CN111897118A - 基于偏振结构光调制的多维层析荧光显微成像系统及方法 - Google Patents

基于偏振结构光调制的多维层析荧光显微成像系统及方法 Download PDF

Info

Publication number
CN111897118A
CN111897118A CN202010596262.4A CN202010596262A CN111897118A CN 111897118 A CN111897118 A CN 111897118A CN 202010596262 A CN202010596262 A CN 202010596262A CN 111897118 A CN111897118 A CN 111897118A
Authority
CN
China
Prior art keywords
polarization
fluorescence
spatial
different
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010596262.4A
Other languages
English (en)
Other versions
CN111897118B (zh
Inventor
席鹏
张昊
李美琪
刘文辉
戴琼海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Airui Jingyi Technology Co ltd
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202010596262.4A priority Critical patent/CN111897118B/zh
Publication of CN111897118A publication Critical patent/CN111897118A/zh
Application granted granted Critical
Publication of CN111897118B publication Critical patent/CN111897118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明公开了一种基于偏振结构光调制的多维层析荧光显微成像系统及方法。本发明对每个偏振调制方向的照明,都采集两张相位互补的正弦结构光照明图案,通过这两张正弦结构光照明图案的平均来获取均匀光照明图案,再将该均匀光照明图案与其中一张正弦结构光照明图案结合并利用HiLo算法即可求解出光学层析图像;只需要对这三张结构光图案平均同样可以得到均匀光照明图案,再与其中一张结构光照明图案结合即可利用HiLo算法求解出光学层析图案;本发明采取了探测端分光同时采集的方法,不需要增加额外的采集时间;本发明成像速度、较少光漂白等方面具有较大的优势。

Description

基于偏振结构光调制的多维层析荧光显微成像系统及方法
技术领域
本发明涉及光学显微成像领域,具体涉及一种基于偏振结构光调制的多维层析荧光显微成像系统及方法。
背景技术
荧光显微成像可以对生物样本进行非侵入、特异性的观测,其在亚细胞结构功能的研究等领域具有十分重要的意义。荧光的基本物理属性包括荧光强度、偏振、光谱以及荧光寿命等,尽可能多地探测这些物理属性可以获取细胞内部更为多样的信息。本发明提出的方法可以探测荧光的强度、光谱以及偏振等多维信息。本发明在照明端采用偏振调制照明,通过不少于三个偏振方向的调制照明,可以解出样本的偏振信息;在探测端则利用二向色镜将荧光不同谱段的信号在光路上分开,并同时投射到相机的不同位置,以便实现对多个谱段信号的同时采集。
在传统的宽场荧光显微中,样本在一个三维体积内的荧光都会被激发,所以背景信号将会和焦平面信号混叠在一起被探测,使得偏振、光谱等信息的探测出现偏离。其中一种解决方案是采用荧光共聚焦显微技术,但该技术需要通过点扫描实现二维成像,需要成百上千次探测,极大降低了成像速度。
发明内容
针对以上现有技术中存在的问题,本发明提出了一种基于偏振结构光调制的多维层析荧光显微成像系统及方法;针对荧光多维信息的采集,本发明除了可以探测强度外,通过在照明端引入偏振调制照明实现荧光偏振解析,通过在探测端分谱段同时采集实现荧光光谱信息探测;针对背景噪声对焦面信号的干扰,本方法通过引入HiLo技术来减小荧光背景噪声,以便提升强度、光谱、偏振等信息测量的准确性。
本发明的一个目的在于提出一种基于偏振结构光调制的多维层析荧光显微成像系统。
本发明的基于偏振结构光调制的多维层析荧光显微成像系统包括:多个激光器、合束装置、声光可调谐滤波器、扩束装置、偏振分光器、半波片、空间光调制器、聚光透镜、空间滤光器、涡旋半波片、第一二向色镜、第一4f系统、第二二向色镜、物镜、发射滤光片、镜筒透镜、第二4f系统、光阑、波段分光装置和相机;其中,每一个激光器发出一个波段的线偏振激光,多个激光器分别发出不同波段的线偏振激光;多束不同波段的线偏振激光经合束装置合束,同光轴传输至声光可调谐滤波器;通过声光可调谐滤波器快速选择通过的线偏振激光的波段;选定波段的线偏振激光经扩束装置进行扩束,经偏振分光器和半波片至空间光调制器;在空间光调制器上加载周期性的黑白相间的二值周期条纹,激光被反射后形成多级线偏振衍射光,空间光调制器的平面垂直于光轴;多级线偏振衍射光再经半波片和偏振分光器出射,先后两次经过偏振分光器和半波片,保证从偏振分光器出射的多级线偏振衍射光的偏振方向与入射的线偏振激光的偏振方向一致;多级线偏振衍射光经聚光透镜聚焦后至空间滤光器;聚光透镜的焦平面位于空间光调制器的傅里叶面,空间滤光器位于聚光透镜的焦平面处;多级线偏振衍射光经空间滤光器后只有±1级线偏振衍射光通过;再经过紧邻空间滤光器放置的涡旋半波片将±1级线偏振衍射光的偏振方向调节为与空间光调制器上的二值周期条纹的方向一致;±1级线偏振衍射光经第一二向色镜后通过第一4f系统,再经第二二向色镜,由物镜汇聚至位于物镜后焦面的样本上,第一4f系统将空间光调制器的傅里叶面延迟到物镜的后焦面,即通过第一4f系统使得物镜的后焦面位于空间光调制器的傅里叶面;±1级线偏振衍射光在物镜的后焦面上干涉形成正弦条纹照明,激发样本产生荧光,荧光返回后由物镜收集,经第二二向色镜后,通过发射滤光片滤波,再由镜筒透镜聚焦;第一二向色镜与第二二向色镜完全相同,但空间放置方向互相垂直,从而消除单独使用第二二向色镜引入的偏振畸变;在镜筒透镜与相机之间设置第二4f系统,从而将镜筒透镜的焦平面延迟到相机所在的平面;在第二4f系统中间首先放置光阑,用来控制成像视场的大小;在第二4f系统中间,光阑之后设置波段分光装置,波段分光装置将荧光按照波段从空间上分开,从而将不同波段荧光投射到相机不同的位置,荧光的每一个波段对应相机上的一个位置,作为一个光谱探测通道;相机通过不同位置采集相应波段的荧光,得到一张原始图像;保持二值周期条纹的角度不变,将空间光调制器上加载的二值周期条纹变成互补的二值周期条纹,再得到一张原始图像,从而得到二值周期条纹在一个角度下的两张原始图像,构成一组原始图像;二值周期条纹绕着水平的光轴旋转,每旋转π/n获得一组原始图像,n≥3,从而得到n组原始图像;对每一组原始图像按照不同的光谱探测通道进行层析图像重建得到n张层析图像,并将n张层析图像平均,得到每个光谱探测通道对应的宽场光学层析图像,进而得到光谱相关的信息;对这n张层析图像进行偏振解调,得到偏振相关的信息。
合束装置采用反射镜和二向色镜。
第一4f系统和第二4f系统即为光学平面延迟缩放4f系统,就是将一个光学平面传递到另外一个位置,并进行缩放。
扩束装置采用4f系统。
空间滤光器与二值周期条纹的旋转角度相对应,包括n对通光孔,每一对通光孔位于一条通过圆形的直径上,相邻的每对通光孔之间的夹角为π/n。
波段分光装置采用m-1个二向色镜,将荧光分成m个波段,每一个波段上设置一个或多个反射镜,从而调节相应波段的荧光的光路的空间位置,形成m个光谱探测通道。
本发明的另一个目的在于提出一种基于偏振结构光调制的多维层析荧光显微成像方法。
本发明的基于偏振结构光调制的多维层析荧光显微成像方法,包括以下步骤:
1)每一个激光器发出一个波段的线偏振激光,多个激光器分别发出不同波段的线偏振激光;
2)多束不同波段的线偏振激光经合束装置合束,同光轴传输至声光可调谐滤波器;通过声光可调谐滤波器快速选择通过的线偏振激光的波段;
3)选定波段的线偏振激光经扩束装置进行扩束,经偏振分光器和半波片至空间光调制器;
4)在空间光调制器上加载周期性的黑白相间的二值周期条纹,激光被反射后形成多级线偏振衍射光,空间光调制器平面垂直于水平光轴;
5)多级线偏振衍射光再经半波片和偏振分光器出射,线偏振激光先后两次经过偏振分光器和半波片,保证从偏振分光器出射的多级线偏振衍射光的偏振方向与入射的线偏振激光的偏振方向一致;
6)多级线偏振衍射光经聚光透镜聚焦后至空间滤光器;聚光透镜的焦平面位于空间光调制器的傅里叶面,空间滤光器位于聚光透镜的焦平面处;多级线偏振衍射光经空间滤光器后只有±1级线偏振衍射光通过;
7)±1级线偏振衍射光经过紧邻空间滤光器放置的涡旋半波片,将±1级线偏振衍射光的偏振方向调节为与空间光调制器上的二值周期条纹的方向一致;
8)±1级线偏振衍射光经第一二向色镜后通过第一4f系统,再经第二二向色镜,由物镜汇聚至位于物镜后焦面的样本上,第一4f系统将空间光调制器的傅里叶面延迟到物镜的后焦面,即通过第一4f系统使得物镜的后焦面位于空间光调制器的傅里叶面;
9)±1级线偏振衍射光在物镜的后焦面上干涉形成正弦条纹照明,激发样本产生荧光,荧光返回后由物镜收集,经第二二向色镜后,通过发射滤光片滤波,再由镜筒透镜聚焦;第一二向色镜与第二二向色镜完全相同,但空间放置方向互相垂直,从而消除单独使用第二二向色镜引入的偏振畸变;
10)在镜筒透镜与相机之间设置第二4f系统,从而将镜筒透镜的焦平面延迟到相机所在的平面;
11)在第二4f系统中间首先放置光阑,从而控制成像视场的大小;
12)在第二4f系统中间,光阑之后设置波段分光装置,波段分光装置将荧光按照波段从空间上分开,从而将不同波段荧光投射到相机不同的位置,荧光的每一个波段对应相机上的一个位置,作为一个光谱探测通道;
13)相机通过不同位置采集相应波段的荧光,得到一张原始图像;
14)保持二值周期条纹的角度不变,将空间光调制器上加载的二值周期条纹变成互补的二值周期条纹,重复步骤1)~13),再得到一张原始图像,从而得到二值周期条纹在一个角度下的两张原始图像,构成一组原始图像;
15)二值周期条纹绕着水平的光轴旋转π/n,重复步骤1)~14),每一个角度获得一组原始图像,n≥3,从而得到n组原始图像,每一个角度的二值周期条纹对应一个偏振调制;
16)得到n组原始图像后,对每一组原始图像按照不同的光谱探测通道进行层析图像重建得到n张层析图像,并将n张层析图像平均,从而得到每个光谱探测通道对应的宽场光学层析图像,进而得到光谱相关的信息;对这n个层析图像进行偏振解调则得到偏振相关的信息。
其中,在步骤16)中,对不同光谱探测通道进行宽场光学层析图像的重建及偏振信息的解调,包括以下步骤:
a)原始图像:
n组原始图像中,每一组原始图像对应相应的偏振调制方向为θi(i=1,...,n),每组中包含两张正弦照明图案,这两张正弦图案的条纹方向与偏振调制方向一致,条纹相位相差π;
b)不同光谱探测通道对齐:
每一张原始图像都包含m个光谱探测通道,它们位于互不重叠的空间位置,先将不同的光谱探测通道截取分开,然后通过每个光谱探测通道乘以各自对应的仿射变换矩阵对不同光谱探测通道的图案进行空间对齐;
c)偏振调制的照明光强矫正:
对每一个光谱探测通道,得到2n张原始图像,分别为
Figure BDA0002557512680000041
Figure BDA0002557512680000042
其中下标Pi(i=1,...,n)代表不同的偏振调制,下标SIj(j=1,2)代表不同相位的两张正弦照明图案,当偏振调制方向即二值周期条纹的角度发生变化时,±1级线偏振衍射光的强度会发生波动,故需要对不同偏振调制下的照明光强进行矫正,每个偏振调制方向对应的图像除以各自的矫正矩阵即得到矫正后的图像ISI1,Pi和ISI2,Pi
d)求取不同偏振调制下的光学层析图像:
对每一个偏振调制的两张正弦照明图案平均,则得到该偏振调制下均匀照明对应的图像IU,Pi
Figure BDA0002557512680000051
结合IU,Pi和与矫正后的图像ISI1,Pi或ISI2,Pi,采用高低频融合重构算法(HiLo)算法,获得该偏振调制对应的光学层析图像IOS,Pi
e)求取宽场光学层析图像:
对不同偏振层析图案平均,获取宽场光学层析图像Ios,即:
Figure BDA0002557512680000052
f)对每个光谱探测通道,重复步骤b)~e),从而求得所有光谱探测通道的宽场层析图像;
g)求取样本的偏振信息:
样本的偏振信息包括荧光偶极子偏振方向α和偏振调制度OUF,当偏振调制方向为θi时,荧光偶极子激发强度IOS,Pi为:
IOS,Pi=IDC+IAC·cos(2θi-2α),(i=1,...,n)
其中,IDC为直流分量,IAC为交流分量,θi为偏振调制方向,α为荧光偶极子偏振方向,荧光分子和生物分子形成偶极子,表达成矩阵形式为:
Figure BDA0002557512680000053
其中,θi为偏振调制方向已知,通过矩阵求逆即求得α,IDC,IAC.偏振调制度OUF=2IAC/(IAC+IDC),进而得到光谱相关信息。
其中,在步骤b)中,通过每个光谱探测通道乘以各自对应的仿射变换矩阵对不同光谱探测通道的图案进行对齐,包括以下步骤:
i.准备一个稀疏的单层荧光微球固定样片,对该样片用本发明的基于偏振结构光调制的多维层析荧光显微成像系统成像获取n组原始图像;
ii.把每张原始图像的不同光谱探测通道进行截取分离,再按照步骤d)和e)求取各个光谱探测通道对应的宽场光学层析图案;
iii.定位荧光微球中心的位置坐标,通过这些坐标求出把所有光谱探测通道的图案变换到第一个光谱探测通道对应的仿射变换矩阵。
在步骤c)中,通过标定得到不同偏振调制方向对应的光强矫正矩阵,包括以下步骤:
i.准备一个稠密的荧光微球固定样片并采用本发明的基于偏振结构光调制的多维层析荧光显微成像系统成像获取n组原始图像,该样片中的荧光微球应该尽量覆盖整个成像视野;
ii.按照步骤b)处理后得到各个光谱探测通道的未进行光强矫正后的图像
Figure BDA0002557512680000061
Figure BDA0002557512680000062
iii.对每一个偏振调制方向的两张正弦照明图案平均得到该偏振调制下均匀照明对应的图像
Figure BDA0002557512680000063
iv.用每个偏振调制方向下均匀照明的图案除以第一个偏振调制方向下均匀照明的图案,即获得各个偏振调制方向下对应的光强矫正矩阵。
本发明的优点:
相较于传统的宽场荧光显微,本发明对每个偏振调制方向的照明,都采集两张相位互补的正弦结构光照明图案,通过这两张正弦结构光照明图案的平均来获取均匀光照明图案,再将该均匀光照明图案与其中一张正弦结构光照明图案结合并利用HiLo算法即可求解出光学层析图像。由于至少需要3个偏振调制方向的照明求解偏振信息,本发明一次重建至少需要6次探测。对于光谱信息的获取,本方法采取了探测端分光同时采集的方法,不需要增加额外的采集时间。相较于需要成百上千次探测的荧光共聚焦显微技术,该方法在成像速度、较少光漂白等方面具有较大的优势。
同时本发明提到的方法也可以应用到商业结构光照明显微镜(SIM,StructuredIllumination Microscopy)采集的数据中,在得到多维层析信号的同时获得超分辨的解析能力。SIM和本发明的方法采集到的数据主要有以下两点不同:第一,2D-SIM对每个偏振调制的照明会采集三张相位差互为2π/3的正弦结构光照明图案,只需要对这三张结构光图案平均同样可以得到均匀光照明图案,再与其中一张结构光照明图案结合即可利用HiLo算法求解出光学层析图案,而3D-SIM对每个偏振调制方向则会采集5张图像,同理对它们平均即可得到均匀光照明图案;第二,商业SIM无法同时采集多个谱段的荧光信号,只能依次采集不同谱段的信号。
附图说明
图1为本发明的基于偏振结构光调制的多维层析荧光显微成像系统的一个实施例的示意图;
图2为本发明的基于偏振结构光调制的多维层析荧光显微成像方法的对不同光谱探测通道进行宽场光学层析图像的重建及偏振信息的解调的流程图。
具体实施方式
下面结合附图,通过具体实施例,进一步阐述本发明。
如图1所示,本实施例的基于偏振结构光调制的多维层析荧光显微成像系统包括:两个激光器Ls1和Ls2、合束装置、声光可调谐滤波器AOTF、扩束装置、偏振分光器PBS、半波片HWP、空间光调制器SLM、聚光透镜L3、空间滤光器Mk、涡旋半波片VHWP、第一二向色镜DM1、第一4f系统、第二二向色镜DM2、物镜OB、发射滤光片EF、镜筒透镜TL、第二4f系统、光阑AP、波段分光装置和相机C;其中,每一个激光器发出一个波段的线偏振激光,两个激光器Ls1和Ls2分别发出不同波段的线偏振激光;第一束经第一反射镜M1反射与第二束线偏振激光经第三二向色镜DM3合束,同光轴传输至声光可调谐滤波器AOTF;通过声光可调谐滤波器快速选择通过的线偏振激光的波段;选定波段的线偏振激光经扩束装置进行扩束,扩束装置采用两个焦距不同的第一透镜和第二透镜L1和L2,再经第二反射镜M2反射后,依次经偏振分光器PBS和半波片HWP至空间光调制器SLM;在空间光调制器上加载周期性的黑白相间的二值周期条纹,激光被反射后形成多级线偏振衍射光,空间光调制器的平面垂直于光轴;多级线偏振衍射光再经半波片和偏振分光器出射,先后两次经过偏振分光器和半波片,保证从偏振分光器出射的多级线偏振衍射光的偏振方向与入射的线偏振激光的偏振方向一致;多级线偏振衍射光经聚光透镜L3聚焦后至空间滤光器Mk;聚光透镜的焦平面位于空间光调制器的傅里叶面,空间滤光器位于聚光透镜的焦平面处;多级线偏振衍射光经空间滤光器后只有±1级线偏振衍射光通过;再经过紧邻空间滤光器放置的涡旋半波片VHWP将±1级线偏振衍射光的偏振方向调节为与空间光调制器上的二值周期条纹的方向一致;±1级线偏振衍射光经第一二向色镜DM1后通过第一4f系统,第一4f系统采用第四和第五透镜L4和L5,第四透镜L4与第五透镜L5之间设置第三反射镜M3,再经第二二向色镜DM2,由物镜OB汇聚至位于物镜后焦面的样本SP上,第一4f系统将空间光调制器的傅里叶面延迟到物镜的后焦面,即通过第一4f系统使得物镜的后焦面位于空间光调制器的傅里叶面;±1级线偏振衍射光在物镜的后焦面上干涉形成正弦条纹照明,激发样本SP产生荧光,荧光返回后由物镜收集,经第二二向色镜后,通过发射滤光片EF滤波,再由镜筒透镜TL聚焦;第一二向色镜与第二二向色镜完全相同,但空间放置方向互相垂直,从而消除单独使用第二二向色镜引入的偏振畸变;在镜筒透镜与相机之间设置第二4f系统,第二4f系统包括第六和第七透镜L6和L7,从而将镜筒透镜的焦平面延迟到相机所在的平面;在第二4f系统中首先放置光阑AP,用来控制成像视场的大小;在第二4f系统中间,光阑AP之后设置波段分光装置,包括第四二向色镜DM4和第五二向色镜DM5,以及第四至第七反射镜M4~M7;第四二向色镜DM4和第五二向色镜DM5将荧光按照波段从空间上分成三个不同的波段,并分别通过第四至第七反射镜M4~M7将三个不同波段荧光投射到相机C不同的位置,荧光的每一个波段对应相机上的一个位置,作为一个光谱探测通道;相机C通过不同位置采集相应波段的荧光,得到一张原始图像;保持二值周期条纹的角度不变,将空间光调制器上加载的二值周期条纹变成互补的二值周期条纹,再得到一张原始图像,从而得到二值周期条纹在一个角度下的两张原始图像,构成一组原始图像;二值周期条纹绕着水平的光轴旋转,每旋转π/n获得一组原始图像,n=3,从而得到三组原始图像;对每一组原始图像按照不同的光谱探测通道进行层析图像重建得到三张层析图像,并将三张层析图像平均,得到每个光谱探测通道对应的宽场光学层析图像,进而得到光谱相关的信息;对这三张层析图像进行偏振解调,得到偏振相关的信息。
本实施例的基于偏振结构光调制的多维层析荧光显微成像方法,包括以下步骤:
1)每一个激光器发出一个波段的线偏振激光,两个激光器分别发出两段不同波段的线偏振激光;
2)第一束经第一反射镜M1反射与第二束线偏振激光经第三二向色镜DM3合束,同光轴传输至声光可调谐滤波器AOTF;通过声光可调谐滤波器快速选择通过的线偏振激光的波段;
3)选定波段的线偏振激光经扩束装置进行扩束,经偏振分光器和半波片至空间光调制器;
4)在空间光调制器上加载周期性的黑白相间的二值周期条纹,激光被反射后形成多级线偏振衍射光,空间光调制器平面垂直于水平光轴;
5)多级线偏振衍射光再经半波片和偏振分光器出射,线偏振激光先后两次经过偏振分光器和半波片,保证从偏振分光器出射的多级线偏振衍射光的偏振方向与入射的线偏振激光的偏振方向一致;
6)多级线偏振衍射光经聚光透镜聚焦后至空间滤光器;聚光透镜的焦平面位于空间光调制器的傅里叶面,空间滤光器位于聚光透镜的焦平面处;多级线偏振衍射光经空间滤光器后只有±1级线偏振衍射光通过;
7)±1级线偏振衍射光经过紧邻空间滤光器放置的涡旋半波片,将±1级线偏振衍射光的偏振方向调节为与空间光调制器上的二值周期条纹的方向一致;
8)±1级线偏振衍射光经第一二向色镜后通过第一4f系统,再经第二二向色镜,由物镜汇聚至位于物镜后焦面的样本上,第一4f系统将空间光调制器的傅里叶面延迟到物镜的后焦面,即通过第一4f系统使得物镜的后焦面位于空间光调制器的傅里叶面;
9)±1级线偏振衍射光在物镜的后焦面上干涉形成正弦条纹照明,激发样本产生荧光,荧光返回后由物镜收集,经第二二向色镜后,通过发射滤光片滤波,再由镜筒透镜聚焦;第一二向色镜与第二二向色镜完全相同,但空间放置方向互相垂直,从而消除单独使用第二二向色镜引入的偏振畸变;
10)在镜筒透镜与相机之间设置第二4f系统,从而将镜筒透镜的焦平面延迟到相机所在的平面;
11)在第二4f系统中间首先放置光阑,用来控制成像视场的大小
12)在第二4f系统中间,光阑之后设置波段分光装置,波段分光装置将荧光按照波段从空间上分开,从而将不同波段荧光投射到相机不同的位置,荧光的每一个波段对应相机上的一个位置,作为一个光谱探测通道;
13)相机通过不同位置采集相应波段的荧光,得到一张原始图像;
14)保持二值周期条纹的角度不变,将空间光调制器上加载的二值周期条纹变成互补的二值周期条纹,重复步骤1)~13),再得到一张原始图像,从而得到二值周期条纹在一个角度下的两张原始图像,构成一组原始图像;
15)二值周期条纹绕着水平的光轴旋转π/n,重复步骤1)~14),每一个角度获得一组原始图像,n=3,从而得到三组原始图像,每一个角度的二值周期条纹对应一个偏振调制,每组对应不同的偏振调制方向θi(i=1,2,3)分别为0°,60°和120°,共获取六张原始图像;
16)得到三组原始图像后,对每一组原始图像按照不同的光谱探测通道进行层析图像重建得到三张层析图像,并将三张层析图像平均,从而得到每个光谱探测通道对应的宽场光学层析图像,进而得到光谱相关的信息;对这三个层析图像进行偏振解调则得到偏振相关的信息,如图2所示,包括以下具体步骤:
a)原始图像:
三组原始图像中,每一组原始图像对应相应的偏振调制方向为θi(i=1,...,3),每组中包含两张正弦照明图案,这两张正弦图案的条纹方向与偏振调制方向一致,条纹相位相差π;
b)不同光谱探测通道对齐:
每一张原始图像都包含三个光谱探测通道,它们位于互不重叠的空间位置,先将不同的光谱探测通道截取分开,然后通过每个光谱探测通道乘以各自对应的仿射变换矩阵对不同光谱探测通道的图案进行空间对齐;
c)偏振调制的照明光强矫正:
对每一个光谱探测通道,得到六张原始图像,分别为
Figure BDA0002557512680000101
Figure BDA0002557512680000102
其中下标Pi(i=1,...,3)代表不同的偏振调制,下标SIj(j=1,2)代表不同相位的两张正弦照明图案,当偏振调制方向即二值周期条纹的角度发生变化时,±1级线偏振衍射光的强度会发生波动,故需要对不同偏振调制下的照明光强进行矫正,每个偏振调制方向对应的图像除以各自的矫正矩阵即得到矫正后的图像ISI1,P1,ISI2,P1,ISI1,P2,ISI2,P2,ISI1,P3,ISI2,P3
d)求取不同偏振调制下的光学层析图像:
对每一个偏振调制的两张正弦照明图案平均,则得到该偏振调制下均匀照明对应的图像IU,Pi
Figure BDA0002557512680000103
结合IU,Pi和与矫正后的图像ISI1,Pi或ISI2,Pi,采用高低频融合重构算法(HiLo)算法,获得该偏振调制对应的光学层析图像IOS,Pi
e)求取宽场光学层析图像:
对不同偏振层析图案平均,获取宽场光学层析图像Ios,即:
Ios=(IOS,P1+IOS,P2+IOS,P3)/3.
f)对每个光谱探测通道,重复步骤b)~e),从而求得所有光谱探测通道的宽场层析图像;
g)求取样本的偏振信息:
样本的偏振信息包括荧光偶极子偏振方向α和偏振调制度OUF,当偏振调制方向为θi时,荧光偶极子激发强度IOS,Pi为:
IOS,Pi=IDC+IAC·cos(2θi-2α),i=1,2,3
其中,IDC为直流分量,IAC为交流分量,θi为偏振调制方向,α为偶极子方向,荧光分子和生物分子形成偶极子,表达成矩阵形式为:
Figure BDA0002557512680000104
其中,θi为偏振调制方向已知,通过矩阵求逆即求得α,IDC,IAC.偏振调制度OUF=2IAC/(IAC+IDC),进而得到光谱相关信息。
其中,在步骤b)中,通过每个光谱探测通道乘以各自对应的仿射变换矩阵对不同光谱探测通道的图案进行对齐,包括以下步骤:
i.准备一个稀疏的单层荧光微球固定样片,对该样片采用本发明的基于偏振结构光调制的多维层析荧光显微成像系统获取n(n=3)组原始图像;
ii.把每张原始图像的不同光谱探测通道进行截取分离,再按照步骤d)和e)求取各个光谱探测通道对应的宽场光学层析图案;
iii.定位荧光微球中心的位置坐标,通过这些坐标求出把所有光谱探测通道的图案变换到第一个光谱探测通道对应的仿射变换矩阵。
在步骤c)中,通过标定得到不同偏振调制方向对应的光强矫正矩阵,包括以下步骤:
i.准备一个稠密的荧光微球固定样片并采用本发明的基于偏振结构光调制的多维层析荧光显微成像系统成像,获取n(n=3)组原始图像,该样片中的荧光微球应该尽量覆盖整个成像视野;
ii.按照步骤b)处理后得到各个光谱探测通道的未进行光强矫正后的图像
Figure BDA0002557512680000111
Figure BDA0002557512680000112
iii.对每一个偏振调制方向的两张正弦照明图案平均得到该偏振调制下均匀照明对应的图像
Figure BDA0002557512680000113
iv.用每个偏振调制方向下均匀照明的图案除以第一个偏振调制方向下均匀照明的图案,即获得各个偏振调制方向下对应的光强矫正矩阵。
最后需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。

Claims (10)

1.一种基于偏振结构光调制的多维层析荧光显微成像系统,其特征在于,所述多维层析荧光显微成像系统包括:多个激光器、合束装置、声光可调谐滤波器、扩束装置、偏振分光器、半波片、空间光调制器、聚光透镜、空间滤光器、涡旋半波片、第一二向色镜、第一4f系统、第二二向色镜、物镜、发射滤光片、镜筒透镜、第二4f系统、光阑、波段分光装置和相机;其中,每一个激光器发出一个波段的线偏振激光,多个激光器分别发出不同波段的线偏振激光;多束不同波段的线偏振激光经合束装置合束,同光轴传输至声光可调谐滤波器;通过声光可调谐滤波器快速选择通过的线偏振激光的波段;选定波段的线偏振激光经扩束装置进行扩束,经偏振分光器和半波片至空间光调制器;在空间光调制器上加载周期性的黑白相间的二值周期条纹,激光被反射后形成多级线偏振衍射光,空间光调制器的平面垂直于光轴;多级线偏振衍射光再经半波片和偏振分光器出射,先后两次经过偏振分光器和半波片,保证从偏振分光器出射的多级线偏振衍射光的偏振方向与入射的线偏振激光的偏振方向一致;多级线偏振衍射光经聚光透镜聚焦后至空间滤光器;聚光透镜的焦平面位于空间光调制器的傅里叶面,空间滤光器位于聚光透镜的焦平面处;多级线偏振衍射光经空间滤光器后只有±1级线偏振衍射光通过;再经过紧邻空间滤光器放置的涡旋半波片将±1级线偏振衍射光的偏振方向调节为与空间光调制器上的二值周期条纹的方向一致;±1级线偏振衍射光经第一二向色镜后通过第一4f系统,再经第二二向色镜,由物镜汇聚至位于物镜后焦面的样本上,第一4f系统将空间光调制器的傅里叶面延迟到物镜的后焦面,即通过第一4f系统使得物镜的后焦面位于空间光调制器的傅里叶面;±1级线偏振衍射光在物镜的后焦面上干涉形成正弦条纹照明,激发样本产生荧光,荧光返回后由物镜收集,经第二二向色镜后,通过发射滤光片滤波,再由镜筒透镜聚焦;第一二向色镜与第二二向色镜完全相同,但空间放置方向互相垂直,从而消除单独使用第二二向色镜引入的偏振畸变;在镜筒透镜与相机之间设置第二4f系统,从而将镜筒透镜的焦平面延迟到相机所在的平面;在第二4f系统中间首先放置光阑,用来控制成像视场的大小;在第二4f系统中间,光阑之后设置波段分光装置,波段分光装置将荧光按照波段从空间上分开,从而将不同波段荧光投射到相机不同的位置,荧光的每一个波段对应相机上的一个位置,作为一个光谱探测通道;相机通过不同位置采集相应波段的荧光,得到一张原始图像;保持二值周期条纹的角度不变,将空间光调制器上加载的二值周期条纹变成互补的二值周期条纹,再得到一张原始图像,从而得到二值周期条纹在一个角度下的两张原始图像,构成一组原始图像;二值周期条纹绕着水平的光轴旋转,每旋转π/n获得一组原始图像,n≥3,从而得到n组原始图像;对每一组原始图像按照不同的光谱探测通道进行层析图像重建得到n张层析图像,并将n张层析图像平均,得到每个光谱探测通道对应的宽场光学层析图像,进而得到光谱相关的信息;对这n张层析图像进行偏振解调,得到偏振相关的信息。
2.如权利要求1所述的多维层析荧光显微成像系统,其特征在于,所述合束装置采用反射镜和二向色镜。
3.如权利要求1所述的多维层析荧光显微成像系统,其特征在于,所述第一4f系统和第二4f系统即为光学平面延迟缩放4f系统。
4.如权利要求1所述的多维层析荧光显微成像系统,其特征在于,所述扩束装置采用4f系统。
5.如权利要求1所述的多维层析荧光显微成像系统,其特征在于,所述空间滤光器与二值周期条纹的旋转角度相对应,包括n对通光孔,每一对通光孔位于一条通过圆形的直径上,相邻的每对通光孔之间的夹角为π/n。
6.如权利要求1所述的多维层析荧光显微成像系统,其特征在于,所述波段分光装置采用m-1个二向色镜,将荧光分成m个波段,每一个波段上设置一个或多个反射镜,从而调节相应波段的荧光的光路的空间位置,形成m个光谱探测通道。
7.一种如权利要求1所述的基于偏振结构光调制的多维层析荧光显微成像系统的显微成像方法,其特征在于,所述显微成像方法包括以下步骤:
1)每一个激光器发出一个波段的线偏振激光,多个激光器分别发出不同波段的线偏振激光;
2)多束不同波段的线偏振激光经合束装置合束,同光轴传输至声光可调谐滤波器;通过声光可调谐滤波器快速选择通过的线偏振激光的波段;
3)选定波段的线偏振激光经扩束装置进行扩束,经偏振分光器和半波片至空间光调制器;
4)在空间光调制器上加载周期性的黑白相间的二值周期条纹,激光被反射后形成多级线偏振衍射光,空间光调制器平面垂直于水平光轴;
5)多级线偏振衍射光再经半波片和偏振分光器出射,线偏振激光先后两次经过偏振分光器和半波片,保证从偏振分光器出射的多级线偏振衍射光的偏振方向与入射的线偏振激光的偏振方向一致;
6)多级线偏振衍射光经聚光透镜聚焦后至空间滤光器;聚光透镜的焦平面位于空间光调制器的傅里叶面,空间滤光器位于聚光透镜的焦平面处;多级线偏振衍射光经空间滤光器后只有±1级线偏振衍射光通过;
7)±1级线偏振衍射光经过紧邻空间滤光器放置的涡旋半波片,将±1级线偏振衍射光的偏振方向调节为与空间光调制器上的二值周期条纹的方向一致;
8)±1级线偏振衍射光经第一二向色镜后通过第一4f系统,再经第二二向色镜,由物镜汇聚至位于物镜后焦面的样本上,第一4f系统将空间光调制器的傅里叶面延迟到物镜的后焦面,即通过第一4f系统使得物镜的后焦面位于空间光调制器的傅里叶面;
9)±1级线偏振衍射光在物镜的后焦面上干涉形成正弦条纹照明,激发样本产生荧光,荧光返回后由物镜收集,经第二二向色镜后,通过发射滤光片滤波,再由镜筒透镜聚焦;第一二向色镜与第二二向色镜完全相同,但空间放置方向互相垂直,从而消除单独使用第二二向色镜引入的偏振畸变;
10)在镜筒透镜与相机之间设置第二4f系统,从而将镜筒透镜的焦平面延迟到相机所在的平面;
11)在第二4f系统中间首先放置光阑,从而控制成像视场的大小;
12)在第二4f系统中间,光阑之后设置波段分光装置,波段分光装置将荧光按照波段从空间上分开,从而将不同波段荧光投射到相机不同的位置,荧光的每一个波段对应相机上的一个位置,作为一个光谱探测通道;
13)相机通过不同位置采集相应波段的荧光,得到一张原始图像;
14)保持二值周期条纹的角度不变,将空间光调制器上加载的二值周期条纹变成互补的二值周期条纹,重复步骤1)~13),再得到一张原始图像,从而得到二值周期条纹在一个角度下的两张原始图像,构成一组原始图像;
15)二值周期条纹绕着水平的光轴旋转π/n,重复步骤1)~14),每一个角度获得一组原始图像,n≥3,从而得到n组原始图像,每一个角度的二值周期条纹对应一个偏振调制;
16)得到n组原始图像后,对每一组原始图像按照不同的光谱探测通道进行层析图像重建得到n张层析图像,并将n张层析图像平均,从而得到每个光谱探测通道对应的宽场光学层析图像,进而得到光谱相关的信息;对这n个层析图像进行偏振解调则得到偏振相关的信息。
8.如权利要求7所述的显微成像方法,其特征在于,在步骤16)中,对不同光谱探测通道进行宽场光学层析图像的重建及偏振信息的解调,包括以下步骤:
a)原始图像:
n组原始图像中,每一组原始图像对应相应的偏振调制方向为θi(i=1,...,n),每组中包含两张正弦照明图案,这两张正弦图案的条纹方向与偏振调制方向一致,条纹相位相差π;
b)不同光谱探测通道对齐:
每一张原始图像都包含m个光谱探测通道,它们位于互不重叠的空间位置,先将不同的光谱探测通道截取分开,然后通过每个光谱探测通道乘以各自对应的仿射变换矩阵对不同光谱探测通道的图案进行空间对齐;
c)偏振调制的照明光强矫正:
对每一个光谱探测通道,得到2n张原始图像,分别为
Figure FDA0002557512670000041
Figure FDA0002557512670000042
其中下标Pi(i=1,...,n)代表不同的偏振调制,下标SIj(j=1,2)代表不同相位的两张正弦照明图案,当偏振调制方向即二值周期条纹的角度发生变化时,±1级线偏振衍射光的强度会发生波动,故需要对不同偏振调制下的照明光强进行矫正,每个偏振调制方向对应的图像除以各自的矫正矩阵即得到矫正后的图像ISI1,Pi和ISI2,Pi
d)求取不同偏振调制下的光学层析图像:
对每一个偏振调制的两张正弦照明图案平均,则得到该偏振调制下均匀照明对应的图像IU,Pi
Figure FDA0002557512670000043
结合IU,Pi和与矫正后的图像ISI1,Pi或ISI2,Pi,采用高低频融合重构算法(HiLo)算法,获得该偏振调制对应的光学层析图像IOS,Pi
e)求取宽场光学层析图像:
对不同偏振层析图案平均,获取宽场光学层析图像Ios,即:
Figure FDA0002557512670000044
f)对每个光谱探测通道,重复步骤b)~e),从而求得所有光谱探测通道的宽场层析图像;
g)求取样本的偏振信息:
样本的偏振信息包括荧光偶极子偏振方向α和偏振调制度OUF,当偏振调制方向为θi时,荧光偶极子激发强度IOS,Pi为:
IOS,Pi=IDC+IAC·cos(2θi-2α),(i=1,...,n)
其中,IDC为直流分量,IAC为交流分量,θi为偏振调制方向,α为荧光偶极子偏振方向,荧光分子和生物分子形成偶极子,表达成矩阵形式为:
Figure FDA0002557512670000045
其中,θi为偏振调制方向已知,通过矩阵求逆即求得α,IDC,IAC.偏振调制度OUF=2IAC/(IAC+IDC),进而得到光谱相关信息。
9.如权利要求8所述的显微成像方法,其特征在于,在步骤b)中,通过每个光谱探测通道乘以各自对应的仿射变换矩阵对不同光谱探测通道的图案进行对齐,包括以下步骤:
i.准备一个稀疏的单层荧光微球固定样片,对该样片进行成像,获取n组原始图像;
ii.把每张原始图像的不同光谱探测通道进行截取分离,再按照步骤d)和e)求取各个光谱探测通道对应的宽场光学层析图案;
iii.定位荧光微球中心的位置坐标,通过这些坐标求出把所有光谱探测通道的图案变换到第一个光谱探测通道对应的仿射变换矩阵。
10.如权利要求8所述的显微成像方法,其特征在于,在步骤c)中,通过标定得到不同偏振调制方向对应的光强矫正矩阵,包括以下步骤:
i.准备一个稠密的荧光微球固定样片,并成像,获取n组原始图像,该样片中的荧光微球应该尽量覆盖整个成像视野;
ii.按照步骤b)处理后得到各个光谱探测通道的未进行光强矫正后的图像
Figure FDA0002557512670000051
Figure FDA0002557512670000052
iii.对每一个偏振调制方向的两张正弦照明图案平均得到该偏振调制下均匀照明对应的图像
Figure FDA0002557512670000053
iv.用每个偏振调制方向下均匀照明的图案除以第一个偏振调制方向下均匀照明的图案,即获得各个偏振调制方向下对应的光强矫正矩阵。
CN202010596262.4A 2020-06-28 2020-06-28 基于偏振结构光调制的多维层析荧光显微成像系统及方法 Active CN111897118B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010596262.4A CN111897118B (zh) 2020-06-28 2020-06-28 基于偏振结构光调制的多维层析荧光显微成像系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010596262.4A CN111897118B (zh) 2020-06-28 2020-06-28 基于偏振结构光调制的多维层析荧光显微成像系统及方法

Publications (2)

Publication Number Publication Date
CN111897118A true CN111897118A (zh) 2020-11-06
CN111897118B CN111897118B (zh) 2021-06-11

Family

ID=73207911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010596262.4A Active CN111897118B (zh) 2020-06-28 2020-06-28 基于偏振结构光调制的多维层析荧光显微成像系统及方法

Country Status (1)

Country Link
CN (1) CN111897118B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859315A (zh) * 2021-01-11 2021-05-28 北京大学 一种多色双模式结构光照明显微成像系统及其成像方法
CN114166515A (zh) * 2021-12-02 2022-03-11 哈尔滨工业大学 一种实现发动机燃烧室slipi-3dlif测量的装置与方法
CN115113384A (zh) * 2021-03-17 2022-09-27 西湖大学 平铺光片显微镜及样本的成像方法
CN116068745A (zh) * 2023-02-24 2023-05-05 广东粤港澳大湾区协同创新研究院 一种角度连续可调超分辨显微镜照明装置及相应成像方法
CN116363031A (zh) * 2023-02-28 2023-06-30 锋睿领创(珠海)科技有限公司 基于多维光学信息融合的成像方法、装置、设备及介质
WO2024051079A1 (zh) * 2022-09-05 2024-03-14 中国科学院苏州生物医学工程技术研究所 一种主动结构光照明的超分辨显微成像方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150111216A1 (en) * 2013-10-23 2015-04-23 TOKITAE LLC, a limited liability company of the State of Delaware Devices and methods for staining and microscopy
CN107966757A (zh) * 2017-11-24 2018-04-27 中国科学院苏州生物医学工程技术研究所 一种分段半波片及结构光照明显微系统
CN208399380U (zh) * 2018-06-07 2019-01-18 中国科学院苏州生物医学工程技术研究所 一种结构光照明超分辨显微成像系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150111216A1 (en) * 2013-10-23 2015-04-23 TOKITAE LLC, a limited liability company of the State of Delaware Devices and methods for staining and microscopy
CN107966757A (zh) * 2017-11-24 2018-04-27 中国科学院苏州生物医学工程技术研究所 一种分段半波片及结构光照明显微系统
CN208399380U (zh) * 2018-06-07 2019-01-18 中国科学院苏州生物医学工程技术研究所 一种结构光照明超分辨显微成像系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KARL ZHANGHAO: "Fast,Accurate Polarization and Polarity Imaging with Polarized Structured Illumination", 《BIORXIV》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859315A (zh) * 2021-01-11 2021-05-28 北京大学 一种多色双模式结构光照明显微成像系统及其成像方法
CN115113384A (zh) * 2021-03-17 2022-09-27 西湖大学 平铺光片显微镜及样本的成像方法
CN115113384B (zh) * 2021-03-17 2024-02-27 锘海生物科学仪器(上海)有限公司 平铺光片显微镜及样本的成像方法
CN114166515A (zh) * 2021-12-02 2022-03-11 哈尔滨工业大学 一种实现发动机燃烧室slipi-3dlif测量的装置与方法
CN114166515B (zh) * 2021-12-02 2023-03-10 哈尔滨工业大学 一种实现发动机燃烧室slipi-3dlif测量的装置与方法
WO2024051079A1 (zh) * 2022-09-05 2024-03-14 中国科学院苏州生物医学工程技术研究所 一种主动结构光照明的超分辨显微成像方法及系统
CN116068745A (zh) * 2023-02-24 2023-05-05 广东粤港澳大湾区协同创新研究院 一种角度连续可调超分辨显微镜照明装置及相应成像方法
CN116363031A (zh) * 2023-02-28 2023-06-30 锋睿领创(珠海)科技有限公司 基于多维光学信息融合的成像方法、装置、设备及介质
CN116363031B (zh) * 2023-02-28 2023-11-17 锋睿领创(珠海)科技有限公司 基于多维光学信息融合的成像方法、装置、设备及介质

Also Published As

Publication number Publication date
CN111897118B (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN111897118B (zh) 基于偏振结构光调制的多维层析荧光显微成像系统及方法
CN107389631B (zh) 高速多色多模态结构光照明超分辨显微成像系统及其方法
CN107490562B (zh) 利用波面整形器的超高速三维折射率影像拍摄和荧光结构光照明显微镜系统及其使用方法
WO2022028291A1 (zh) 一种扫描结构光超分辨显微成像装置及方法
CN105929560B (zh) 一种宽带远场超分辨成像装置
CN108802989B (zh) 一种并行多区域成像装置
US9239263B2 (en) Image mapped spectropolarimetry
US9581548B2 (en) Methods for resolving positions in fluorescence stochastic microscopy using three-dimensional structured illumination
CN112557359B (zh) 基于空间光调制器的双光子多焦点显微成像系统及方法
CN110596059B (zh) 光学超分辨显微成像系统
EP2510394A2 (en) Method and system for fast three-dimensional structured-illumination-microscopy imaging
CN110487762B (zh) 基于多焦点光照明的超分辨贝塞尔显微成像装置及方法
CN108181235B (zh) 一种基于均匀结构光照明的sted并行显微成像系统
CN108121059B (zh) 一种基于结构光照明的sted并行显微成像系统
US11506879B2 (en) Optical super-resolution microscopic imaging system
CN112859315A (zh) 一种多色双模式结构光照明显微成像系统及其成像方法
WO2010101894A2 (en) High resolution laser scanning microscopy imaging system and method using spatially patterned cumulative illumination of detection fields
CA3065917A1 (en) Super-resolution line scanning confocal microscopy with pupil filtering
CN112130308A (zh) 一种多角度照明的高分辨显微成像系统
CN110320654A (zh) 基于多角度4Pi显微镜的快速三维体成像系统及方法
CN109870441B (zh) 基于移频的三维超分辨光切片荧光显微成像方法和装置
CN111239992A (zh) 基于环形阵列光源照明的超分辨率全内反射显微成像装置及方法
CN102692702A (zh) 采用激光干涉场的共聚焦显微镜
CN113568294B (zh) 一种全息光镊融合结构光照明显微系统和方法
CN109188667A (zh) 多光束阵列多光子重扫描显微成像装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210420

Address after: 100075 building 6, 12 Tayuan, dongtieying street, Fengtai District, Beijing

Applicant after: Beijing yinglang Chaoxian Medical Technology Co.,Ltd.

Address before: 100871 Beijing the Summer Palace Road, Haidian District, No. 5

Applicant before: Peking University

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230529

Address after: 1606-B, 16th Floor, No. A6 Zhongguancun South Street, Haidian District, Beijing, 100081

Patentee after: Beijing Airui Jingyi Technology Co.,Ltd.

Address before: 100075 building 6, 12 Tayuan, dongtieying street, Fengtai District, Beijing

Patentee before: Beijing yinglang Chaoxian Medical Technology Co.,Ltd.