CN111889686A - Method for reinforcing aluminium base composite material by high-strength silicon carbide particle and composite material thereof - Google Patents

Method for reinforcing aluminium base composite material by high-strength silicon carbide particle and composite material thereof Download PDF

Info

Publication number
CN111889686A
CN111889686A CN202010685968.8A CN202010685968A CN111889686A CN 111889686 A CN111889686 A CN 111889686A CN 202010685968 A CN202010685968 A CN 202010685968A CN 111889686 A CN111889686 A CN 111889686A
Authority
CN
China
Prior art keywords
silicon
aluminum
composite material
strength
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010685968.8A
Other languages
Chinese (zh)
Other versions
CN111889686B (en
Inventor
崔铖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Maitrei Technology Co ltd
Original Assignee
Shaanxi Maitrei Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Maitrei Technology Co ltd filed Critical Shaanxi Maitrei Technology Co ltd
Priority to CN202010685968.8A priority Critical patent/CN111889686B/en
Publication of CN111889686A publication Critical patent/CN111889686A/en
Application granted granted Critical
Publication of CN111889686B publication Critical patent/CN111889686B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/04Casting by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

The invention discloses a method for preparing a high-strength silicon carbide particle reinforced aluminum matrix composite and the composite, which comprises the following steps: s1, uniformly ball-milling silicon carbide particles with different particle sizes and aluminum powder according to a certain mass ratio; s2, adding the adhesive, the milk wax and the aluminum dihydrogen phosphate, stirring uniformly and sieving for later use; s3, placing the sieved material into a mold, and demolding to obtain a silicon aluminum carbide pre-sintered body; and S4, sintering, crushing, ball-milling and shaping the pre-sintered body, and sieving to obtain silicon aluminum carbide particles. The invention obtains the high-strength silicon carbide reinforced aluminum composite material by modifying small-particle-size silicon carbide particles, then preparing a silicon aluminum carbide prefabricated model and finally infiltrating aluminum liquid in a differential pressure manner.

Description

Method for reinforcing aluminium base composite material by high-strength silicon carbide particle and composite material thereof
Technical Field
The invention relates to the technical field of composite material preparation, in particular to a method for preparing a high-strength silicon carbide particle reinforced aluminum matrix composite material and the composite material.
Background
The silicon-aluminum carbide composite material belongs to a ceramic reinforced metal matrix composite material, and takes aluminum alloy as a matrix and silicon carbide ceramic particles as a reinforcing phase. The composite material has the advantages of high specific stiffness, high thermal conductivity, low expansion coefficient, low density and the like, and is widely applied to the fields of aerospace, high-power electronic component heat dissipation packaging, optical devices, wear resistance and the like.
The existing high-volume silicon carbide aluminum composite material is obtained by adopting a pressure casting mode, namely, silicon carbide particles are firstly adopted to prepare a porous ceramic prefabricated model, then an aluminum alloy solution permeates into silicon carbide ceramic through pressure casting, the method has no problem for preparing the silicon carbide aluminum material with common strength, and is difficult to prepare the ultrahigh-strength composite material, especially when the size of the silicon carbide particles is less than 5 mu m, the silicon carbide particles in the sintering or heating process of the prepared ceramic prefabricated model can move or diffuse, reserved channels are extruded, and therefore the aluminum liquid can not permeate into the silicon carbide prefabricated model, or even if a small amount of silicon carbide particles permeate into the surface layer, the performance can not meet the requirements far.
When the size of silicon carbide particles is less than 5 mu m, the submicron or nanoscale silicon aluminum carbide is mostly realized by adopting a stirring casting method, however, the method is easy to generate particle agglomeration, the volume fraction of the prepared composite material is generally difficult to be more than 25%, and the strength and the performance in all aspects are not as good as those of a product prepared by a pressure casting method.
Disclosure of Invention
The invention aims to: aiming at the existing problems, the method for enhancing the aluminum matrix composite by the high-strength silicon carbide particles and the composite thereof are provided, the high-strength silicon carbide particle composite is obtained by modifying the small-particle size silicon carbide particles, then obtaining the silicon carbide aluminum prefabricated model, and finally infiltrating aluminum liquid by differential pressure, so that the problem that the high-volume small-particle size silicon carbide prefabricated model cannot infiltrate the aluminum liquid is solved, a new thought is provided for the preparation of the high-strength silicon carbide particle composite, and the defects of the existing pressure casting and stirring casting are overcome.
The technical scheme adopted by the invention is as follows: a method for reinforcing an aluminum matrix composite by high-strength silicon carbide particles is characterized by comprising the following steps:
s1, uniformly ball-milling silicon carbide particles with the particle sizes of 0.1-0.25 mu m, 0.3-0.5 mu m and 0.6-0.8 mu m and aluminum powder with the particle size of 5-10 mu m in an inert gas atmosphere according to a certain mass ratio;
s2, adding 0.5-3% of adhesive, 0.5-2% of emulsion wax and 0.3-1% of aluminum dihydrogen phosphate into the ball-milled materials, uniformly stirring and sieving for later use;
s3, placing the sieved material into a mold, maintaining the pressure for 5-60S under the pressure of 10-20 MPa, and demolding to obtain a silicon aluminum carbide pre-sintered body;
s4, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace to obtain the silicon aluminum carbide material with low aluminum content after sintering;
s5, crushing, ball-milling and shaping the silicon aluminum carbide composite material, and sieving to obtain silicon aluminum carbide particles;
and S6, taking the silicon aluminum carbide particles obtained in the step S5 as the raw material of the high-strength silicon carbide particle reinforced aluminum matrix composite.
In the present invention, the mass ratio of silicon carbide particles having particle diameters of 0.1 to 0.25. mu.m, 0.3 to 0.5. mu.m, and 0.6 to 0.8. mu.m to aluminum powder having particle diameters of 5 to 10 μm is 5 to 25: 10-35: 30-75: 5-10.
preferably, in S1, the silicon carbide particles have particle diameters of 0.25 μm, 0.5 μm and 0.8. mu.m, respectively.
In the present invention, in S4, the sintering temperature is 500-800 ℃, and the sintering atmosphere is a mixed atmosphere of nitrogen and hydrogen.
In the invention, the adhesive is selected from one or more of polyvinyl alcohol, polyvinyl acetate, dextrin and paraffin, and is preferably polyvinyl alcohol.
The invention also comprises a preparation method of the high-strength silicon aluminum carbide composite material, which is characterized by comprising the following steps:
s5.1, selecting the silicon aluminum carbide particles prepared by the method for preparing the high-strength silicon carbide particle reinforced aluminum matrix composite, and selecting the silicon aluminum carbide particles with the particle sizes of 8-12 microns, 20-40 microns and 50-80 microns respectively;
s5.2, uniformly mixing silicon aluminum carbide particles with the particle sizes of 8-12 microns, 20-40 microns and 50-80 microns according to a certain mass ratio, then adding 0.5-3% of adhesive, 0.5-2% of emulsion wax and 0.5-5% of pore-forming agent by mass ratio, uniformly stirring and sieving for later use;
s5.3, putting the material prepared in the previous step into a die to prepare a pre-sintered body;
s5.4, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace to obtain a silicon-aluminum carbide prefabricated model;
s5.5, placing the silicon aluminum carbide prefabricated model into a mold in a vacuum differential pressure casting furnace, and injecting an aluminum alloy metal liquid into pores of the silicon aluminum carbide prefabricated model by a vacuum differential pressure casting method to prepare a composite material;
and S5.6, after cooling, putting the composite material into a heat treatment furnace for annealing treatment, thus obtaining the high-strength aluminum-based silicon carbide composite material.
Further, the mass ratio of the silicon aluminum carbide particles with the particle diameters of 8-12 μm, 20-40 μm and 50-80 μm is 10-20: 20-40: 30-70.
preferably, silicon aluminum carbide particles with the particle diameters of 10 μm, 30 μm and 60 μm are mixed according to the mass ratio of 10-20: 20-40: 30-70, then adding adhesive, emulsion wax and pore-forming agent.
In the invention, the adhesive is selected from one or more of polyvinyl alcohol, polyvinyl acetate, dextrin and paraffin, and is preferably polyvinyl alcohol; the pore-forming agent is selected from one or more of starch, carbon powder and ammonium oxalate, and is preferably starch.
The invention also comprises a high-strength silicon aluminum carbide composite material, which is characterized in that the high-strength silicon aluminum carbide composite materialThe high-strength silicon aluminum carbide composite material is prepared by the preparation method of the high-strength silicon aluminum carbide composite material according to any one of claims 5 to 9, the bending strength of the high-strength silicon aluminum carbide composite material is not lower than 600MPa, and the air tightness of the high-strength silicon aluminum carbide composite material is less than 10-10Pa·m3/s。
In summary, due to the adoption of the technical scheme, the invention has the beneficial effects that:
1. according to the method for preparing the high-strength silicon carbide particle reinforced aluminum-based composite material and the composite material thereof, provided by the invention, small-particle-size silicon carbide particles are modified, then a silicon-aluminum carbide prefabricated model is obtained, and finally aluminum liquid is infiltrated by differential pressure to obtain the high-strength silicon-aluminum carbide composite material, so that the defects of easy agglomeration and difficult infiltration of submicron or nanoscale silicon carbide (the particle size is less than 1 mu m) are overcome, the problems of small-particle-size silicon carbide surface wettability and difficulty in pore reservation are solved, a new thought is provided for the preparation of the high-strength silicon-aluminum carbide composite material, and the defects of the existing pressure casting and stirring casting are overcome;
2. the preparation method can prepare the silicon aluminum carbide composite material with 50-70% volume fraction according to the proportion, and the silicon aluminum carbide composite material has excellent mechanical property, bending strength of more than 600MPa, good compactness and airtightness of less than 10-10Pa·m3And/s, meets the requirements of military industry, has low roughness after processing, and is beneficial to carrying out later surface treatment and related electroplating and chemical plating work.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail with reference to the following embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
Example 1
A preparation method of a high-strength silicon carbide reinforced aluminum composite material comprises the following steps:
s1, respectively mixing silicon carbide particles with the particle sizes of 0.1-0.25 mu m, 0.3-0.5 mu m and 0.6-0.8 mu m and aluminum powder with the particle size of 5-10 mu m according to the mass ratio of 5: 10: 75: 10, ball milling uniformly under the protection of nitrogen atmosphere;
s2, adding 0.5% of polyvinyl alcohol solution, 2% of emulsion wax and 0.3% of aluminum dihydrogen phosphate solution in mass ratio into the ball-milled materials, uniformly stirring and sieving for later use;
s3, placing the sieved material into a mold, maintaining the pressure for 5S under the pressure of 10MPa, and demolding to obtain a silicon aluminum carbide pre-sintered body;
s4, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace, wherein the sintering temperature is 500 ℃, the sintering atmosphere is nitrogen and hydrogen, and after sintering, the silicon aluminum carbide material with low aluminum content is obtained;
s5, crushing, ball-milling and shaping the low-aluminum-content silicon carbide aluminum composite material, sieving, and selecting silicon carbide aluminum particles with the particle sizes of 8-12 microns, 20-40 microns and 50-80 microns respectively;
s6, respectively mixing silicon aluminum carbide particles with the particle sizes of 8-12 μm, 20-40 μm and 50-80 μm according to the mass ratio of 10: 20: 70, then adding 3 percent of polyvinyl alcohol solution, 0.5 percent of milk wax and 0.5 percent of starch by mass ratio, stirring uniformly and sieving for later use;
s7, placing the material prepared in the previous step into a mold, maintaining the pressure for 5S under the pressure of 10MPa, and demolding to obtain a blank;
s8, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace, wherein the sintering temperature is 300 ℃, the sintering atmosphere is nitrogen and hydrogen, and the silicon aluminum carbide prefabricated model is obtained after sintering;
s9, placing the silicon aluminum carbide prefabricated model into a mold in a vacuum differential pressure casting furnace, and injecting aluminum alloy metal liquid into the pores of the silicon aluminum carbide prefabricated model by a vacuum differential pressure casting method under the protection of inert atmosphere, so as to complete the compounding of the ceramic particles and the metal liquid interface, wherein the temperature of the aluminum alloy liquid is controlled to be 680 ℃ in the infiltration process, and the infiltration pressure is 0.1 MPa;
and S10, cooling, and then putting the composite material into a heat treatment furnace for annealing treatment to obtain the high-strength aluminum-based silicon carbide composite material.
Example 2
A preparation method of a high-strength silicon carbide reinforced aluminum composite material comprises the following steps:
s1, mixing silicon carbide particles with the particle sizes of 0.25 mu m, 0.5 mu m and 0.8 mu m and aluminum powder with the particle size of 5-10 mu m according to the mass ratio of 10: 20: 60: 10, ball milling uniformly under the protection of nitrogen atmosphere;
s2, adding 3% of polyvinyl alcohol solution, 0.5% of emulsion wax and 1% of aluminum dihydrogen phosphate solution in mass ratio into the ball-milled materials, uniformly stirring and sieving for later use;
s3, placing the sieved material into a mold, maintaining the pressure for 60S under the pressure of 15MPa, and demolding to obtain a silicon aluminum carbide pre-sintered body;
s4, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace, wherein the sintering temperature is 800 ℃, the sintering atmosphere is nitrogen and hydrogen, and after sintering, the silicon aluminum carbide material with low aluminum content is obtained;
s5, crushing, ball-milling and shaping the low-aluminum-content silicon carbide aluminum composite material, sieving, and selecting silicon carbide aluminum particles with the particle sizes of 10 microns, 30 microns and 60 microns respectively;
s6, respectively mixing 10-micron, 30-micron and 60-micron silicon aluminum carbide particles according to the mass ratio of 20: 40: 40, adding 3% of polyvinyl alcohol solution, 2% of milk wax and 5% of starch in mass ratio, stirring uniformly and sieving for later use;
s7, placing the material prepared in the previous step into a mold, maintaining the pressure for 120S under the pressure of 20MPa, and demolding to obtain a blank;
s8, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace, wherein the sintering temperature is 500 ℃, the sintering atmosphere is nitrogen and hydrogen, and the silicon aluminum carbide prefabricated model is obtained after sintering;
s9, placing the silicon aluminum carbide prefabricated model into a mold in a vacuum differential pressure casting furnace, and injecting aluminum alloy metal liquid into the pores of the silicon aluminum carbide prefabricated model by a vacuum differential pressure casting method under the protection of inert atmosphere so as to complete the interface compounding of ceramic particles and the metal liquid, wherein the temperature of the aluminum alloy liquid is controlled to be 750 ℃ in the infiltration process, and the infiltration pressure is 0.3 MPa;
and S10, cooling, and then putting the composite material into a heat treatment furnace for annealing treatment to obtain the high-strength aluminum-based silicon carbide composite material.
Example 3
A preparation method of a high-strength silicon carbide reinforced aluminum composite material comprises the following steps:
s1, mixing silicon carbide particles with the particle sizes of 0.25 mu m, 0.5 mu m and 0.8 mu m and aluminum powder with the particle size of 5-10 mu m according to the mass ratio of 10: 12: 70: 8, ball milling uniformly under the protection of nitrogen atmosphere;
s2, adding a polyvinyl alcohol solution with the mass ratio of 2%, a milk wax with the mass ratio of 1% and an aluminum dihydrogen phosphate solution with the mass ratio of 1% into the ball-milled materials, uniformly stirring and sieving for later use;
s3, placing the sieved material into a mold, maintaining the pressure for 30S under the pressure of 20MPa, and demolding to obtain a silicon aluminum carbide pre-sintered body;
s4, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace, wherein the sintering temperature is 700 ℃, the sintering atmosphere is nitrogen and hydrogen, and after sintering, the silicon aluminum carbide material with low aluminum content is obtained;
s5, crushing, ball-milling and shaping the low-aluminum-content silicon carbide aluminum composite material, sieving, and selecting silicon carbide aluminum particles with the particle sizes of 10 microns, 30 microns and 60 microns respectively;
s6, respectively mixing 10-micron, 30-micron and 60-micron silicon aluminum carbide particles according to the mass ratio of 15: 20: 65, then adding a polyvinyl alcohol solution with the mass ratio of 2%, emulsion wax with the mass ratio of 1% and carbon powder with the mass ratio of 8%, stirring uniformly and sieving for later use;
s7, placing the material prepared in the previous step into a mold, maintaining the pressure for 80S under the pressure of 20MPa, and demolding to obtain a blank;
s8, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace, wherein the sintering temperature is 600 ℃, the sintering atmosphere is nitrogen and hydrogen, and the silicon aluminum carbide prefabricated model is obtained after sintering;
s9, placing the silicon aluminum carbide prefabricated model into a mold in a vacuum differential pressure casting furnace, and injecting aluminum alloy metal liquid into the pores of the silicon aluminum carbide prefabricated model by a vacuum differential pressure casting method under the protection of inert atmosphere so as to complete the interface compounding of ceramic particles and the metal liquid, wherein the temperature of the aluminum alloy liquid is controlled to be 720 ℃ in the infiltration process, and the infiltration pressure is 0.2 MPa;
and S10, cooling, and then putting the composite material into a heat treatment furnace for annealing treatment to obtain the high-strength aluminum-based silicon carbide composite material.
Example 4
A preparation method of a high-strength silicon carbide reinforced aluminum composite material comprises the following steps:
s1, mixing silicon carbide particles with the particle sizes of 0.25 mu m, 0.5 mu m and 0.8 mu m and aluminum powder with the particle size of 5-10 mu m according to the mass ratio of 6: 14: 65: 15, ball milling uniformly under the protection of nitrogen atmosphere;
s2, adding 1.5% of polyvinyl alcohol solution, 1.5% of emulsion wax and 1.5% of aluminum dihydrogen phosphate solution in mass ratio into the ball-milled materials, uniformly stirring and sieving for later use;
s3, placing the sieved material into a mold, maintaining the pressure for 40S under the pressure of 18MPa, and demolding to obtain a silicon aluminum carbide pre-sintered body;
s4, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace, wherein the sintering temperature is 650 ℃, the sintering atmosphere is nitrogen and hydrogen, and after sintering, the silicon aluminum carbide material with low aluminum content is obtained;
s5, crushing, ball-milling and shaping the low-aluminum-content silicon carbide aluminum composite material, sieving, and selecting silicon carbide aluminum particles with the particle sizes of 10 microns, 30 microns and 60 microns respectively;
s6, respectively mixing 10-micron, 30-micron and 60-micron silicon aluminum carbide particles according to the mass ratio of 12: 28: 60, adding a polyvinyl alcohol solution accounting for 2.5 percent of the mass ratio, emulsion wax accounting for 1.5 percent of the mass ratio and carbon powder accounting for 6 percent of the mass ratio, stirring uniformly and sieving for later use;
s7, placing the material prepared in the previous step into a mold, maintaining the pressure for 40S under the pressure of 18MPa, and demolding to obtain a blank;
s8, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace, wherein the sintering temperature is 500 ℃, the sintering atmosphere is nitrogen and hydrogen, and the silicon aluminum carbide prefabricated model is obtained after sintering;
s9, placing the silicon aluminum carbide prefabricated model into a mold in a vacuum differential pressure casting furnace, and injecting aluminum alloy metal liquid into the pores of the silicon aluminum carbide prefabricated model by a vacuum differential pressure casting method under the protection of inert atmosphere so as to complete the interface compounding of ceramic particles and the metal liquid, wherein the temperature of the aluminum alloy liquid is controlled to be 700 ℃ in the infiltration process, and the infiltration pressure is 0.2 MPa;
and S10, cooling, and then putting the composite material into a heat treatment furnace for annealing treatment to obtain the high-strength aluminum-based silicon carbide composite material.
Example 5
The preparation of example 5 was essentially the same as in example 1, except that the temperature used during impregnation was 700 ℃ and the pressure was 0.3 MPa.
Example 6
The preparation method of example 6 is substantially the same as that of example 1 except that the particle sizes selected at the step of S5 were 20 μm, 40 μm and 80 μm, respectively.
The high-strength silicon aluminum carbide composite material prepared by the embodiment has the advantages that the volume fraction of silicon carbide is 50-70%, the mechanical property is excellent, the bending strength can reach more than 600MPa, the compactness is good, and the air tightness is less than 10-10Pa·m3And/s, the requirement of high-precision industry is met, the roughness is low after processing, and the post-treatment surface treatment and the related electroplating and chemical plating work are facilitated.
The above description is only for the purpose of illustrating the preferred embodiments of the present invention and is not to be construed as limiting the invention, and any modifications, equivalents and improvements made within the spirit and principle of the present invention are intended to be included within the scope of the present invention.

Claims (10)

1. A method for reinforcing an aluminum matrix composite by high-strength silicon carbide particles is characterized by comprising the following steps:
s1, uniformly ball-milling silicon carbide particles with the particle sizes of 0.1-0.25 mu m, 0.3-0.5 mu m and 0.6-0.8 mu m and aluminum powder with the particle size of 5-10 mu m in an inert gas atmosphere according to a certain mass ratio;
s2, adding 0.5-3% of adhesive, 0.5-2% of emulsion wax and 0.3-1% of aluminum dihydrogen phosphate into the ball-milled materials, uniformly stirring and sieving for later use;
s3, placing the sieved material into a mold, maintaining the pressure for 5-60S under the pressure of 10-20 MPa, and demolding to obtain a silicon aluminum carbide pre-sintered body;
s4, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace to obtain the silicon aluminum carbide material with low aluminum content after sintering;
s5, crushing, ball-milling and shaping the silicon aluminum carbide composite material, and sieving to obtain silicon aluminum carbide particles;
and S6, taking the silicon aluminum carbide particles obtained in the step S5 as the raw material of the high-strength silicon carbide particle reinforced aluminum matrix composite.
2. The method of claim 1, wherein the silicon carbide particles with particle diameters of 0.1-0.25 μm, 0.3-0.5 μm, 0.6-0.8 μm, and the aluminum powder with particle diameters of 5-10 μm are present in a mass ratio of 5-25: 10-35: 30-75: 5-10.
3. the method of claim 2, wherein the silicon carbide particles have a particle size of 0.25 μm, 0.5 μm, and 0.8 μm in S1.
4. The method of claim 1, wherein the sintering temperature is 500-800 ℃ and the sintering atmosphere is a mixture of nitrogen and hydrogen at S4.
5. The method of claim 1, wherein the binder is selected from one or more of polyvinyl alcohol, polyvinyl acetate, dextrin, and paraffin wax.
6. The preparation method of the high-strength silicon aluminum carbide composite material is characterized by comprising the following steps of:
s5.1, selecting the silicon aluminum carbide particles prepared by the method for preparing the high-strength silicon carbide particle reinforced aluminum matrix composite material according to any one of claims 1 to 5, and respectively selecting the silicon aluminum carbide particles with the particle sizes of 8 to 12 microns, 20 to 40 microns and 50 to 80 microns;
s5.2, uniformly mixing silicon aluminum carbide particles with the particle sizes of 8-12 microns, 20-40 microns and 50-80 microns according to a certain mass ratio, then adding 0.5-3% of adhesive, 0.5-2% of emulsion wax and 0.5-5% of pore-forming agent by mass ratio, uniformly stirring and sieving for later use;
s5.3, putting the material prepared in the previous step into a die to prepare a pre-sintered body;
s5.4, sintering the pre-sintered body in a vacuum weak reducing atmosphere sintering furnace to obtain a silicon-aluminum carbide prefabricated model;
s5.5, placing the silicon aluminum carbide prefabricated model into a mold in a vacuum differential pressure casting furnace, and injecting an aluminum alloy metal liquid into pores of the silicon aluminum carbide prefabricated model by a vacuum differential pressure casting method to prepare a composite material;
and S5.6, after cooling, putting the composite material into a heat treatment furnace for annealing treatment, thus obtaining the high-strength aluminum-based silicon carbide composite material.
7. The method for preparing a high-strength silicon aluminum carbide composite material according to claim 6, wherein the mass ratio of silicon aluminum carbide particles with the particle diameters of 8-12 μm, 20-40 μm and 50-80 μm is 10-20: 20-40: 30-70.
8. the method for preparing a high-strength silicon aluminum carbide composite material according to claim 6, wherein the silicon aluminum carbide particles with the particle diameters of 10 μm, 30 μm and 60 μm are mixed in a mass ratio of 10-20: 20-40: 30-70, then adding adhesive, emulsion wax and pore-forming agent.
9. The method for preparing the high-strength silicon aluminum carbide composite material according to claim 6, wherein the binder is selected from one or more of polyvinyl alcohol, polyvinyl acetate, dextrin and paraffin wax; the pore-forming agent is selected from one or more of starch, carbon powder and ammonium oxalate.
10. A high-strength silicon aluminum carbide composite material, characterized in that the high-strength silicon aluminum carbide composite material is prepared by the method for preparing a high-strength silicon aluminum carbide composite material according to any one of claims 5 to 9, the bending strength of the high-strength silicon aluminum carbide composite material is not less than 600MPa, and the air tightness is less than 10-10Pa·m3/s。
CN202010685968.8A 2020-07-16 2020-07-16 Method for reinforcing aluminium base composite material by high-strength silicon carbide particle and composite material thereof Active CN111889686B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010685968.8A CN111889686B (en) 2020-07-16 2020-07-16 Method for reinforcing aluminium base composite material by high-strength silicon carbide particle and composite material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010685968.8A CN111889686B (en) 2020-07-16 2020-07-16 Method for reinforcing aluminium base composite material by high-strength silicon carbide particle and composite material thereof

Publications (2)

Publication Number Publication Date
CN111889686A true CN111889686A (en) 2020-11-06
CN111889686B CN111889686B (en) 2022-11-08

Family

ID=73189410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010685968.8A Active CN111889686B (en) 2020-07-16 2020-07-16 Method for reinforcing aluminium base composite material by high-strength silicon carbide particle and composite material thereof

Country Status (1)

Country Link
CN (1) CN111889686B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113909456A (en) * 2021-09-14 2022-01-11 昆明理工大学 Preparation method of rare earth doped particle reinforced steel-based composite material
CN115141951A (en) * 2022-08-08 2022-10-04 河南瀚银光电科技股份有限公司 Method for preparing high-performance aluminum-based silicon carbide
CN115558886A (en) * 2022-09-13 2023-01-03 首钢集团有限公司 Corrosion-resistant high-carbon steel protective film layer and preparation method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018319A (en) * 2007-07-10 2009-01-29 Denki Kagaku Kogyo Kk Aluminum-ceramic composite body and its manufacturing method
CN102191398A (en) * 2011-04-22 2011-09-21 湖南航天诚远精密机械有限公司 Preparation method of carborundum particle reinforced aluminum matrix composite material with high volume fraction
CN102531670A (en) * 2011-12-29 2012-07-04 东南大学 Preparation method of ceramic metal composite material with high compressive strength and low density
CN103540830A (en) * 2013-11-14 2014-01-29 湖南航天工业总公司 Method for preparing carborundum and diamond particle reinforced aluminum-base composite material
CN104498778A (en) * 2014-12-15 2015-04-08 中国兵器科学研究院宁波分院 Aluminium-based composite material with high silicon carbide content and preparation method of composite material
US20150252451A1 (en) * 2014-03-05 2015-09-10 King Fahd University Of Petroleum And Minerals High performance aluminum nanocomposites
KR20150135690A (en) * 2014-05-23 2015-12-03 한국기계연구원 The preparing method of aluminum/silicon carbide metal matrix composites and the aluminum/silicon carbide metal matrix composites thereby
CN106064242A (en) * 2016-07-25 2016-11-02 哈尔滨工业大学 A kind of SPS of employing prepares the method for SiC particle enhanced aluminum-based composite material
WO2017035920A1 (en) * 2015-08-28 2017-03-09 南通高欣耐磨科技股份有限公司 Method for fabricating low-cost, highly wear-resistant ceramic-alloy composite liner
US20180215668A1 (en) * 2015-07-31 2018-08-02 Denka Company Limited Aluminum-silicon-carbide composite and method of manufacturing same
CN109311769A (en) * 2017-10-27 2019-02-05 深圳市大富科技股份有限公司 The preparation method of silicon carbide aluminum-base composite structural member and SiC reinforcement prefabricated component
CN109482881A (en) * 2019-01-07 2019-03-19 常州泰格尔电子材料科技有限公司 A kind of selective laser sintering preparation SiC/Al composite material structural member method
CN109732077A (en) * 2019-01-23 2019-05-10 宁波合盛专用车辆有限公司 A kind of full compact silicon carbide reinforced aluminum matrix composites billet and preparation method thereof
CN110078529A (en) * 2019-05-30 2019-08-02 西安创正新材料有限公司 A kind of silicon carbide whisker reinforced aluminum matrix composites and preparation method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018319A (en) * 2007-07-10 2009-01-29 Denki Kagaku Kogyo Kk Aluminum-ceramic composite body and its manufacturing method
CN102191398A (en) * 2011-04-22 2011-09-21 湖南航天诚远精密机械有限公司 Preparation method of carborundum particle reinforced aluminum matrix composite material with high volume fraction
CN102531670A (en) * 2011-12-29 2012-07-04 东南大学 Preparation method of ceramic metal composite material with high compressive strength and low density
CN103540830A (en) * 2013-11-14 2014-01-29 湖南航天工业总公司 Method for preparing carborundum and diamond particle reinforced aluminum-base composite material
US20150252451A1 (en) * 2014-03-05 2015-09-10 King Fahd University Of Petroleum And Minerals High performance aluminum nanocomposites
KR20150135690A (en) * 2014-05-23 2015-12-03 한국기계연구원 The preparing method of aluminum/silicon carbide metal matrix composites and the aluminum/silicon carbide metal matrix composites thereby
CN104498778A (en) * 2014-12-15 2015-04-08 中国兵器科学研究院宁波分院 Aluminium-based composite material with high silicon carbide content and preparation method of composite material
US20180215668A1 (en) * 2015-07-31 2018-08-02 Denka Company Limited Aluminum-silicon-carbide composite and method of manufacturing same
WO2017035920A1 (en) * 2015-08-28 2017-03-09 南通高欣耐磨科技股份有限公司 Method for fabricating low-cost, highly wear-resistant ceramic-alloy composite liner
CN106064242A (en) * 2016-07-25 2016-11-02 哈尔滨工业大学 A kind of SPS of employing prepares the method for SiC particle enhanced aluminum-based composite material
CN109311769A (en) * 2017-10-27 2019-02-05 深圳市大富科技股份有限公司 The preparation method of silicon carbide aluminum-base composite structural member and SiC reinforcement prefabricated component
CN109482881A (en) * 2019-01-07 2019-03-19 常州泰格尔电子材料科技有限公司 A kind of selective laser sintering preparation SiC/Al composite material structural member method
CN109732077A (en) * 2019-01-23 2019-05-10 宁波合盛专用车辆有限公司 A kind of full compact silicon carbide reinforced aluminum matrix composites billet and preparation method thereof
CN110078529A (en) * 2019-05-30 2019-08-02 西安创正新材料有限公司 A kind of silicon carbide whisker reinforced aluminum matrix composites and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李飞舟: "颗粒尺寸对真空浸渗SiC/Al复合材料性能的影响", 《粉末冶金工业》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113909456A (en) * 2021-09-14 2022-01-11 昆明理工大学 Preparation method of rare earth doped particle reinforced steel-based composite material
CN115141951A (en) * 2022-08-08 2022-10-04 河南瀚银光电科技股份有限公司 Method for preparing high-performance aluminum-based silicon carbide
CN115558886A (en) * 2022-09-13 2023-01-03 首钢集团有限公司 Corrosion-resistant high-carbon steel protective film layer and preparation method thereof

Also Published As

Publication number Publication date
CN111889686B (en) 2022-11-08

Similar Documents

Publication Publication Date Title
CN111889686B (en) Method for reinforcing aluminium base composite material by high-strength silicon carbide particle and composite material thereof
CN108129168B (en) Preparation method of aluminum-based composite material based on 3D printing and aluminum-based composite material
CN108002842B (en) Preparation method of porous silicon nitride part with complex shape
CN103789590B (en) The preparation method of particle reinforced magnesium base compound material
CN113458387B (en) 3D printing gradient ceramic metal material and preparation method thereof
CN108746637A (en) Aluminium silicon/aluminium silicon carbide gradient composites and preparation method thereof
CN107842569B (en) Friction structure and preparation method and application thereof
CN108484173B (en) SiCf/SiC composite material and preparation method thereof
CN103343266A (en) High-thermal-conductivity graphite-high silicon aluminium-based composite material and preparation process for same
CN112111665B (en) Method for preparing carbon modified aluminum alloy composite material by vacuum pressure infiltration method
CN104658917B (en) A kind of preparation method of the metal-based compound electronics packaging part containing high-volume fractional SiC
CN114231779A (en) Preparation method of glass bead reinforced porous aluminum-based composite material
CN109778018B (en) Preparation method of aluminum silicon carbide material and prepared aluminum silicon carbide material
CN114478053A (en) Aluminum-based silicon carbide composite material and preparation method thereof
CN111876625B (en) AlNMg composite material and preparation method thereof
CN111187959A (en) Metal-rich phase gradient structure titanium carbonitride base cermet and preparation method thereof
CN106735189B (en) A kind of molten metal cladding hot isostatic pressing preparation method of particles reiforced metal-base composition
US20230117192A1 (en) Preparation method for w-cu composite plate with cu phase in finger-shaped gradient distribution
CN108315629B (en) Preparation method of Al/SiC metal ceramic composite material
CN110468358A (en) A kind of metal ceramic-based composite material barrel support of fibre reinforced and preparation method thereof
CN112694335B (en) Diamond-silicon carbide substrate and preparation method and application thereof
HUANG et al. Selective laser sintering of SiC green body with low binder content
CN113563088A (en) Porous silicon nitride ceramic component and method for producing same
CN112661516A (en) Composite ceramic glass hot bending die and preparation method thereof
Chen et al. Research Progress on Preparation of SiC/Al for Electronic Packaging by Liquid Infiltration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant