量存储单元之一与相应的半桥式变换器之间。
优选地,所述半桥式变换器中的至少一个包括补偿网络,所述补偿网络连接在所述半桥式变换器的所述第二开关中的每个与所述输出之间。
优选地,所述初级能源包括电感元件和/或拾波线圈(与电感器并网)中的一个或多个。
优选地,所述初级能源还可以包括:在直接并网的情况下,电感元件和AC源中的一个或多个。
替代地,所述初级能源还可以包括:变压器/拾波线圈以及用于隔离连接的泄漏或独立电感元件。
优选地,所述第一开关和所述第二开关被配置为交替地对所述电容器充电和放电,并且调节供应到负载的电流。
优选地,所述初级能源被配置为对来自所述能源的电流进行降压和/或升压。
优选地,所述开关可操作以将所述变换器置于第一操作状态和第二操作状态。
优选地,每种状态的持续时间或相对持续时间被控制以控制所述AC输出。
优选地,在所述第一状态下,一个电容器被充电而另一个电容器被放电。
优选地,半桥中的至少一个在每种状态期间将功率输送到所述输出。
因此,在另一方面,本公开可以广义地认为是包括一种AC-AC变换器,所述AC-AC变换器包括桥式电路,所述桥式电路包括至少两个半桥式变换器,每个半桥式变换器包括在上端处的第一开关和在下端处的第二开关,连接到每个半桥式变换器的电容器,所述半桥式变换器在其相应的第一开关与第二开关之间彼此连接,每个半桥式变换器的所述上端可连接至初级能源,以及与每个半桥式变换器的所述第二开关串联的输出电感元件,其中所述输出电感元件经变压器耦合以提供可控的AC输出。
优选地,所述初级能源包括输入电感元件。
优选地,所述初级能源包括所述输入电感元件和AC源。
控制器被提供以控制升压型有源桥的开关。所述控制器还被配置为控制开关的占空比和/或相位。
所述控制器可以具有一个或多个输入控制变量作为用于控制开关的输入。控制所述开关的占空比可以控制所述变换器的两个输出变量。这两个输出参数可以包括每个第一能源的电压和在第三能源两端的基本电压的大小。
替代地,所述控制器可以控制每个源之间的能量传递以优化变换器的操作(效率和功率传输)。
所述控制器可以对称地控制臂(leg)的占空比。
在另一方面,本公开可以广义地认为包括一种桥式变换器,所述桥式变换器包括根据前述陈述的两个变换器,其中AC能源彼此耦合。
在一个实施例中,耦合的AC能源提供隔离。
在一个实施例中,AC源是松散耦合的。松散耦合允许变换器之间的感应功率传输。
在另一方面,本公开广义地提供一种IPT系统(50),所述IPT系统包括至少一个根据先前陈述的变换器。
在另一方面,本公开广义地提供一种提供AC-AC变换器的可控的AC输出的方法,所述方法包括以下步骤:
切换相应第一和第二开关对,使得电流被交替地引导通过一个半桥式变换器的上端到另一个半桥式变换器的下端,或反之亦然;控制选定的桥式开关的占空比,以控制以下中的至少一项:
a)初级能源两端的电流和/或电压;
b)第一半桥式变换器和第二半桥式变换器中的每个两端的DC偏置。
附加地,如果次级变换器能够实现双向功率流,则还可以控制电网电流以向电网输送功率。
此功能启用了车辆到电网(V2G)服务,例如电压/频率调节和无功功率/谐波补偿。
该概念可以用多个开关扩展,例如,为三相系统供电。
如本文所用,术语“和/或”是指“和”或“或”或这两者。
如本文所用,名词后的“(s)”是指名词的复数和/或单数形式。
本说明书中使用的术语“包括”是指“至少部分地由……组成”。当解释本说明书中包括该术语的陈述时,在每个陈述中以该术语开头的特征都必须存在,但也可以存在其他特征。
诸如“包括”和“包括的”的相关术语将以相同方式来进行解释。
旨在对本文公开的数字范围的引用(例如,1至10)也包含对该范围内所有有理数的引用(例如:1、1.1、2、3、3.9、4、5、6、6.5、7、8、9和10)以及该范围内的任意有理数范围(例如,2至8、1.5至5.5和3.1至4.7)。
上面和下面引用的所有申请、专利和出版物的全部公开内容(如果有的话)在此通过引用并入。
所公开的主题还提供了一种方法或系统,其可以广义地认为是本说明书中所指代或指示的部件、元件和特征(单独地或共同地),以这些部件、元件或特征中的两个或更多个的任何组合或全部组合来构成。在本说明书中提到的特定整数具有与本公开内容相关的领域中的已知等同物时,这些已知等同物被视为并入说明书中。
根据仅通过举例的方式并参考附图给出的以下描述,本公开的其他方面将变得显而易见。
附图说明
现在将通过举例的方式参考附图描述本公开的多个实施例,附图如下。
图1是示出本公开的变换器的拓扑的电路图,该变换器在本文中称为升压AC电桥式(BACB)变换器。
图2A到图2B是示出在BACB变换器的(a)状态I(b)状态II期间的电流流动的一般电路图。
图3描绘了双电网逆变器的基于PR控制器的电网逆变器控制方案。
图4A到图4D示出了BACB变换器产生的仿真波形,包括(a)电网电压和电流(b)Ca和Cb两端的电压(c)每个单独的桥臂(bridge leg)输送的功率以及整个功率传输(d)变换器占空比。
图5示出了允许使用本公开的单个初级磁耦合器的替代实施例。
图6示出了适用于三相大功率应用的替代实施例。
图7A到图7D描绘了BACB变换器的多个实施例。
图8还描绘了示出本公开的变换器的拓扑的电路图,该变换器在本文中称为升压AC桥式(BACB)变换器。
图9还描绘了用于IPT系统的电网集成的常规多阶段方法。
具体实施方式
当前公开公开了图1所示的新颖的升压AC桥式(BACB)变换器100(在图8中也示出了类似的实施例)。从附图中可以看出,当前BACB变换器100利用单个AC-AC功率变换阶段,该AC-AC功率变换阶段包括桥式电路,该桥式电路包括两个半桥式变换器,其中每个半桥驱动初级磁耦合器510、520,该初级磁耦合器通过补偿网络610、620被附接到半桥。每个半桥式变换器包括在每个半桥式变换器的上端200处的第一开关210、220和在其下端300处的第二开关310、320,以及连接到每个半桥、即连接在上端200与下端300之间的电容器230、330。
初级能源400被连接在每个半桥式变换器的上端200之间。初级能源400可以简单地包括其中可以感应AC电压的线圈(即,电感器),例如IPT系统的拾波线圈。源400可以替代地包括与电感器410串联的AC电源。在所示的实施例中,两个半桥通过用作输入滤波器的电感元件410连接到单相公用电网的火线和零线。本公开使得能够产生受控的电网电流,同时还升压驱动初级磁耦合器的电压。本公开还使用相对低的直流链电容来最小化输出功率纹波。本公开的变换器100(BAB)的优点在于其具有以两倍输入电压工作的能力,从而减少了系统中的传导损耗。而且,本公开的变换器100消除了DC偏移电流的问题,该问题可能引起诸如芯饱和的不期望问题。因此,例如可以消除传统系统中使用的AC耦合电容器的需求,从而进一步改善效率和可靠性,同时降低成本。
与传统方法相比,并网变换器和初级IPT变换器被两个半桥臂取代。开关210(SaT)和310(SaB)形成半桥臂A,而开关220(SbT)和开关320(SbB)形成半桥臂B。每个半桥臂A、B的DC侧分别被连接到单个能量存储电容器230(Ca)和330(Cb)。每个半桥臂A、B的AC侧通过补偿网络610、620连接到初级磁耦合器510、520。尽管提出的变换器100可以与串联、并联或混合补偿网络一起工作,但是应当基于期望的功率传输特性来选择补偿网络的类型。类似地,磁耦合器的选择在确定系统功率传输特性中也起着重要作用,因此应谨慎选择。
每个半桥臂A、B的DC侧在单相公用电网的情况下通过用作输入滤波器的电感元件410而被连接到初级能源400的火线和零线。为简单起见,在本示例中,将单个电感器用作电网滤波器。然而,为了进一步减小电网电流谐波并减小无源元件的尺寸,也可以使用更高阶的滤波器。
在实际电路中,闭环控制器将调节功率流,以确保Ca和Cb两端的电压均保持在预定范围内。因此,假定最初Ca和Cb都被充电到大约750V,这明显高于峰值电网电压。在标称工作状态下,每个半桥以互补方式在补偿网络的谐振频率或接近于补偿网络的谐振频率进行切换。因此,在电网电压的正半和负半期间,将半桥臂B相对于半桥臂A异相切换180度导致两个不同的工作状态。正半周期内的电路工作如下图所示,其中图2(a)表示状态I,而图2(b)表示状态II。当开关SaT和SbB接通时,状态I发生,而当开关SbT和SaB接通时,状态II发生。状态I的持续时间可以被定义为D,Ts,其中D表示变换器占空比,以及Ts表示一个开关周期的持续时间。类似地,状态II的持续时间由(1-D)Ts给出。
如图2(a)中所示,在状态I期间,Ca放电,并且存储的能量通过次级侧变换器被传输到EV。为简单起见,使用理想的AC电流源I1EV和I2EV对EV和IPT系统进行建模。同时,通过传输来自电网和Lg的能量对Cb充电,从而导致vca增大,而ig减小。在状态II期间,Ca和电网都向Lg输送能量,从而导致ig增大以及vca减小。同时,经由Cb向EV输送能量。由于电路是对称的,因此当电网电压的极性相反时,Ca和Cb的作用也会相反,但工作原理相似。这样,可以通过在状态之间进行调制(即,控制D)来控制ig以及因此传输到EV的功率。此外,控制ig可以间接控制Ca和Cb两端的DC偏置电压。将DC偏置电压控制为远大于峰值电网电压并主动使电容器电压循环,使得提出的BACB减少传导损耗并利用较小的电容器。开关的反并联二极管确保Ca和Cb两端的正电压,并且闭环控制器确保最小电压Ca和Cb达到明显高于峰值电网电压。此配置的另一个优点是,在每种状态下,半桥臂中的至少一个将能量输送给EV,因此,即使使用相对较低的电容,单相功率纹波也显著地降低。附加地,如果次级变换器能够实现双向功率流,则还可以控制电网电流以向电网输送功率。此功能启用了车辆到电网(V2G)服务,例如电压/频率调节和无功功率/谐波补偿。
BACB技术的替代电路配置的工作原理与上面介绍的工作原理相似。图7A到图7D描绘了本公开的替代实施例的图示。技术人员将理解,这些实施例中的每一个的操作特性与以上描述的相似。
提出的控制方案
如前所述,电网电流以及Ca和Cb两端的DC偏置电压都需要调节。与电网电流调节相比,由于调节DC偏置电压所需的控制器带宽要低得多,因此可以采用如图3所示的基于常用的PR控制器的电网逆变器控制方案。控制器被分为较慢的外部电压控制回路(710)和较快的内部电流控制回路(720)。内部回路的带宽被设计为至少比外部回路大10倍,从而使两个控制器的动态去耦,从而降低了设计复杂度。由于电路是对称的,并且两个半桥的平均占空比相等,因此Ca和Cb两端的平均电压近似相同。因此,外部回路吸收Ca两端的平均电压,并且将其与参考DC电压进行比较。然后将得到的误差信号馈入PI控制器,该PI控制器的输出与锁相环(PLL)得出的参考正弦信号相乘。该正弦信号进而生成更快的内部回路所需的电流参考。由于电网电流需要最小的稳态误差,因此内部回路基于比例谐振(PR)控制器,该比例谐振控制器的输出生成控制信号vc,vc被输送到PWM发生器,该PWM发生器将其与0-1V对称三角载波进行比较以得出开关信号。由于这种控制方案通常用于标准的电网逆变器应用中,因此提供此类功能的各种集成电路(IC)都可以轻松获得。对于某些应用,与数字控制器相比,优选使用IC,因为这样可以大大降低总体成本。
IPT整合
PR控制器生成的正弦信号控制信号vc会导致功率纹波,并且影响传输到EV的平均功率。因此,为了得出系统参数、控制变量和输出功率之间的关系,将峰值调制指数Mi定义为一个电网周期内的峰值vc。使用Mi,向/从EV传输的平均功率可以被近似如下,
Figure BDA0002700326530000101
其中,PNo是,
Figure BDA0002700326530000102
其中,Vdc是Ca和Cb两端的平均电压;Vs是EV电池电压;ωt是开关频率;M是初级磁耦合器与次级磁耦合器之间的互感;以及φs是次级侧相位调制。因此,较低的峰值调制指数导致较高的功率传输以及较低的输出功率纹波。然而,峰值调制指数也与峰值电网电压与平均VCa和VCb之间的比率成比例。因此,要使Mi最小化,就需要增加电容器和开关的额定电压。
仿真结果
为了验证提出的基于BACB的IPT系统和控制方案的运行,使用MATLAB/PLECS设计并仿真了3kW系统。初级补偿网络和次级补偿网络都被选为LCL调谐网络,而次级变换器采用有源整流器。仿真系统的参数被列表显示如下,在表I中。
下面在图4中显示了在电网电压的一个周期内的仿真结果。图4(a)展示了电网电流和电压。显然,所提出的控制方案能够以非常低的谐波失真和单位功率因数来控制电网电流。
此外,控制方案可以同时控制Ca和Cb两端的平均电压,如图4(b)所示。电容器两端的平均DC偏置约为900V,以及低频电压纹波约为800Vpp。与常规系统相比,低频电压纹波相对较大。但是,由于每个电容器上的纹波反相180度,因此总的输出功率纹波得以减小。此特性在图4(c)中显而易见,其中示出了每个半桥臂Pa和Pb输送的功率以及输送到次级侧的总功率Ps。如图所示,当Ca两端的电压降低时,臂A输送的功率也会降低;但是,与此同时,Cb两端的电压增加,从而增加了臂b传输的功率。总体而言,这两种影响相互抵消,从而降低了输出功率纹波。最后,图4(d)示出了PR控制器生成的控制信号d,其变化范围为0.25至0.75,从而使BACB能够利用可用电压范围的85%。
表1 仿真参数
Figure BDA0002700326530000121
替代方法
用于提出的技术的替代应用如下所示。图5中的第一个类似于图1。但是,在这种情况下,初级补偿网络与电网滤波器和电压并联连接。这样允许使用单个初级磁耦合器和次级磁耦合器,而不是两个。另一方面,初级磁耦合器和补偿网络上的电压和电流应力被加倍,从而导致效率降低。
当前提出的BACB技术可以扩展到基于IPT的三相电网集成式EV充电器,如图6所示。该应用非常有用,因为对更快的EV电池充电速率的需求持续增长,超出了单相电源的能力。可以采用改进的空间矢量调制方案来控制该变换器。三相IPT网络以及三相磁耦合器可用于提供改进的效率和空间容限。
公开了一种用于基于IPT的EV充电器的新颖单级电网集成技术,其改善了在现有方法中发现的缺点。具体而言,这旨在减少组件数量,从而减少变换器的总成本。如前所述,该目标是通过将并网逆变器和IPT初级变换器的功能组合到单个功率变换级中来实现的。此外,这种方法还可以降低给定输出功率纹波所需的电容,从而进一步降低成本,并且改善能量密度和可靠性。通过仿真结果表明,所提出的变换器不仅具有以低THD和单位功率因数调节电网电流的能力,而且还提供了现有直接AC-AC变换器所缺乏的升压特征。
特别地,尽管不是唯一地,本公开旨在提供一种改进的电路拓扑,其使得能够使用DC开关来从AC输入源生成AC输出。此外,这种方法还可以降低给定输出功率纹波所需的电容,从而进一步降低成本,并且改善能量密度和可靠性。它还提供了现有直接AC-AC变换器所缺乏的升压特征。
在整个说明书中,相同的参考数字将用于表示不同实施例中的相同特征。
除非上下文清楚地另外要求,否则在整个说明书中,词语“包括”、“包含”等应以包容性含义来解释,而不是排他性或穷举性含义,也就是说,“包括,但不限于”的含义。
尽管已经通过举例的方式并且参考其可能的实施例描述了本公开,但是应当理解,可以在不脱离本公开的范围的情况下对其进行修改或改进。本公开还可以广义地说本申请的说明中提及或指出的部分、要素或特征(单独地或共同地),以及所述部分、要素或特征的两个或更多个的任何或所有组合来构成。此外,在已经参考具有已知等效物的本公开的特定组件或整数的情况下,则这样的等效物被结合在本文中,就如同单独阐述一样。
在整个说明书中对现有技术的任何讨论绝不应被认为是承认该现有技术是本领域众所周知的或形成本领域公知常识的一部分。

Claims (22)

1.一种AC-AC变换器,包括桥式电路,所述桥式电路包括至少两个半桥式变换器,每个半桥式变换器包括位于上端处的第一开关和位于下端处的第二开关,电容器,所述电容器连接到每个半桥式变换器,所述半桥式变换器在其相应的第一开关与第二开关之间彼此连接,每个半桥式变换器的所述上端可连接至初级能源,其中所述变换器可操作以提供可控的AC输出。
2.如权利要求1所述的AC-AC变换器,其中,所述第一开关和所述第二开关被配置为对所述电容器充电和放电,并且调节供应到所述AC输出的电流。
3.如权利要求1或权利要求2所述的AC-AC变换器,所述第一开关和所述第二开关被配置为提供自然续流路径。
4.如前述权利要求中任一项所述的AC-AC变换器,其中,所述初级能源包括电感元件。
5.如前述权利要求中任一项所述的AC-AC变换器,其中,所述初级能源还包括所述电感元件和AC电源。
6.如前述权利要求中任一项所述的AC-AC变换器,其中,所述电感元件适于在所述初级能源与所述AC输出之间传输能量。
7.如前述权利要求中任一项所述的AC-AC变换器,其中,控制通过所述电感元件的电流以控制每个电容器的电压。
8.如前述权利要求中任一项所述的AC-AC变换器,其中,所述半桥式变换器中的至少一个包括补偿网络,所述补偿网络连接在初级能量存储单元之一与相应的半桥式变换器之间。
9.如前述权利要求中任一项所述的AC-AC变换器,其中,所述半桥式变换器中的至少一个包括补偿网络,所述补偿网络连接在所述半桥式变换器的所述第二开关中的每个与所述输出之间。
10.如前述权利要求中任一项所述的AC-AC变换器,其中,所述初级能源包括电感元件和/或拾波线圈(与电感器并网)中的一个或多个。
11.如前述权利要求中任一项所述的AC-AC变换器,其中,所述初级能源还能够包括:在直接并网的情况下,电感元件和AC源中的一个或多个。
12.如前述权利要求中任一项所述的AC-AC变换器,其中,所述初级能源还能够包括:变压器/拾波线圈以及用于隔离连接的泄漏或独立电感元件。
13.如前述权利要求中任一项所述的AC-AC变换器,其中,所述第一开关和所述第二开关被配置为交替地对所述电容器充电和放电,并且调节供应到负载的电流。
14.如前述权利要求中任一项所述的AC-AC变换器,其中,所述初级能源被配置为对来自所述能源的电流进行降压和/或升压。
15.如前述权利要求中任一项所述的AC-AC变换器,其中,所述开关可操作以将所述变换器置于第一操作状态和第二操作状态。
16.如前述权利要求中任一项所述的AC-AC变换器,其中,每种状态的持续时间或相对持续时间被控制以控制所述AC输出。
17.如前述权利要求中任一项所述的AC-AC变换器,其中,在第一状态下,一个电容器被充电,而另一个电容器被放电。
18.如前述权利要求中任一项所述的AC-AC变换器,其中,所述半桥中的至少一个在每种状态期间将功率输送到所述输出。
19.一种AC-AC变换器,包括桥式电路,所述桥式电路包括至少两个半桥式变换器,每个半桥式变换器包括位于上端处的第一开关和位于下端处的第二开关,电容器,所述电容器连接到每个半桥式变换器的,所述半桥式变换器在其相应的第一开关与第二开关之间彼此连接,每个半桥式变换器的所述上端可连接至初级能源,以及与每个半桥式变换器的所述第二开关串联的输出电感元件,其中,所述输出电感元件经变压器耦合以提供可控的AC输出。
20.如权利要求19所述的AC-AC变换器,其中,所述初级能源包括输入电感元件。
21.如权利要求19或权利要求20所述的AC-AC变换器,其中,所述初级能源包括所述输入电感元件和AC源。
22.一种提供AC-AC变换器的可控的AC输出的方法,所述方法包括以下步骤:
切换相应第一和第二开关对,使得电流被交替地引导通过一个半桥式变换器的上端到另一个半桥式变换器的下端,或反之亦然;控制选定的桥式开关的占空比,以控制以下中的至少一项:
a)初级能源两端的电流和/或电压;
b)第一半桥式变换器和第二半桥式变换器中的每个两端的DC偏置。
CN201980022033.7A 2018-01-25 2019-01-25 变换器 Active CN111903048B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NZ73943118 2018-01-25
NZ739431 2018-01-25
PCT/NZ2019/050005 WO2019147143A1 (en) 2018-01-25 2019-01-25 A converter

Publications (2)

Publication Number Publication Date
CN111903048A true CN111903048A (zh) 2020-11-06
CN111903048B CN111903048B (zh) 2024-01-05

Family

ID=67396140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980022033.7A Active CN111903048B (zh) 2018-01-25 2019-01-25 变换器

Country Status (3)

Country Link
US (1) US11791739B2 (zh)
CN (1) CN111903048B (zh)
WO (1) WO2019147143A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11420524B2 (en) 2019-12-20 2022-08-23 Ut-Battelle, Llc Wireless power system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076445A1 (en) * 2003-10-13 2007-04-05 Koninklijke Philips Electronics N.V. Power converter
CN102160014A (zh) * 2008-09-26 2011-08-17 莫斯科技株式会社 电力变换装置
WO2013107782A2 (en) * 2012-01-17 2013-07-25 Infineon Technologies Austria Ag Power converter circuit, power supply system and method
US20130207482A1 (en) * 2010-06-30 2013-08-15 Auckland Uniservices Limited Inductive power transfer system
US20140183953A1 (en) * 2012-12-30 2014-07-03 Enphase Energy, Inc. Three port converter with dual independent maximum power point tracking and dual operating modes
US20150229225A1 (en) * 2014-02-12 2015-08-13 Delta Electronics, Inc. Resonant converters and control methods thereof
WO2017014648A1 (en) * 2015-07-20 2017-01-26 Auckland Uniservices Limited An integrated multi-source ipt system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196867B2 (ja) * 2004-03-31 2008-12-17 株式会社デンソー 双方向昇降圧型チョッパ回路及びそれを用いたインバータ回路並びにdc−dcコンバータ回路
CN100499343C (zh) 2007-04-04 2009-06-10 南京理工大学 基于正激变换器的交-交型三电平交-交变换器
DE102012007477B4 (de) * 2012-04-13 2024-02-22 Tridonic Gmbh & Co Kg Verfahren zum Betreiben eines LLC-Resonanzwandlers für ein Leuchtmittel, Wandler und LED-Konverter
EP2677651B1 (en) * 2012-06-22 2020-07-08 Delta Electronics (Thailand) Public Co., Ltd. Synchronized isolated AC-AC converter with variable regulated output voltage
CN104838578B (zh) * 2012-08-28 2018-11-02 奥克兰联合服务有限公司 单独控制相位的多相感应电能传输系统
JP6022883B2 (ja) * 2012-10-09 2016-11-09 ミネベア株式会社 電源装置
CN104852595B (zh) * 2015-05-31 2018-01-09 厦门大学 桥式模块化多电平开关电容ac‑ac变换器换流方法
US10879839B2 (en) * 2015-12-04 2020-12-29 Arizona Board Of Regents On Behalf Of Arizona State University Power converter circuitry for photovoltaic devices
CN108092371B (zh) * 2016-11-15 2020-04-03 华为技术有限公司 充放电装置
WO2018211694A1 (ja) * 2017-05-19 2018-11-22 三菱電機株式会社 電力変換装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076445A1 (en) * 2003-10-13 2007-04-05 Koninklijke Philips Electronics N.V. Power converter
CN102160014A (zh) * 2008-09-26 2011-08-17 莫斯科技株式会社 电力变换装置
US20130207482A1 (en) * 2010-06-30 2013-08-15 Auckland Uniservices Limited Inductive power transfer system
WO2013107782A2 (en) * 2012-01-17 2013-07-25 Infineon Technologies Austria Ag Power converter circuit, power supply system and method
US20140183953A1 (en) * 2012-12-30 2014-07-03 Enphase Energy, Inc. Three port converter with dual independent maximum power point tracking and dual operating modes
US20150229225A1 (en) * 2014-02-12 2015-08-13 Delta Electronics, Inc. Resonant converters and control methods thereof
WO2017014648A1 (en) * 2015-07-20 2017-01-26 Auckland Uniservices Limited An integrated multi-source ipt system

Also Published As

Publication number Publication date
US20210050794A1 (en) 2021-02-18
WO2019147143A1 (en) 2019-08-01
CN111903048B (zh) 2024-01-05
US11791739B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
KR102226793B1 (ko) 전기 또는 하이브리드 차량의 온보드 충전 디바이스 제어 방법
Tao et al. Transformer-coupled multiport ZVS bidirectional DC–DC converter with wide input range
CA2314782C (en) Multi-mode power converters incorporating balancer circuits and methods of operation thereof
US5668707A (en) Multi-phase power converter with harmonic neutralization
CA2958694A1 (en) System architecture for battery charger based on gan-based power devices
US11451091B2 (en) Converter
US20220038019A1 (en) System and method for enhanced single-stage on-board charger with integrated rectifier
US11065968B2 (en) Integrated multi-source IPT system
Liu et al. A soft-switched power-factor-corrected single-phase bidirectional AC–DC wireless power transfer converter with an integrated power stage
US5587892A (en) Multi-phase power converter with harmonic neutralization
Burlaka et al. Bidirectional single stage isolated DC-AC converter
Andrade et al. Modified triple active bridge DC/AC three-phase converter with a series-resonant LC circuit on the AC-side
CN111903048B (zh) 变换器
US20220231509A1 (en) Vehicle-grid-home power interface
Ruddell et al. A novel single-phase AC-AC BD-IPT system with zero power ripple
Tang et al. A bidirectional contactless power transfer system with dual-side power flow control
Joy et al. A new concept for bidirectional inductively coupled battery charging system based on ac-dc-ac converter for PHEV's and EV's using fuzzy logic approach
Luo et al. A primary shunt inductor compensated inductive power transfer system with natural ZVS for battery charging application
Laturkar et al. Dual Active Half Bridge Converter with Integrated Active Power Decoupling for On-Board EV Charger
Samanta et al. Concept study and feasibility analysis of current-fed power electronics for wireless power transfer system
Kalra et al. A novel boost active bridge based wireless power interface for V2G/G2V applications
Su et al. A Wide-Range Voltage Output WPT System with Dual Decoupled Transmitter Coils
Fong et al. A switched-capacitor step-up inverter for bidirectional wireless charging applications in electric microcar
RU2187872C1 (ru) Гибридный компенсатор пассивной мощности и способ управления им
Maurya et al. A single phase grid integrated VSC with DC-DC LLC hybrid technology for improved charging of electric vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant