CN111897868B - 用于分析与规划公交线路的可视分析方法和系统 - Google Patents

用于分析与规划公交线路的可视分析方法和系统 Download PDF

Info

Publication number
CN111897868B
CN111897868B CN202010759091.2A CN202010759091A CN111897868B CN 111897868 B CN111897868 B CN 111897868B CN 202010759091 A CN202010759091 A CN 202010759091A CN 111897868 B CN111897868 B CN 111897868B
Authority
CN
China
Prior art keywords
line
lines
bus
user
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010759091.2A
Other languages
English (en)
Other versions
CN111897868A (zh
Inventor
巫英才
翁荻
郑成博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010759091.2A priority Critical patent/CN111897868B/zh
Publication of CN111897868A publication Critical patent/CN111897868A/zh
Application granted granted Critical
Publication of CN111897868B publication Critical patent/CN111897868B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/26Visual data mining; Browsing structured data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2462Approximate or statistical queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Probability & Statistics with Applications (AREA)
  • Fuzzy Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种用于分析与规划公交线路的可视分析方法和系统,属于公交线路规划技术领域。包括:1)以地图为中心,对公交网络、公交线路和公交站点的进行分层分析,基于公交线路中的乘客流量、运营费用统计、线路长度和换乘统计数据进行层次可视化,并依此得到若干存在问题的候选线路;2)针对其中一条候选线路存在的问题,采用帕累托最优线路搜索模型,输入用户指定的参数,生成若干构成帕累托最优集的新线路;3)基于线路聚合方法,采用渐进式的决策策略,支持用户比较多簇新线路的拓扑结构,并评估性能。可分析和改善公交线路网络,提高最优线路生成模型的效率和实用性。同时使用户可以对线路的性能进行高效而详细的分析。

Description

用于分析与规划公交线路的可视分析方法和系统
技术领域
本发明涉及公交线路规划技术领域,具体地说,涉及一种用于分析与规划公交线路的可视分析方法和系统。
背景技术
通常由于公交车乘客的出行需求不断变化,公交路线每3-5年更新一次(MACKECHNIE C.How do bus routes and schedules get planned?[EB/OL].(2020-03)[2020-05-24].https://www.liveabout.com/bus-routes-and-schedulesplanning-2798726)。然而,规划理想的公交路线是一项艰巨的任务,因为规划者既要面临“根据时空背景准确地描述出行需求并发现应该在哪里建路线”的困难问题,又要通过分析众多诸如路线距离、需求满意度和运营成本等因素来规划路线(The Public-PrivateInfrastructure Advisory Facility.Factors influencing bus system efficiency[EB/OL].(2020-03-11)[2020-05-24].
https://ppiaf.org/sites/ppiaf.org/files/documents/toolkits/UrbanBusToolkit/assets/1/1d/1d.html)。为了保证规划者可以做出明智的权衡,每一个元素都需要被广泛地分析。
现如今大多数运行的公交网络都是手动规划和更新的,也有一部分是基于规划者的知识和经验对小型数据集进行数值分析来规划的。尽管如此,由于通过这样的方式所产生的解决方案的数量可能非常巨大,这就使得这种方法可能既费时又费力。为了更有效地确定可行的公交路线,许多数据驱动的规划算法(
Figure BDA0002612554560000021
GUIHAIRE,HAO J K.Transitnetwork design and scheduling:A global review[J].transportation research parta,2008,42(10):0-1273,CHRISTOPH,MANDL.Evaluation and optimization of urbanpublic transportation networks[J].European Journal of Operational Research,1980,PATTNAIK S B,MOHAN S,TOM V M.Urban Bus Transit Route Network DesignUsing Genetic Algorithm[J].Journal of Transportation Engineering,1998,124(4))开始出现。其中包括数学方法和启发式方法,这些方法基于一些预先定义的标准自动搜索和提取路线。但是,这些方法大多数都是黑盒的,即在给定输入数据和参数的情况下,该方法才会生成单个优化的公交路线或公交网络。虽然,表面上看已经达到了生成优化路线或网络的最终目的,但是,实际上领域专家们很难推断使用这些方法所生成路线的质量,以及无法确定调整参数后能否找到更好的解决方案。最近一篇关于最优公交路线的提取的研究(WENG D,CHEN R,ZHANG J,et al.Pareto-optimal transit route planning withmulti-objective monte-carol tree search[J].IEEE Transactions on IntelligentTransportation Systems,2020,pages 1–11)在某种程度上增强了路线生成的可解释性。这些研究没有直接提供可能令人不满意的所谓的“最佳路线”,而是试图生成一组候选路线。就所有给定标准而言,这些路线之中并没有哪条路线完全优于其他路线。尽管这种方法可以显著减小解决方案数量的大小,但仍然需要专家们费力地在数百条路线之间进行比较(WENG D,CHEN R,ZHANG J,et al.Pareto-optimal transit route planning withmulti-objective monte-carol tree search[J].IEEE Transactions on IntelligentTransportation Systems,2020,pages 1–1),并确定哪一条是最可行的。
为了促进对城市数据的分析,许多研究(ZHENG Y,WU W,CHEN Y,et al.VisualAnalytics in Urban Computing:An Overview[J].Big Data,IEEE Transactions on,2016,2(3):276-296)都采用了可视分析方法,该方法使用户可以在有效的计算模型的帮助下从复杂的数据集中交互地获取模式和结论。这些研究主要集中在时间(AIGNER W,MIKSCHS,SCHUMANN H,et al.Visualization of Time-Oriented Data[M].Springer London,2011)、位置、其他属性,以及多属性的可视化上。
然而,现有可视分析方法无法满足对现有的公交路线进行分析和结合存在的问题进行重新规划。
发明内容
本发明的目的是提供一种用于分析与规划公交线路的可视分析方法和系统,可以实现对现有的公交线路进行分析和结合存在的问题进行重新规划。
为了实现上述目的,第一方面,本发明提供的用于分析与规划公交线路的可视分析方法包括以下步骤:
1)以地图为中心,对公交网络、公交线路和公交站点的进行分层分析,基于公交线路中的乘客流量、运营费用统计、线路长度和换乘统计数据进行层次可视化,并依此得到若干存在问题的候选线路;
2)针对其中一条候选线路存在的问题,采用帕累托最优线路搜索模型,输入用户指定的参数,生成若干构成帕累托最优集的新线路;
3)基于线路聚合方法,采用渐进式的决策策略,支持用户比较多簇新线路的拓扑结构,并评估性能。
步骤1)中公交网络层次分析通过聚合图实现:
聚合图将城市划分成若干交通区域,不同区域之间由各个公交线路连通;
在每个交通区域的重心处放置一个区域标志图,汇总该区域的关键统计数据;
通过悬停并单击区域标志图,过滤线路并高亮通过该区域的线路。
使用区域间连线的粗细代表在两个区域间行驶的公交线路的数量大小。
步骤1)中公交线路层次分析基于表格的数值排序视图进行多标准分析:
表中的各列分别代表多种指标,表中的每一行代表一条公交线路;表格允许高度定制化的排序,用户通过拖动改变每一列的宽度,对应着某项指标的权重;用户通过双击列来对多列进行合并,达到多条件加权比较;每个被双击的列被聚合成同一列,拖动可以改变此指标在聚合列中的权;表格的列标题部分展示了表中所有线路各项性能指标的概况和范围,同时表格提供过滤功能,即通过拖动左右边线来设置各个性能指标的范围条件。
步骤1)中公交站点层次分析使用流量矩阵可视化乘客流量状况:
矩阵的列和行均对应于线路的站点,矩阵中每个单元的颜色密度大小代表从列站到行站的乘客人数;垂直和水平两方向的切面图按一天的24小时或一周的7天来汇总各个站点上车或下车的乘客数量;车站名称和表示每个车站上下车乘客总数的柱状图位于矩阵的底部和右侧;柱状图下方用不同透明度的圆形编码各个车站的历史换乘情况,点击圆形会展示换成列表,在列表中选择一条线路后,就会显示该线路的流量矩阵,该新的流量矩阵会与原来的流量矩阵通过发生换乘的车站相连并对齐。
通过覆盖在地图上的聚类图可以进行公交网络层次的分析;通过可调节的排序视图可以进行公交线路层次的分析;通过流量矩阵可以进行公交站点层次的分析。
步骤2)包括:
2-1)通过步骤1)的分析选择一条低效线路,用户在生成视图中指定帕累托最优线路搜索模型的参数、指标过滤器和锚定站点,并启动模型;
2-2)根据步骤2-1)的设定,基于蒙特卡洛树的线路搜索方法将持续搜索可选的公交车线路,搜索到的公交车线路基于预计流量、预计运营费用等指标构成帕累托最优集;生成阶段开始后,检测到的可行公交站点显示在地图上,产生的线路以线条连接;生成的线路实时显示在线路排序视图中,并实时展示所生成线路的质量概览。
基于用户设定的模型参数和过滤条件,基于蒙特卡洛树搜索的公交车线路优化模型会将搜索到的公交车线路实时地展现在地图和排序视图中,允许用户实时地对搜索的参数和过滤条件等进行变更。
步骤3)包括:
3-1)对步骤2)生成的大量新线路,使用启发式算法对线路进行聚类,基于聚类结果搜索线路之间的拓扑结构差异并将每个差异定义成一个冲突;
3-2)解决步骤3-1)中得到的线路冲突,用户通过查看该站点所属的线路,并点击站点解决冲突。
步骤3-1)中的启发式算法描述如下:针对一个线路集、若干线路指标及权重、一个聚类数目上限,算法初始化设置每条线路构成一个线路聚类,所有聚类构成一个线路聚类集。算法持续搜索站点重合度最高的线路聚类对。其中线路聚类的站点定义为其包含的线路的共同站点。当存在多对站点重合度相等的聚类对时,基于聚类对包含线路的指标值标准差进行排序,选择标准差最低的一对聚类进行合并,构成一个新的线路聚类。算法循环执行,直至存在的线路聚类数目少于给定的聚类数目上限。
基于上述算法,构造若干线路聚类。基于聚类间的站点差异,获取大量公交车线路间的拓扑差异(即为冲突),允许用户通过排序视图和覆盖在地图上的拓扑结构图进行冲突解决,筛选出最优的公交线路。
第二方面,本发明提供的用于分析与规划公交线路的可视分析系统,用于实现上述用于分析与规划公交线路的可视分析方法,包括:
数据存储和预处理模块,对公交车站、线路和形成数据进行预处理,并使用开源线路匹配接口对数据进行地图匹配,同时使用PostgreSQL数据库对其进行空间索引;
后端处理模块,使用Go语言实现后端处理线路生成请求,并通过GraphQL接口公开生成模型的内部状态和API;
前端界面模块,包括探索、生成和评估界面三个可视界面;探索界面对现有公交网络进行性能分析,生成界面供用户与渐进模型进行交互,评估界面帮助用户根据拓扑结构和各项性能标准在候选线路之间进行比较,以确定最佳线路。
与现有技术相比,本发明的有益之处在于:
本发明提出了一种基于矩阵对行程记录、乘客流量和中转统计数据进行可视化的新颖可视化方法,从而使得用户可以对线路的性能进行高效而详细的分析。此外,提供了一种新的冲突解决策略,以保证寻找理想候选线路的决策过程渐进而可靠。基于本发明,分析人员可以发现异常的公交线路模式。这些异常的模式能为公交网络规划人员提供了关键意见,并且指导高效公交线路的设计和规划。从适用性的角度来看,本发明中的渐进式决策策略可以应用于各种城市决策场景,例如位置选择和交通分析。这样的策略可以让用户避免一次性面对过多的先择,并帮助用户明智地评估候选方案。
附图说明
图1为本发明实施例中进行公交多层次分析的效果图;
图2为本发明实施例中进行候选公交线路生成的效果图;
图3为本发明实施例中冲突解决策略的说明图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下结合实施例及其附图对本发明作进一步说明。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
实施例
参见图1,本实施例的用于分析与规划公交线路的可视分析系统是一个基于Web的可视分析应用程序,包括三部分:
第一,数据存储和预处理模块,对公交车站、线路和形成数据进行预处理,并使用开源线路匹配接口对数据进行地图匹配,同时使用PostgreSQL数据库对其进行空间索引;
第二,后端处理模块,使用Go语言实现后端处理线路生成请求,并通过GraphQL接口公开生成模型的内部状态和API;
第三,前端界面模块,在TypeScript和Vue.js中实现,包括探索、生成和评估界面三个可视界面;探索界面对现有公交网络进行性能分析,生成界面供用户与渐进模型进行交互,评估界面帮助用户根据拓扑结构和各项性能标准在候选线路之间进行比较,以确定最佳线路。
其一,探索阶段界面。基于公交网络、线路和站点三个层面的分析来组织。在公交网络层面的分析中,空间聚合视图旨在提供整个网络的空间概览,并支持用户通过设置空间约束条件来过滤线路。对于公交线路层面的分析,使用线路排名视图来描述各个线路的定量性能,从而帮助用户根据性能标准查找效率低下的线路。对于公交站点层面的分析,使用一种线路矩阵视图,以通过矩阵可视化所选线路中的停靠点之间的客流和换乘数据,从而基于图形展开对线路性能的细粒度评估。
参见图1,用于公交网络层面分析的空间聚合视图包括三个链接层:地图,线路和聚合层。图1中(a)为公交线路局部图,(b)为公交站点聚合图,(c)为公交站点的时刻流量视图,(d)为(a)中一个公交站点聚类的放大图,(e)为用于优化公交线路的操作面板,(f)为公交线路的排序视图,(g)为公交线路中的某一站点的换乘情况统计。
地图层使用Mapbox GL库渲染基本地图。线路图层则是在地图上使用蓝色线条绘制所有的线路,颜色的深浅代表线路数量大小。然而,由于线路之间的重叠,该层无法直接描述公交网络的拓扑结构。因此,额外设计了聚合层,通过聚合图来可视化公交网络的拓扑结构。聚合图中的每个节点对应一组公交车站。以平衡各组中公交站点数量为条件进行层次聚类,因此,用户也可以根据喜好来调整聚合条件。这些聚合层将城市自然地划分成了几个交通区域。另外,连接聚合层中两块交通区域的连线的粗细代表在这两个区域间行驶的公交线路的数量大小。
在每个交通区域的重心处放置了一个区域标志图,以汇总该区域的关键统计数据。区域标志图的中心是一个有六个轴的雷达图,六个轴分别对应公交线路的六项性能指标的平均值,包括线路长度(RL)、站点数量(NS)、乘客量(PV)、平均负载(AL,即每辆车上的平均乘客人数)、线路直接度(DR)和服务成本(SC)。在雷达图的外围有两个发散的圆形,其中,绿色的发散圆形代表到达该区域的客流量和方向,而橙色的发散圆形代表离开该区域的客流量和方向。该区域标志图的设计既直观、简洁,又内容丰富,可以帮助用户轻松获取并比较带有多个不同区域的性能。通过悬停并单击区域标志图,可以过滤线路并高亮通过该区域的线路。
公交线路层面的分析的主要作用是根据性能标准对空间信息进行补充。此部分是由ValueChart和LineUp两种可视化组件拼接而成,基于表格的数值排序视图被包含在线路排序视图中,以此进行线路的多标准分析。表中的各列分别代表区域标志图中雷达图展示的六个性能指标,表中的每一行代表一条公交线路。用户可以通过点击任何一列来对线路进行排序。此外,用户可以通过拖动来改变每一列的宽度,而每一列的宽度代表这一项性能指标所占的权重。同时,用户还可以通过双击对多列进行合并,以达到多条件加权比较的目的。通过这些功能用户就可以构建量身定制的排序模型。此外,在表格的列标题部分展示了表中所有线路各项性能指标的概况和范围,同时,这个概览图也是一个过滤器,即可以通过拖动左右边线来设置各个性能指标的范围条件。
公交站点层面的分析使用户能够浏览和评估选定线路中站点之间的客流和换乘情况。
流量矩阵旨在可视化乘客流量状况。矩阵的列和行均对应于线路的站点,矩阵中每个单元的颜色密度大小代表从列站(此列代表的站)到行站(此行代表的站)的乘客人数大小。此外,垂直和水平两方向的视界图将按一天的24小时或一周的7天来汇总各个站点上车或下车的乘客数量。此外,车站名称和表示每个车站上下车乘客总数的条形图(图3.3C)位于矩阵的底部和右侧。
跨越多条线路的繁琐换乘通常表明两地点之间的公交线路的规划不够好,因此,这种情况下不建议乘坐公交车出行。为了可视化换乘信息,用车站名称旁边的圆圈的透明度大小来表示转入或转出到其他线路的乘客的人数多少。圆圈上的数字表示乘客已经转出或者转入了多少条线路。单击圆圈会打开相关线路的列表,每条线路前面都有一个小饼状图。其中深色阴影部分代表往返该线路的乘客流量站占总体的百分比。在列表中选择一条线路后,就会显示该线路的另一个流量矩阵,该新的流量矩阵会与原来的流量矩阵相连并对齐。将矩阵顺时针旋转45度以线性地容纳它们,这样就可以获得更好的可伸缩性。视图的左下角是所有流量矩阵的概览图,其中每个流量矩阵都用一个正方形表示,换乘线路的总数用虚线框选,与此同时,代表当前最靠近视图中心的流量矩阵的正方形会被高亮。
其二,生成阶段界面。在通过探索界面确定了一条低效线路后,用户可以在生成界面中得到一组候选线路。参见图2,该界面允许用户通过指定模型的参数、指标过滤器和锚定挡块来控制模型。模型的结果将实时地展示在视图中,以便用户确定生成的线路的质量。图2中(a)是生成的公交线路,(b)是线路排序视图,(c)是生成的公交线路的数目变化折线图,(d)是原始线路的指标值,(e)是生成线路的指标数值分布图。
系统左侧的工具栏提供了细粒度的模型控件,包括开始或暂停所选线路的优化、导航至上一个或下一个结果集、退出生成界面、显示或隐藏原始线路、为生成过程配置参数。生成阶段开始后,会将检测到的可行的公交站点以蓝色圆圈的形式显示在地图上的对应位置。产生的线路以蓝色线条连接,而颜色的密度大小代表重叠线路的数量大小。用户可以通过点击蓝色圆圈来锚定此站点(即所有线路都需要通过此站点)或双击以将此站点从站点图中删除。同时,我们也允许用户通过单击地图上的某个位置来添加新的站点。
生成的线路会实时显示在线路排序视图中,以便用户灵活地对这些线路进行排序、过滤和性能评估。表中的垂直虚线代表的是原始线路此项指标的值。列标题中的指标数值分布图不仅允许用户通过拖拽所有范围线来指定该指标的范围,而且还实时展示了所生成线路的质量概览,用户就可以在此基础上确定何时终止生成过程。
其三,评估阶段界面。为了帮助用户评估数百条候选线路并确定最理想的候选线路,采用了一种交互式的冲突解决策略,以促进对这些线路的有效分析。该策略包含两个方面。首先,使用启发式方法发现线路之间的拓扑结构差异并将每个差异定义成一个冲突。例如,两条有五个站点的线路1-2-5-7-6和1-4-5-8-6之间就包含了两个冲突,一个在第二站,另一个在第四站。在提取冲突之后,用户可以通过在可用选项中进行迭代选择来交互地解决这些冲突,并最终获取最理想的候选线路。为了协助用户进行这种渐进式的决策过程,在地图上用冲突标记描绘了线路间的拓扑结构差异,并在排序视图中可视化了可供选择的指标,以便于分析线路的当前表现。
冲突概念的提出是为了协助用户了解候选线路之间的拓扑结构差异,用户可以通过选择他们喜欢线路或站点来逐步解决冲突。但是,有太多的候选线路可选就会导致选择超载(即无法根据自己的标准从众多选项中做出先择)。因此,先将数量巨大的候选线路分为几个线路群集,然后检测这些线路群集之间的冲突,这样,用于解决冲突的可选项数量就不会超过集群中的线路的数量。例如,对于三个四站式线路1-3-4-5、1-3-6-5和1-2-7-5,如果限制可用来解决冲突的选择不能超过2个,那么就可以将这三条线路分为两个集群:1-3-*-5和1-2-7-5。此时两个集群会在第二和第三站发现冲突(即两个选择:3-*与2-7)。如果用户选择使用3-*来解决此冲突,那么所剩下的两条线路(1-3-4-5和1-3-6-5)会在第三个站点处检测到另一个冲突(即两个选择:站点4和站点6)。如果用户选择2-7来解决第一次冲突,则可以直接确定最理想的候选线路1-2-7-5。
参见图3,(a)是冲突对应的折叠组,(b)是(a)中线路集群的箱形图,(c)是线路集群的拓扑结构,(d)是(b)中第四组线路集群的拓扑结构示意图。每个检测到的冲突将在排序视图中显示为一个可折叠组。每一次只能解决一个冲突。用户可以通过单击其标题在各个冲突之间进行切换。每一行代表一个线路集群,每个集群对应于从起点到目的地的多条线路。用户可以将鼠标悬停在某一行上以查看该线路群集中的线路,然后可以单击某一行来解决此线路与群集的冲突。如果一个线路集群包含一个以上的线路,则其线路的指标将通过箱形图显示。否则,群集将像之前看到的其他正常线路一样显示,即显示一定长度的条柱来表示此指标的大小。只剩一条线路表面该线路是此集群的最终选择。
线路群集的拓扑结构在地图上通过节点链接图展示。冲突标记放置在拓扑图中的每个站点上,冲突标记会显示与该站点相关的冲突状态:1)已解决(蓝色复选标记):所有线路都经过此站点;2)正在处理(橙色问号):此站点在线路集群之间共享,而且是当前在排序视图中正在处理的冲突;3)待处理(灰色问号):此停靠点在线路集群之间共享,此冲突处于等待处理阶段。用户可以通过将鼠标悬停在站点上来查看该站点所属的线路。
为了可视化所选线路的预测乘客流量,此部分也是使用了流量矩阵,但是,此时线路的流量矩阵视图仅显示已解决冲突的站点。而且此阶段流量矩阵不显示换乘情况,只显示车站之间的历史乘客流量。此外,如果两个连续的已解决冲突的站点之间存在未解决的冲突,那么矩阵视图中两站点之间会插入一条虚线,表示矩阵将在此位置进行扩展。每有一个冲突被解决(即某个或某些站点被用户选择时),这些站点对应的流量矩阵会拼接在当前线路的流量矩阵中。
基于以上系统,本实施例中用于分析与规划公交线路的可视分析方法括以下步骤:
S100,复杂公交线路网络的深入分析:采用以地图为中心,涵盖公交网络、线路和站点的分层探索方法,采用一种新型的矩阵式视图将线路中的乘客流量和换乘统计数据进行层次可视化。
公交网络层次分析。通过聚合图来可视化公交网络的拓扑结构。聚合图将城市自然地划分成了几个交通区域,不同区域之间由各个公交线路联通。使用区域间连线的粗细代表在这两个区域间行驶的公交线路的数量大小。在每个交通区域的重心处放置了一个区域标志图,汇总该区域的关键统计数据。通过悬停并单击区域标志图,可以过滤线路并高亮通过该区域的线路。
公交线路层次分析。基于表格的数值排序视图进行线路的多标准分析。表中的各列分别代表多种指标,表中的每一行代表一条公交线路或者一个包含多条公交线路的线路组。表格允许高度定制化的排序。用户可以通过拖动来改变每一列的宽度,对应着某项指标的权重。同时,用户还可以通过双击列来对多列进行合并,以达到多条件加权比较的目的。每个被双击的列都将被聚合成同一列,拖动也可以改变此指标在聚合列中的权。表格的列标题部分展示了表中所有线路各项性能指标的概况和范围,同时表格提供过滤功能,即可以通过拖动左右边线来设置各个性能指标的范围条件。
公交站点层次分析。使用流量矩阵可视化乘客流量状况。矩阵的列和行均对应于线路的站点,矩阵中每个单元的颜色密度大小代表从列站(此列代表的站)到行站(此行代表的站)的乘客人数大小。此外,垂直和水平两方向的视界图将按一天的24小时或一周的7天来汇总各个站点上车或下车的乘客数量。此外,车站名称和表示每个车站上下车乘客总数的条形图位于矩阵的底部和右侧。用车站名称旁边的圆圈的透明度大小来表示转入或转出到其他线路的乘客的人数多少。圆圈上的数字表示乘客已经转出或者转入了多少条线路。单击圆圈会打开相关线路的列表,每条线路前面都有一个小饼状图。其中深色阴影部分代表往返该线路的乘客流量站占总体的百分比。在列表中选择一条线路后,就会显示该线路的另一个流量矩阵,该新的流量矩阵会与原来的流量矩阵相连并对齐。视图的左下角是所有流量矩阵的概览图,其中每个流量矩阵都用一个正方形表示,换乘线路的总数用虚线框选,与此同时,代表当前最靠近视图中心的流量矩阵的正方形会被高亮。
S200,交互式生成改进的候选线路:采用基于多个自定义指标生成公交线路的帕累托最优线路搜索模型,允许用户直观地指定该方法所需的复杂参数,并确定何时生成的线路足够好到可以停止探索过程。具体包括:
S201,通过步骤S100的探索选择一条低效线路,用户在生成视图中通过指定模型的参数、指标过滤器和锚定挡块站点来控制模型,并启动模型;
S202,基于步骤S201的预设定,基于蒙特卡洛树的线路搜索方法将持续搜索可选的公交车线路。搜索结果将实时地展示在地图视图中。系统左侧的工具栏提供了细粒度的模型控件,包括开始或暂停所选线路的优化、导航至上一个或下一个结果集、退出生成界面、显示或隐藏原始线路、为生成过程配置参数。生成阶段开始后,检测到的可行公交站点以圆圈的形式显示在地图,产生的线路以线条连接。用户可以通过点击圆圈来锚定站点或双击以将此站点从站点图中删除。同时,用户可以添加新的站点。生成的线路会实时显示在线路排序视图中。表中用垂直虚线代表原始线路指标。列标题中的指标数值分布图允许用户通过拖拽所有范围线来指定该指标的范围,且实时展示了所生成线路的质量概览。
S300,有效评估候选公交线路:基于线路聚合方法,采用渐进式的决策策略,支持用户查看候选线路的拓扑结构,并评估性能。
具体包括:
S301,对步骤S200得到的大量候选线路,使用启发式方法发现线路之间的拓扑结构差异并将每个差异定义成一个冲突;
S302,解决步骤S301中得到的线路冲突。每个检测到的冲突在排序视图中显示为一个可折叠组,允许用户切换折叠组。用户可以查看具体线路群集的线路,并单击某一折叠组来解决此线路与群集的冲突。线路群集的拓扑结构在地图上通过节点链接图展示。冲突标记放置在拓扑图中的每个站点上,冲突标记会显示与该站点相关的冲突状态。用户可以查看该站点所属的线路,并点击站点解决冲突。

Claims (6)

1.一种用于分析与规划公交线路的可视分析方法,其特征在于,包括以下步骤:
1)以地图为中心,对公交网络、公交线路和公交站点的进行分层分析,基于公交线路的乘客流量、运营费用统计、线路长度和换乘统计数据进行层次可视化,并依此得到若干存在问题的候选线路;
2)针对其中一条候选线路存在的问题,采用帕累托最优线路搜索模型,输入用户指定的参数,生成若干构成帕累托最优集的新线路;
3)基于线路聚合方法,采用渐进式的决策策略,支持用户比较多簇新线路的拓扑结构,并评估性能,具体包括:
3-1)对步骤2)生成的大量新线路,使用启发式算法进行聚类,其聚类过程如下:
针对一个线路集、若干线路指标及权重、一个聚类数目上限,算法初始化设置每条线路构成一个线路聚类,所有聚类构成一个线路聚类集;
持续搜索站点重合度最高的线路聚类对,当存在多对站点重合度相等的聚类对时,基于聚类对包含线路的指标值标准差进行排序,选择标准差最低的一对聚类进行合并,构成一个新的线路聚类;
算法循环执行,直至存在的线路聚类数目少于给定的聚类数目上限;
基于聚类结果搜索线路之间的拓扑结构差异并将每个差异定义成一个冲突;
3-2)解决步骤3-1)中得到的线路冲突,用户通过查看该站点所属的线路,并点击站点解决冲突。
2.根据权利要求1所述的用于分析与规划公交线路的可视分析方法,其特征在于,步骤1)中公交网络层次分析通过聚合图实现:
聚合图将城市划分成若干交通区域,不同区域之间由各个公交线路连通;
在每个交通区域的重心处放置一个区域标志图,汇总该区域的关键统计数据;
通过悬停并单击区域标志图,过滤线路并高亮通过该区域的线路。
3.根据权利要求1所述的用于分析与规划公交线路的可视分析方法,其特征在于,步骤1)中公交线路层次分析基于表格的数值排序视图进行多标准分析:
表中的各列分别代表多种指标,表中的每一行代表一条公交线路;表格允许高度定制化的排序,用户通过拖动改变每一列的宽度,对应着某项指标的权重;用户通过双击列来对多列进行合并,达到多条件加权比较;每个被双击的列被聚合成同一列,拖动可以改变此指标在聚合列中的权;表格的列标题部分展示了表中所有线路各项性能指标的概况和范围,同时表格提供过滤功能,即通过拖动左右边线来设置各个性能指标的范围条件。
4.根据权利要求1所述的用于分析与规划公交线路的可视分析方法,其特征在于,步骤1)中公交站点层次分析使用流量矩阵可视化乘客流量状况:
矩阵的列和行均对应于线路的站点,矩阵中每个单元的颜色密度大小代表从列站到行站的乘客人数;垂直和水平两方向的切面图按一天的24小时或一周的7天来汇总各个站点上车或下车的乘客数量;车站名称和表示每个车站上下车乘客总数的柱状图位于矩阵的底部和右侧;柱状图下方用不同透明度的圆形编码各个车站的历史换乘情况,点击圆形会展示换成列表,在列表中选择一条线路后,就会显示该线路的流量矩阵,该新的流量矩阵会与原来的流量矩阵通过发生换乘的车站相连并对齐。
5.根据权利要求1所述的用于分析与规划公交线路的可视分析方法,其特征在于,步骤2)包括:
2-1)通过步骤1)的分析选择一条低效线路,用户在生成视图中指定帕累托最优线路搜索模型的参数、指标过滤器和锚定站点,并启动模型;
2-2)根据步骤2-1)的设定,基于蒙特卡洛树的线路搜索方法将持续搜索可选的公交车线路,搜索到的公交车线路基于预计流量、预计运营费用等指标构成帕累托最优集;生成阶段开始后,检测到的可行公交站点显示在地图上,产生的线路以线条连接;生成的线路实时显示在线路排序视图中,并实时展示所生成线路的质量概览。
6.一种用于分析与规划公交线路的可视分析系统,用于实现权利要求1~5中任一权利要求所述的用于分析与规划公交线路的可视分析方法,其特征在于,包括:
数据存储和预处理模块,对公交车站、线路和形成数据进行预处理,并使用开源线路匹配接口对数据进行地图匹配,同时使用PostgreSQL数据库对其进行空间索引;
后端处理模块,使用Go语言实现后端处理线路生成请求,并通过GraphQL接口公开生成模型的内部状态和API;
前端界面模块,包括探索、生成和评估界面三个可视界面;探索界面对现有公交网络进行性能分析,生成界面供用户与渐进模型进行交互,评估界面帮助用户根据拓扑结构和各项性能标准在候选线路之间进行比较,以确定最佳线路。
CN202010759091.2A 2020-07-31 2020-07-31 用于分析与规划公交线路的可视分析方法和系统 Active CN111897868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010759091.2A CN111897868B (zh) 2020-07-31 2020-07-31 用于分析与规划公交线路的可视分析方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010759091.2A CN111897868B (zh) 2020-07-31 2020-07-31 用于分析与规划公交线路的可视分析方法和系统

Publications (2)

Publication Number Publication Date
CN111897868A CN111897868A (zh) 2020-11-06
CN111897868B true CN111897868B (zh) 2022-06-10

Family

ID=73182920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010759091.2A Active CN111897868B (zh) 2020-07-31 2020-07-31 用于分析与规划公交线路的可视分析方法和系统

Country Status (1)

Country Link
CN (1) CN111897868B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466122B (zh) * 2021-01-28 2021-06-15 深圳市城市交通规划设计研究中心股份有限公司 一种公交线网的备选线路集生成、线路规划方法及装置
CN113077649B (zh) * 2021-03-25 2022-08-09 杭州海康威视系统技术有限公司 车辆运行情况的显示方法、装置及计算机存储介质
CN113514071B (zh) 2021-06-29 2024-04-16 阿波罗智联(北京)科技有限公司 公共交通路线的确定方法及装置
CN115222297B (zh) * 2022-09-15 2023-02-14 深圳市城市交通规划设计研究中心股份有限公司 公交线路优化调整方案评估方法、电子设备及存储介质
CN116050689B (zh) * 2023-01-18 2023-11-17 中南大学 一种广域空间铁路线路智能搜索方法、系统、终端及介质
CN117423237B (zh) * 2023-12-18 2024-04-05 湖南力唯中天科技发展有限公司 一种多路特勤路线冲突的检测及预案生成方法及系统
CN118608020A (zh) * 2024-08-08 2024-09-06 深圳市易图资讯股份有限公司 基于cim模型的轨道交通规划分析与辅助决策方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393558A (zh) * 2008-10-21 2009-03-25 北京路桥瑞通养护中心 公路养护数据可视化管理平台系统及其可视化管理方法
CN106649651A (zh) * 2016-12-12 2017-05-10 大连理工大学 一种基于出租车轨迹数据的交通出行共现现象的可视化分析方法
CN106844624A (zh) * 2017-01-20 2017-06-13 亚信蓝涛(江苏)数据科技有限公司 一种可视化的公交大数据分析系统
CN110135755A (zh) * 2019-05-23 2019-08-16 南京林业大学 一种综合优化片区城乡公交时刻表编制与车辆调度的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393558A (zh) * 2008-10-21 2009-03-25 北京路桥瑞通养护中心 公路养护数据可视化管理平台系统及其可视化管理方法
CN106649651A (zh) * 2016-12-12 2017-05-10 大连理工大学 一种基于出租车轨迹数据的交通出行共现现象的可视化分析方法
CN106844624A (zh) * 2017-01-20 2017-06-13 亚信蓝涛(江苏)数据科技有限公司 一种可视化的公交大数据分析系统
CN110135755A (zh) * 2019-05-23 2019-08-16 南京林业大学 一种综合优化片区城乡公交时刻表编制与车辆调度的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
pareto-optimal transit route planning with multi-objective monte-carlo tree search;Di Weng等;《IEEE》;20200213;全文 *

Also Published As

Publication number Publication date
CN111897868A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN111897868B (zh) 用于分析与规划公交线路的可视分析方法和系统
Demirel et al. Multi-criteria warehouse location selection using Choquet integral
Liu et al. Smartadp: Visual analytics of large-scale taxi trajectories for selecting billboard locations
Weng et al. Homefinder revisited: Finding ideal homes with reachability-centric multi-criteria decision making
Fu et al. A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems
Zeng et al. Visualizing mobility of public transportation system
US7409643B2 (en) Graphical user interface for travel planning system
Ertay et al. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems
Ekel et al. Multiobjective and multiattribute decision making in a fuzzy environment and their power engineering applications
Mendes-Moreira et al. Validating the coverage of bus schedules: A machine learning approach
Moon et al. Vehicle routing problem with time windows considering overtime and outsourcing vehicles
Zhao et al. A multi-scale framework for fuel station location: From highways to street intersections
Ramos et al. Delimitation of service areas in reverse logistics networks with multiple depots
Mokhtarian A new fuzzy weighted average (FWA) method based on left and right scores: An application for determining a suitable location for a gas oil station
Ashrafzadeh et al. The Application of fuzzy analytic hierarchy process approach for the selection of warehouse location: a case study
Zhang et al. Uncertain multi-objective optimization for the water–rail–road intermodal transport system with consideration of hub operation process using a memetic algorithm
Leffler et al. Simulation of fixed versus on-demand station-based feeder operations
Sun et al. TZVis: Visual analysis of bicycle data for traffic zone division
Wollman Smart Cities and Communities: A Key Performance Indicators
Wandelt et al. An efficient and scalable approach to hub location problems based on contraction
Narayan et al. Fleet size determination for a mixed private and pooled on-demand system with elastic demand
Duan et al. Influence of the built environment on taxi travel demand based on the optimal spatial analysis unit
CN113421037A (zh) 一种多源协同建设规划编制方法和装置
Kilić et al. GIS-based Decision Support Concept to planning of land acquisition for realization of Urban Public Projects
Nucamendi-Guillén et al. A discrete bilevel brain storm algorithm for solving a sales territory design problem: a case study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant