CN111886839A - 经由大带宽信道的无线通信 - Google Patents

经由大带宽信道的无线通信 Download PDF

Info

Publication number
CN111886839A
CN111886839A CN201980019236.0A CN201980019236A CN111886839A CN 111886839 A CN111886839 A CN 111886839A CN 201980019236 A CN201980019236 A CN 201980019236A CN 111886839 A CN111886839 A CN 111886839A
Authority
CN
China
Prior art keywords
tone
stf
80mhz
implementations
320mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980019236.0A
Other languages
English (en)
Inventor
李嘉玲
L·杨
B·田
S·韦玛尼
L·弗尔马
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN111886839A publication Critical patent/CN111886839A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了用于在无线通信网络上进行通信的系统、方法和装置,包括被编码在计算机可读介质上的计算机程序。无线通信设备可被配置成根据用于经由240或320MHz信道带宽之一进行传输的频调规划来生成并传送消息。该消息可包括短训练字段(STF)和长训练字段(LTF)。STF可被接收机用于调整自动增益控制(AGC)功能。LTF可被用于信道估计。在一些实现中,STF可具有由子STF级联序列形成的数据频调规划。应用于该级联序列中的至少一个子STF的相位旋转相比于无相位旋转的子STF级联序列而言可减小消息的峰均功率比(PAPR)。

Description

经由大带宽信道的无线通信
相关申请的交叉引用
本专利申请要求于2018年3月16日提交的题为“SYSTEMS AND METHODS OFCOMMUNICATING VIA SUB-BANDS IN WIRELESS COMMUNICATION NETWORKS(在无线通信网络中经由子带进行通信的系统和方法)”并转让给本申请受让人的美国临时专利申请No.62/644,239的优先权。该在先申请的公开内容被认为是本专利申请的一部分并且通过援引被纳入到本专利申请中。
技术领域
本公开的某些方面一般涉及无线通信,尤其涉及经由大带宽信道(诸如240MHz或320MHz信道)的无线通信。
相关技术描述
在许多电信系统中,通信网络可被用于在若干个在空间上分开的交互设备之间交换消息。网络可根据地理范围来分类,该地理范围可以例如是城市区域、局部区域、或个人区域。此类网络可分别被指定为广域网(WAN)、城域网(MAN)、局域网(LAN)、或个域网(PAN)。网络还根据用于互连各种网络节点和设备的交换或路由技术(例如,电路交换或分组交换)、用于传输的物理介质的类型(例如,有线或无线)、和所使用的通信协议集(例如,网际协议套集、SONET(同步光学联网)、以太网、或其他通信协议)而有所不同。
当网络元件可以是移动的并由此具有动态连通性需求时,或者在网络架构以自组织(ad hoc)拓扑结构而非固定拓扑结构来形成的情况下,可以使用无线网络。无线网络使用无线电、微波、红外、光、或其他频带中的电磁波以非制导传播模式来采用无形的物理介质。在与固定的有线网络相比较时,无线网络可以促成用户移动性和快速的现场部署。
无线网络中的设备可以在彼此之间传送或接收信息。设备传输可能会彼此干扰,并且某些传输可能会选择性地阻止其他传输。在许多设备可以成为通信网络的情况下,可能会导致拥塞和低效的链路使用。
概述
所附权利要求的范围内的系统、方法和设备的各种实现各自具有若干方面,可以不是仅靠其中任何单一方面来得到本文中所描述的期望属性。本文中可描述一些突出特征,但其并不限定所附权利要求的范围。
本公开中描述的主题内容的一个创新性方面可在一种用于无线通信的装置中实现。该装置可包括处理系统和接口。该处理系统可被配置成:生成供使用具有240MHz或320MHz总信道带宽之一的第一信道经由无线网络进行传输的消息,以及生成该消息的长训练字段(LTF)。该LTF可包括至少部分地基于第一信道的240MHz或320MHz总信道带宽的训练序列。该接口可被配置成输出该消息以供经由无线网络进行传输。
在一些实现中,LTF可以是由针对带宽小于240MHz或320MHz总信道带宽的信道所定义的子LTF的级联序列形成的。
在一些实现中,处理系统可被配置成向该级联序列中的至少一个子LTF应用相位旋转。
在一些实现中,处理系统可被配置成通过对针对较小带宽信道所定义的子LTF进行超频来准备LTF。
在一些实现中,处理系统可被配置成为用于240MHz或320MHz总信道带宽的频调规划中的缺失频调添加序列值,缺失频调是在对子LTF进行超频之后留下的。
在一些实现中,处理系统可被配置成向这些序列值中的至少一些序列值应用相位旋转。
在一些实现中,相位旋转被配置成相比于无相位旋转的LTF而言减小消息的峰均功率比(PAPR)。
在一些实现中,LTF可以是由用于80MHz带宽信道的子LTF的级联序列形成的。
在一些实现中,处理系统可被配置成向这些子LTF中的至少一些子LTF应用相位旋转。
本公开所描述的主题内容的另一创新性方面可被实现为一种用于无线通信的方法。该方法可包括生成供使用具有240MHz或320MHz总信道带宽之一的第一信道经由无线网络进行传输的消息。该方法可包括生成该消息的长训练字段(LTF),其中该LTF包括至少部分地基于第一信道的240MHz或320MHz总信道带宽的训练序列。该方法可包括经由接口来输出该消息以供经由无线网络进行传输。
在一些实现中,LTF可以是由针对带宽小于240MHz或320MHz总信道带宽的信道所定义的子LTF的级联序列形成的。
在一些实现中,该方法可包括向该级联序列中的至少一个子LTF应用相位旋转。
在一些实现中,该方法可包括通过对针对较小带宽信道所定义的子LTF进行超频来准备LTF。
在一些实现中,该方法可包括为用于240MHz或320MHz总信道带宽的频调规划中的缺失频调添加序列值,缺失频调是在对子LTF进行超频之后留下的。
在一些实现中,该方法可包括向这些序列值中的至少一些序列值应用相位旋转。
在一些实现中,相位旋转被配置成相比于无相位旋转的LTF而言减小消息的峰均功率比(PAPR)。
在一些实现中,LTF可以是由用于80MHz带宽信道的子LTF的级联序列形成的。
在一些实现中,该方法可包括向这些子LTF中的至少一些子LTF应用相位旋转。
本公开所描述的主题内容的另一创新性方面可在一种无线通信设备中实现。该无线通信设备可包括:外壳;天线,其附连到该外壳并且电耦合到收发机;收发机,用于使用具有240MHz或320MHz总信道带宽之一的第一信道来与无线网络进行通信;以及处理系统。该处理系统可被配置成:生成供经由该收发机进行传输的消息;生成该消息的长训练字段(LTF),其中该LTF包括至少部分地基于第一信道的240MHz或320MHz总信道带宽的训练序列;以及经由该收发机来输出该消息。
本说明书中所描述的主题内容的一个或多个实现的细节可在附图及以下描述中阐述。其他特征、方面和优点将从该描述、附图和权利要求书中变得明了。应注意,以下附图的相对尺寸可能并非按比例绘制。
附图简述
图1解说了其中可采用本公开的各方面的无线通信系统的示例。
图2解说了可在图1的无线通信系统内采用的无线设备中可利用的各种组件。
图3示出了示例2N频调规划。
图4A是可供用于240或320MHz传输的不同模式的解说。
图4B是可供用于240或320MHz传输的不同模式的解说。
图5A示出了80、160和320MHz传输中的每一者中的示例频调间隔和码元历时。
图5B示出了80、160和320MHz传输中的每一者中针对不同快速傅立叶变换(FFT)大小的示例索引范围。
图6A示出了用于20MHz传输的示例频调分配。
图6B示出了用于40MHz传输的示例频调分配。
图6C示出了用于80MHz传输的示例频调分配。
图7示出了RU副载波索引的示例。
图8A示出了使用3个HE80频调规划的重复的示例4x 240MHz频调规划提议。
图8B示出了使用2个HE160频调规划的重复或4个HE80频调规划的重复的示例4x320MHz频调规划提议。
图9A示出了RU副载波索引的第一示例。
图9B示出了RU副载波索引的第二示例。
图9C示出了RU副载波索引的第三示例。
图10示出了用于HE80频调规划的26频调RU中的短训练字段(STF)频调的示例明细。
图11示出了2x码元历时下用于80MHz频调规划的26频调RU中的STF频调的示例明细。
图12示出了2x码元历时下用于160MHz频调规划的26频调RU中的STF频调的示例明细。
图13示出了用于240MHz非基于触发的(TB)和TB STF序列的示例相位旋转系数。
图14示出了用于320MHz非TB STF序列的示例相位旋转系数。
图15示出了用于320MHz TB STF序列的示例相位旋转系数。
图16A示出了用于20MHz信道的示例频调规划。
图16B示出了用于40MHz信道的示例频调规划。
图16C示出了用于80MHz信道的示例频调规划。
图17A示出了用于20、40和80MHz信道的示例空副载波索引。
图17B示出了用于20、40、80和160MHz信道的示例导频副载波索引。
详细描述
以下描述针对某些实现以旨在描述本公开的创新性方面。然而,本领域普通技术人员将容易认识到,本文的教示可按众多不同方式来应用。所描述的实现可以在能够根据电气与电子工程师(IEEE)协会802.11标准、IEEE 802.15标准、如由蓝牙特别兴趣小组(SIG)定义的
Figure BDA0002681176300000051
(蓝牙)标准、或者由第三代伙伴项目(3GPP)颁布的长期演进(LTE)、3G、4G或5G(新无线电(NR))标准等中的一者或多者来传送和接收射频(RF)信号的任何设备、系统或网络中实现。所描述的实现可以在能够根据以下技术或技艺中的一者或多者来传送和接收RF信号的任何设备、系统或网络中实现:码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、单用户(SU)多输入多输出(MIMO)和多用户(MU)MIMO。所描述的实现还可以使用适合于在无线个域网(WPAN)、无线局域网(WLAN)、无线广域网(WWAN)、或物联网(IOT)网络中的一者或多者中使用的其他无线通信协议或RF信号来实现。
IEEE正在为IEEE 802.11准备可以使用极高吞吐量(EHT)无线通信的新带宽选项。本公开中的大带宽信道是指具有240MHz或更大的带宽的无线信道。例如,IEEE 802.11be描述了可支持具有240MHz、320MHz或更大的带宽的大带宽信道的EHT无线通信。在一些实现中,总信道带宽可包括一个或多个频带(诸如5GHz或6GHz频带)中的(潜在地具有不同大小的)子信道的组合。这些子信道(它们在频带中可以是毗连的或非毗连的)可被统称为无线信道。
各种实现一般涉及可被用于在240MHz或320MHz大带宽信道上传送的无线通信的短训练字段(STF)和长训练字段(LTF)。本公开的一些实现尤其涉及包括可在240MHz或320MHz信道中传送的消息之前(或作为该消息的第一部分)发送的STF和LTF的前置码。用于240MHz和320MHz信道的频调规划可涉及具有与较小信道的码元历时不同的码元历时的码元。例如,这些频调规划可利用具有为用于较小信道的码元历时的两倍或四倍长的历时的码元。在各种实现中,STF序列和LTF序列可具有1x、2x或4x码元历时。
STF包括训练序列,其可被接收方设备用于设置或调整接收方设备的自动增益控制(AGC)功能。AGC是放大器或放大器链中的一种技术,该技术用于调整其输出处的信号振幅,而不管输入处信号振幅的变化。STF可包括预定信号的训练序列,其可被用于标识传输的开始以及设置AGC。减小STF的峰均功率比(PAPR)以使得STF不会使AGC不正确地偏斜也可以是有利的。
在一些实现中,STF可以由针对较小带宽信道(诸如20MHz、40MHz、80MHz或160MHz信道)所定义的子STF的级联序列形成。例如,可使用针对80MHz信道所定义的STF(其可被称为子STF)的3个实例来形成用于240MHz信道的STF。在一些实现中,可向该级联序列中的至少一个子STF应用相位旋转。一种类型的相位旋转是反转(诸如180相位旋转)。可使用相位旋转系数来产生90、180或270度相位旋转。可使用符号翻转(改变各相位旋转系数之一的极性)来调整STF的子STF或部分。
在一些实现中,STF可具有旨在使PAPR最小化的相位旋转。例如,可基于整个STF的PAPR来向该STF的不同区段(或子STF)应用相位旋转。在一些实现中,STF可取决于用于大带宽信道的频调规划。例如,针对240MHz或320MHz的频调规划可具有针对总信道带宽所定义的特定资源单元(RU)。可基于频调规划并且基于STF的PAPR来调整STF。在一些实现中,STF可容适对信道的穿孔。穿孔是指略去信道的一部分。例如,可从传输中略去一些RU或子信道,以避免干扰其他通信系统。穿孔可基于无线信道的子信道或部分(诸如20MHz部分)。在一些实现中,由于所使用的训练序列类型以及相位旋转的应用,STF可在对PAPR影响最小的情况下被穿孔。
如上所述,前置码通常包括在消息的开始处在有效载荷之前的STF、继之以LTF。LTF一般被用于信道估计。因此,LTF应当在该信道的所有频调上都有信号。一些频调可携带用于LTF对齐的导频频调。其他频调可包括根据LTF序列的可变信号。在一些实现中,LTF序列可基于用于较小带宽信道的子LTF。可使用倍线(upscaling)或重复来扩展子LTF以填充EHT 240MHz或320MHz信道的较大带宽。因为LTF被用于信道估计,所以在对子LTF进行倍线之后在一些没有信号的频调上添加信号可以是合乎期望的。例如,在对用于较小带宽信道的子LTF进行倍线(其亦可称为超频)以形成用于EHT信道的LTF之后,序列中可能存在一些没有信号的频调(其被称为缺失频调)。在一些实现中,该序列将被修改以用信号填充那些缺失频调,以使得所有频调都能被包括在信道估计中。在一些实现中,可向缺失频调上的信号应用相位旋转(或符号翻转、或极性改变),以使得所添加的这些信号能使PAPR最小化。
可实现本公开所描述的主题内容的特定实现以达成以下潜在优点中的一者或多者。在一些实现中,可使用所描述的技术来支持240MHz带宽或更高带宽的EHT传输。另外,通过减小STF的PAPR,接收机可以更准确地对消息的其余部分执行AGC。有利地,用于较高带宽信道的STF和LTF可基于针对较小带宽信道所定义的训练序列及相位旋转。
可能的替换方案
以下可参照附图更全面地描述本新颖系统、装置和方法的各种方面。然而,本公开的教导可以用许多不同的形式来实施,并且不应被解释为被限定于本公开通篇所给出的任何特定结构或功能。确切而言,可提供这些方面以使得本公开将是透彻和完整的,并且其将向本领域技术人员完全传达本公开的范围。基于本文中的教导,本领域技术人员应领会,本公开的范围旨在覆盖本文中所公开的这些新颖系统、装置和方法的任何方面,不论其是独立实现的还是与本公开的任何其他方面组合实现的。例如,可以使用本文中阐述的任何数目的方面来实现装置或实践方法。另外,本公开的范围旨在覆盖使用作为本公开的各种方面的补充或者另外的其他结构、功能性、或者结构及功能性来实践的此类装置或方法。本文中公开的任何方面可由权利要求的一个或多个要素来实施。
尽管本文可描述特定方面,但这些方面的众多变体和置换落在本公开的范围之内。尽管提到了一些方面的一些益处和优点,但本公开的范围并非旨在被限于特定益处、用途或目标。确切而言,本公开的各方面可旨在宽泛地适用于不同的无线技术、系统配置、网络、和传输协议,其中一些可藉由示例在附图和以下对各种方面的描述中解说。详细描述和附图可仅仅解说本公开而非限定本公开,本公开的范围由所附权利要求及其等效技术方案来定义。
实施设备
无线网络技术可包括各种类型的无线局域网(WLAN)。WLAN可被用于采用广泛使用的联网协议来将近旁设备互连在一起。本文中描述的各种方面可应用于任何通信标准,诸如Wi-Fi、或者更一般地IEEE 802.11无线协议族中的任何成员。
在一些方面,可使用正交频分复用(OFDM)、直接序列扩频(DSSS)通信、OFDM与DSSS通信的组合、或其他方案来根据高效802.11协议传送无线信号。
在一些实现中,WLAN包括可作为接入无线网络的组件的各种设备。例如,可以有两种类型的设备:接入点(“AP”)和客户端(亦称为站,或“STA”)。一般而言,AP用作WLAN的中枢或基站,而STA用作WLAN的用户。例如,STA可以是膝上型计算机、个人数字助理(PDA)、移动电话等。在一示例中,STA经由遵循Wi-Fi(例如,IEEE 802.11协议,诸如802.11ax)的无线链路连接到AP以获得至因特网或其他广域网的一般连通性。在一些实现中,STA也可被用作AP。
本文所描述的技术可被用于各种宽带无线通信系统,包括可基于正交复用方案的通信系统。此类通信系统的示例包括空分多址(SDMA)、时分多址(TDMA)、正交频分多址(OFDMA)系统、单载波频分多址(SC-FDMA)系统等。SDMA系统可以利用充分不同的方向来并发地传送属于多个用户终端的数据。TDMA系统可通过将传输信号划分在不同时隙中、每个时隙被指派给不同用户终端来允许多个用户终端共享相同频率信道。TDMA系统可实现GSM或本领域中已知的一些其他标准。OFDMA系统利用正交频分复用(OFDM),这是一种将整个系统带宽划分成多个正交副载波的调制技术。这些副载波还可被称为频调、频槽、或其他类似术语。在OFDM下,每个副载波可以用数据独立地调制。OFDM系统可实现IEEE 802.11或本领域中已知的一些其他标准。SC-FDMA系统可以利用交织式FDMA(IFDMA)在可跨系统带宽分布的副载波上传送,利用局部式FDMA(LFDMA)在由毗邻副载波构成的块上传送,或者利用增强式FDMA(EFDMA)在多个由毗邻副载波构成的块上传送。一般而言,调制码元可在OFDM下在频域中发送,而在SC-FDMA下在时域中发送。SC-FDMA系统可实现3GPP-LTE(第三代伙伴项目长期演进)或其他标准。
本文中的教导可被纳入到各种各样的有线或无线装置(例如,节点)中(例如,在其内实现或由其执行)。在一些方面,根据本文中的教导实现的无线节点可包括接入点或接入终端。
接入点(“AP”)可包括、被实现为、或被称为:B节点、无线电网络控制器(“RNC”)、演进型B节点(eNodeB)、基站控制器(“BSC”)、基收发机站(“BTS”)、基站(“BS”)、收发机功能(“TF”)、无线电路由器、无线电收发机、基本服务集(“BSS”)、扩展服务集(“ESS”)、无线电基站(“RBS”)、或某个其他术语。
站(“STA”)还可包括、被实现为、或被称为:用户终端、接入终端(“AT”)、订户站、订户单元、移动站、远程站、远程终端、用户代理、用户设备、用户装备、或某个其他术语。在一些实现中,接入终端可以是蜂窝电话、无绳电话、会话发起协议(“SIP”)话机、无线本地环路(“WLL”)站、个人数字助理(“PDA”)、具有无线连接能力的手持式设备、或连接至无线调制解调器的某种其他合适的处理设备。相应地,本文中所教导的一个或多个方面可被纳入到电话(例如,蜂窝电话或智能电话)、计算机(例如,膝上型设备)、便携式通信设备、手持机、便携式计算设备(例如,个人数据助理)、娱乐设备(例如,音乐或视频设备、或卫星无线电)、游戏设备或系统、全球定位系统设备、或被配置成经由无线介质通信的任何其他合适的设备中。
图1解说了可在其中采用本公开的各方面的无线通信系统100的示例。无线通信系统100可按照无线标准(例如,802.11ax标准)来操作。无线通信系统100可包括AP 104,其与STA 106进行通信。
可将各种各样的过程和方法用于无线通信系统100中在AP 104与STA 106之间的传输。例如,可根据OFDM或OFDMA技术在AP 104与STA 106之间传送和接收信号。如果是这种情形,则无线通信系统100可被称为OFDM或OFDMA系统。替换地,可根据CDMA技术在AP 104与STA 106之间传送和接收信号。如果是这种情形,则无线通信系统100可被称为CDMA系统。
促成从AP 104至一个或多个STA 106的传输的通信链路可被称为下行链路(DL)108,而促成从一个或多个STA 106至AP 104的传输的通信链路可被称为上行链路(UL)110。替换地,下行链路108可被称为前向链路或前向信道,而上行链路110可被称为反向链路或反向信道。
AP 104可提供基本服务区(BSA)102中的无线通信覆盖。AP 104连同与该AP 104相关联并使用该AP 104来通信的STA 106一起可被称为基本服务集(BSS)。在一些实现中,无线通信系统100可以不具有中央AP 104,而是可以作为诸STA 106之间的对等网络起作用。相应地,本文中描述的AP 104的功能可以替换地由一个或多个STA 106来执行。
图2解说了可在无线通信系统100内采用的无线设备202中可利用的各种组件。无线设备202是可被配置成实现本文所描述的各种方法的设备的示例。例如,无线设备202可以是AP 104、或各STA 106之一。
无线设备202可包括处理器204,其控制无线设备202的操作。处理器204也可被称为中央处理单元(CPU)。可包括只读存储器(ROM)和随机存取存储器(RAM)两者的存储器206向处理器204提供指令和数据。存储器206的一部分还可包括非易失性随机存取存储器(NVRAM)。处理器204可基于存储在存储器206内的程序指令来执行逻辑和算术运算。存储器206中的指令可被执行以实现本文所描述的方法。
处理器204可包括用一个或多个处理器实现的处理系统或者可以是其组件。该一个或多个处理器可以用通用微处理器、微控制器、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、控制器、状态机、门控逻辑、分立硬件组件、专用硬件有限状态机、或能够对信息执行演算或其他操纵的任何其他合适实体的任何组合来实现。
处理系统还可包括用于存储软件的机器可读介质。软件应当被宽泛地解释成意指任何类型的指令,无论其被称作软件、固件、中间件、微代码、硬件描述语言、或是其他。指令可包括代码(例如,呈源代码格式、二进制代码格式、可执行代码格式、或任何其他合适的代码格式)。这些指令在由该一个或多个处理器执行时使处理系统执行本文中描述的各种功能。在一些实现中,处理器204、处理系统、指令、或其任何组合可控制一个或多个组件(例如,交织器或分段器)以根据频调规划来生成传输。
无线设备202还可包括外壳208,其可内含发射机210和接收机212以允许在无线设备202和远程位置之间传送和接收数据。发射机210和接收机212可被组合成收发机214。天线216可被附连到外壳208并且电耦合到收发机214。无线设备202还可包括(未示出)多个发射机、多个接收机、多个收发机、或多个天线,其可例如在MIMO通信期间被利用。
无线设备202还可包括信号检测器218,其可被用于检测和量化由收发机214接收到的信号电平。信号检测器218可检测诸如总能量、每副载波每码元能量、功率谱密度之类的信号以及其他信号。无线设备202还可包括用于处理信号的数字信号处理器(DSP)220。DSP 220可被配置成生成数据单元以供传输。在一些方面,数据单元可以是物理层数据单元(PPDU)。在一些方面,PPDU被称为分组。
在一些方面,无线设备202可进一步包括用户接口222。用户接口222可包括按键板、话筒、扬声器、显示器、或其他用户接口组件。用户接口222可包括向无线设备202的用户传达信息或从该用户接收输入的任何元件或组件。
无线设备202的各个组件可由总线系统226或其他接口耦合在一起。总线系统226可包括例如数据总线,以及除了数据总线之外还有电源总线、控制信号总线和状态信号总线。在一些实现中,无线设备202的各组件可以使用某种其他机制耦合在一起或者彼此接受或提供输入。
尽管图2中可解说数个分开的组件,但这些组件中的一者或多者可被组合或者使用其他技术来实现。例如,处理器204可被用来不仅实现上面关于处理器204描述的功能性,而且还实现上面关于信号检测器218或DSP 220描述的功能性。此外,图2中所解说的每个组件可使用多个分开的元件来实现。
如上面所讨论的,无线设备202可包括AP 104或STA 106,并且可被用于传送或接收通信。在无线网络中的各设备之间交换的通信可包括数据单元,其可包括分组或帧。在一些方面,数据单元可包括数据帧、控制帧或管理帧。数据帧可被用于从AP或STA向其他AP或STA传送数据。控制帧可与数据帧一起使用以用于执行各种操作并且可靠地递送数据(例如,确认收到数据、AP轮询、区域清除操作、信道捕获、载波侦听维护功能等)。管理帧可被用于各种监管功能(例如,用于加入和离开无线网络)。
本公开的某些方面支持允许AP 104以优化方式分配STA 106传输以提高效率。高效无线(HEW)站、利用802.11高效协议(诸如802.11ax)的站和使用较老或旧式802.11协议(诸如802.11b)的站在接入无线介质时都可以彼此竞争或协调。在一些实现中,本文所描述的高效802.11协议可允许HEW和旧式站根据各种OFDMA频调规划(其亦可被称为频调映射)来互操作。在一些实现中,HEW站可以按更高效的方式(诸如通过使用OFDMA中的多址技术)来接入无线介质。相应地,在公寓楼或人口稠密的公共空间的情形中,使用高效802.11协议的AP或STA可经历减少的等待时间和增加的网络吞吐量,即使活跃无线设备的数目增加亦如此,由此改善了用户体验。
在一些实现中,AP 104可根据针对HEW STA的各种DL频调规划来在无线介质上进行传送。例如,关于图1,STA 106A-106D可以是HEW STA。在一些实现中,HEW STA可使用为旧式STA的码元历时的四倍的码元历时来进行通信。相应地,所传送的每个码元在历时上可以是四倍的长度。在使用较长的码元历时的情况下,每个个体频调可使用要被传送的带宽的四分之一。例如,在各种实现中,1x码元历时可以是3.2μs,2x码元历时可以是6.4μs,而4x码元历时可以是12.8μs。AP 104可基于通信带宽、根据一个或多个频调规划来向HEW STA106A-106D传送消息。在一些方面,AP 104可被配置成使用OFDMA来同时向多个HEW STA进行传送。
用于多载波分配的高效频调规划设计
图3示出了示例2N频调规划300。在一些实现中,频调规划300在频域中可对应于使用2N点快速傅里叶变换(FFT)生成的OFDM频调。频调规划300包括索引为-N到N-1的2N个OFDM频调。频调规划300包括两个边缘或保护频调集合310、两个数据/导频频调集合320、以及直流(DC)频调集合330。在一些实现中,边缘或保护频调310和DC频调330可以为空。在一些实现中,频调规划300可包括另一合适数目的导频频调,或者可包括在其他合适的频调位置处的导频频调。
在一些方面,与各种IEEE 802.11协议相比,可提供使用4x码元历时来进行传输的OFDMA频调规划。例如,4x码元历时可使用各自在历时上可以为12.8μs的数个码元(不同于某些其他IEEE 802.11协议中的在历时上可以为3.2μs的码元)。
在一些方面,与各种IEEE 802.11协议相比,可提供用于使用2x码元历时来进行传输的OFDMA频调规划。例如,2x码元历时可使用各自在历时上可以为6.4μs的数个码元(不同于某些其他IEEE 802.11协议中的在历时上可以为3.2μs或12.8μs的码元)。
在一些方面,可在任何数目的不同用户之间划分传输300的数据/导频频调320。例如,可在一个到八个用户之间划分数据/导频频调320。为了划分数据/导频频调320,AP 104或另一设备可发信号通知各个设备,从而指示在特定传输中哪些设备可在(数据/导频频调320的)哪些频调上进行传送或接收。相应地,用于划分数据/导频频调320的系统和方法可能是合乎期望的,并且该划分可基于频调规划。
可基于数个不同特性来选择频调规划。例如,具有可跨大部分或全部带宽保持一致的简单频调规划可以是有益的。例如,可在20、40、80、160、240或320MHz(或其组合)上传送OFDMA传输,并且可能期望使用可被用于这些带宽中的任一者的频调规划。此外,频调规划可能是简单的,因为它使用较小数目的构建块大小。例如,频调规划可包含可被称为资源单元(RU)的单元。该单元可被用于向特定用户指派特定量的无线资源(例如,带宽或特定频调)。例如,一个用户可被指派作为数个RU的带宽,并且传输的数据/导频频调320可被分解成数个RU。
还可基于效率来选择频调规划。例如,不同带宽(例如,20、40、80、160、240或320MHz或其组合)的传输可具有不同数目的频调。减少剩余频调的数目可以是有益的。此外,如果频调规划被配置成在一些实现中保留20、40、80、160、240或320MHz边界则可以是有益的。例如,可期望具有允许每个20、40、80、160、240或320MHz部分彼此分开解码的频调规划,而非具有可位于在带宽的两个不同的20、40、80、160、240或320MHz部分之间的边界上的分配。例如,使干扰模式与20、40、80、160、240或320MHz信道对齐可以是有益的。此外,具有信道绑定(其亦可称为前置码穿孔)可以是有益的,其使得在20MHz传输和40MHz传输可被传送时,当在80、160、240或320MHz上传送时在传输中创建20MHz的“空洞”。这可允许例如在带宽的该未使用部分中传送旧式分组。该穿孔可应用于任何传输(例如,20、40、80、160、240或320MHz传输),并且可在传输中创建至少20MHz的“空洞”,而不管所使用的信道或带宽如何。最后,使用在各种传输中(诸如在不同带宽中)提供固定导频频调位置的频调规划也可以是有利的。
由于数据传输速率需求随着附加设备加入网络或供在网络上传输的附加数据增加而增加,因此可引入更大的信道带宽(例如,用于正交频分多址(OFDMA)传输)。在一个示例中,可引入针对320MHz总信道带宽的频调规划,以辅助增加峰值系统传输数据率并更高效地利用可用信道。例如,由于新频率可供使用(例如,6GHz),针对更大的总信道带宽的这些新频调规划可以更高效地利用新近可用的信道。此外,可由这些新频调规划提供的增加的总带宽可允许更佳的速率对范围折衷。在该情形中,如果使用更大的总带宽,则相同或相似的传输速率可被用于提供更大的覆盖。另外,更大的总信道带宽还可提高频调规划效率(例如,对于特定BW,有多少频调可被用于数据传输),并且还可增加保护频带数目。如同正被使用的任何总信道带宽一样,可取决于信道可用性而利用不同模式。例如,当前的80MHz信道带宽可被分成20MHz、40MHz或80MHz模式。
图4A和4B是可供用于240或320MHz传输的不同模式400a-400g的解说。如图4A和4B中示出的,240或320MHz传输可按如400a-400g中示出的至少九种不同模式来传送。图4A中示出了模式400a-400f。图4B中示出了模式400g(选项1、2和3)。模式400a-400g中的每一者可表示信道带宽(BW)和可取决于(例如2.4、5或6GHz网络中的)信道可用性而使用的频带的不同组合。在第一模式400a中,320MHz传输可在单个毗连的320MHz频带中传送。在第二模式400b中,320MHz传输可在两个不相交的160MHz频带中传送,其中这些不相交的160MHz频带中的每一者是毗连频带。如所示出的,这些频带中的每个频带由未使用的子带(SB)分隔开。在该上下文中,未使用SB是指不是无线信道的一部分的频带部分。在第三模式400c中,320MHz传输可在三个不相交的频带中传送,其中这些不相交的频带中的一者是160MHz频率毗连频带,而另外两个不相交频带是80MHz频率毗连频带。在该第三模式400c中,虽然320MHz传输被示为首先是160MHz频带、继之以两个80MHz频带,但160和80MHz频带的该布置可以按任何次序。如所示出的,这些频带中的每个频带由未使用SB分隔开。在第四模式400d中,320MHz传输可在四个不相交的频带中传送,其中这些不相交的频带中的每一者是80MHz频率毗连频带。在第五模式400e中,240MHz带宽可以是由未使用的80MHz频带分隔开的160MHz和80MHz频带。在第六模式400f中,240MHz带宽可以是由未使用的80MHz频带分隔开的三个80MHz频带。在第七模式400g中,240MHz传输可在单个毗连的240MHz带宽中传送。在第七模式400g的第一选项中,240MHz带宽可以是单个毗连的240MHz频带,其中在该240MHz频带之前或之后是单个未使用的80MHz频带。在第七模式400g的第二选项中,240MHz带宽可以是彼此毗邻的单个160MHz频带和单个80MHz频带,由此形成毗连的240MHz带宽。在一些实现中,160MHz频带将在80MHz频带之前,或者反之。这些160MHz和80MHz频带之前或之后可以是未使用的80MHz频带。在第七模式400g的第三选项中,240MHz带宽可以是三个连贯的80MHz频带,由此形成毗连的240MHz带宽。这些80MHz频带之前或之后可以是未使用的80MHz频带。对于本文中描述的这些模式中的任何模式,将毗连频带分隔开的未使用SB可以是任何BW或不同BW。在一些实现中,可针对80MHz、160MHz和320MHz带宽大小的毗连频带来设计频调规划并完成信号生成。在一些实现中,可针对240MHz带宽大小的毗连频带来设计频调规划并完成信号生成。
由此,模式400a-400g中的每一者可具有用于创建320MHz传输的一个或多个选项。模式400a可包括(1)具有单个320MHz频调规划的第一选项;(2)复制两个160MHz频调规划的第二选项,在两个PHY 160MHz子信道中各一个并由未使用SB分隔开;以及(3)复制四个80MHz频调规划的第三选项,在由未使用SB分隔开的四个PHY 80MHz子信道中各一个。模式400b可包括(1)使用各在一个PHY 160MHz子信道中的两个160MHz频调规划的第一选项,以及(2)复制四个80MHz频调规划的第二选项,在四个PHY 80MHz子信道中各一个并由未使用SB分隔开。模式400c可包括(1)具有在一个PHY 160MHz子信道中的单个160MHz频调规划并且分别在其余PHY 80MHz子信道中复制两个80MHz频带规划的第一选项,以及(2)复制四个80MHz频调规划的第二选项,在由未使用SB分隔开的四个PHY 80MHz子信道中各一个。模式400d可包括复制四个80MHz频调规划的选项,在由未使用SB分隔开的四个PHY 80MHz子信道中各一个。模式400e可包括对160MHz频带使用160MHz频调规划以及对80MHz频带使用80MHz频调规划的第一选项。模式400e可包括使用四个重复80MHz频调规划的第二选项,在诸80MHz频带中各一个。模式400f可复制三个80MHz频调规划,在诸80MHz频带中各一个。模式400g可包括(1)对240MHz频带使用单个240MHz频调规划的第一选项,(2)使用160MHz频调规划和在未使用SB之后或之前的80MHz频调规划的第二选项,以及(3)使用在未使用SB之后或之前的三个80MHz频调规划的第三选项。在一些实现中,模式400g的选项2和3可对应于针对模式400e和400f的频调规划提议。
基于这些模式和选项,可针对80、160、240或320MHz BW来设计或生成不同的频调规划。用于3码元历时选项的针对80MHz、160MHz和320MHz的频调规划设计是构建块。在一些实现中,用于3码元历时选项的针对240MHz的频调规划设计可被包括在构建块中。在一些实现中,不同频带可使用不同的码元历时。例如,对于240MHz频带的第二选项,160MHz频带可使用第一码元历时,而80MHz频带可使用与第一码元历时不同的第二码元历时。在一些实现中,针对240MHz带宽的频调规划可以是基于构建块(例如,本文中讨论的80和160MHz传输)来生成或设计的。
本文中关于240或320MHz信道BW所描述的不同模式取决于所使用的模式可以是码元历时和频调间隔的不同选项。
图5A–5B示出了在80、160和320MHz传输中的每一者下针对不同FFT大小和码元历时的示例频调间隔和索引范围。各种802.11协议可使用1x码元历时(例如,802.11a至802.11ac)。1x码元历时可具有312.5kHz的频调间隔。其他802.11协议可使用4x码元历时(例如,802.11ax)。4x码元历时可具有78.125kHz的频调间隔。下一代802.11设备和标准可利用1x或4x码元历时,或者可引入或利用具有156.25kHz的频调间隔的6.4μs的2x码元历时。具体而言,图5A示出了用于每个选项(例如,码元历时和频调间隔的组合)的FFT大小。例如,80MHz信道BW具有在1x码元历时和312.5kHz间隔(选项1)下可用的256个频调、在2x码元历时和156.25kHz间隔(选项2)下可用的512个频调、以及在4x码元历时和78.125kHz间隔(选项3)下可用的1024个频调。160MHz信道BW具有在1x码元历时和312.5kHz间隔下可用的512个频调、在2x码元历时和156.25kHz间隔下可用的1024个频调、以及在4x码元历时和78.125kHz间隔下可用的2048个频调。320MHz信道BW具有在1x码元历时和312.5kHz间隔下可用的1024个频调、在2x码元历时和156.25kHz间隔下可用的2048个频调、以及在4x码元历时和78.125kHz间隔下可用的4096个频调。在一些方面,与4x码元历时相比,1x和2x码元历时可具有相似的益处。在一些方面,与因其较大的FFT大小而具有较高的复杂度、等待时间和存储器要求的4x码元历时相比,1x和2x码元历时可因对应的较小FFT大小而具有较低的复杂度、等待时间和存储器要求。相较于具有较高的频调规划和保护区间(GI)效率的4x码元历时,1x和2x码元历时各自具有较低的频调规划和循环前缀(CP)或GI效率。此外,1x和2x码元历时可能不具有室外支持,而4x码元历时可具有室外支持,尽管320MHz带宽通常会在室内使用。1x和2x码元历时可能需要新的设计来提供OFDMA支持,因为它们无法与DL/ULOFDMA中的高效STA混合。然而,4x码元历时可提供OFDMA支持,因为它可以与DL/UL OFDMA中的HE STA混合。当不考虑存储器大小时,则4x码元历时可以是针对码元历时的更自然的选择。但是,如果目标是维持存储器大小,则可考虑1x或2x码元历时。对于基于1x触发的PPDU,鉴于1.6μs GI,50%的UL开销太高,因此2x码元历时或许更有可能作为选择。在一些实现中,减小的码元历时可以有利地导致降低的复杂度和降低的存储器利用。
相应地,图5B中示出了针对这些选项中的每一者的频调的索引范围,其示出了256个频调具有范围[-128、127],512个频调具有范围[-256、255],1024个频调具有范围[-512、511],2048个频调具有范围[-1024、1023],并且4096个频调具有范围[-2048、2047]。
概览
针对不相交的80MHz信道的80MHz 4x码元历时频调规划可基于802.11ax 80MHz单用户和/或OFDMA频调规划。针对与其他信道不相交的毗连160MHz信道的160MHz 4x码元历时频调规划可使用802.11ax单用户或OFDMA 160MHz频调规划。
针对毗连320MHz信道的320MHz 4x码元历时频调规划可使用在320MHz信道的每个160MHz子信道中复制的两个160MHz 4x码元历时单用户或OFDMA频调规划。在该情形中,四个802.11ax 80MHz 4x码元历时单用户或OFDMA频调规划在320MHz信道的每个80MHz子信道中被复制。
图6A–6C示出了使用26、52、106、242、996和其他频调分配的示例20MHz、40MHz和80MHz传输。
示例实现
具体而言,图6A示出了示例20MHz传输600A,其具有6个左边缘频调、7个DC频调和5个右边缘频调、以及总共238个用于OFDMA的可用频调或242个用于单用户的可用频调。尽管图6A示出了使用26、52、106和242频调块的各种组合的四个示例传输600A,但是任何给定传输内的分配可包括不同大小或不同布置的多个频调块。
图6B示出了示例40MHz传输600B,其具有12个左边缘频调、5个DC频调和11个右边缘频调、以及总共484个可用频调。尽管图6B示出了使用26、52、106和242频调块的各种组合的四个示例传输600B,但是任何给定传输内的分配可包括不同大小或具有不同布置的多个频调块。在图6B中,每个40MHz传输600B是两个20MHz传输650B的重复。在一些实现中,这两个20MHz传输650B可类似于图6A的20MHz传输600A或本文中讨论的任何其他20MHz传输。
图6C示出了示例80MHz传输600C,其具有12个左边缘频调、7个DC频调和11个右边缘频调、以及用于OFDMA的总共994个可用频调、以及在减少的DC频调数目为5的情况下用于整个带宽(BW)分配的总共996个可用频调。尽管图6C示出了使用26、52、106、242和996频调块的各种组合的五个示例传输600C,但是任何给定传输内的分配可包括不同大小或具有不同布置的多个频调块。
所解说的传输600C中的第五传输包括在各种配置中具有5个DC频调的单用户频调规划。相应地,SU频调规划可包括996个可用频调。
在一些实现中,较大BW的传输(例如,160MHz、240MHz或320MHz)可以是基于关于图6A-6C所示出和描述的20、40或80MHz频调规划来生成的。例如,40MHz传输和80MHz传输可被复制(例如,各复制四次)以分别创建160MHz和320MHz传输。
非毗连和分数带宽
如上面所讨论的,AP 104可向每个STA 106A-106D分配一个或多个RU。在一些实现中,此类分配在每个传输的带宽内可以是毗连的。在其他实现中,这些分配可以是非毗连的。在一些实现中,一个或多个未使用SB可被选择以用于干扰无线传输或被确定为包含干扰无线传输。此类SB可被称为空子带,并且可包含一个或多个未经分配的RU。
尽管频带的各个部分在本文中可被称为子带,但是本领域普通技术人员将领会,在一些实现中,子带可被称为频带、信道或子信道。如本文所使用的,“BSS BW”可指代用于特定BSS(例如整个信道)的带宽设立。“PPDU BW”可指代所传送的特定PPDU的带宽。例如,AP104(图1)可设立具有80MHz BSS BW的BSS。在80MHz BSS BW内,STA 106A–106D可因副信道的空SB中的干扰而在20+40MHz分配上进行传送。由此,对于FDMA分组,第一分组的PPDU BW可以是20MHz,并且第二分组的PPDU BW可以是40MHz。对于OFDMA分组,单个分组的PPDU BW可以是20+40MHz。尽管PPDU BW在本文中是以20、40和80MHz分配的方式进行讨论,但本领域普通技术人员将领会,本文所描述的特征可被应用于其他大小或对齐方式的BW。
受影响RU的确定
分数或非毗连信道分配在各种各样的BSS BW中可用,包括80MHz、160MHz、80+80MHz、240MHz、160+80MHz(或80+160MHz)、80+80+80MHz(或3x80MHz)、320MHz、160+160MHz(或2x160 MHz)、160+80+80MHz(或160+2x80 MHz)或80+80+80+80MHz(或4x80 MHz)。整个PPDU BW频调规划可能不适用于上面所讨论的信道绑定情形。例如,空SB可能无法与物理20MHz边界对齐,并且未经修改的频调规划中的RU边界可能导致信道间干扰缓解不足。
回头参照图6C,示出了多个物理20MHz子信道681-684和相关联的边界。尽管所解说的传输600C是80MHz传输,但本文中的教导也可被应用于40MHz传输、160MHz传输、80+80MHz传输(其例如可包括两个重复的80MHz传输)、160+160MHz传输、320MHz传输、4x80 MHz传输(其例如可包括两个重复的160MHz传输)。
如图6C中示出的,第一242频调块685从第一物理20MHz子信道681的边界680偏移2个频调。第二242频调块686包括跨20MHz边界680的2个频调。相应地,在第一物理20MHz子信道681为空SB并且指定了3个附加左保护频调的实现中,这2个交叠频调加上3个左保护频调等于5个总频调691,其可被称为受影响频调。此类受影响频调可与空SB或其保护频带交叠。类似地,因为第二242频调块686包括受影响频调,所以它可被称为受影响RU。此外,在第二20MHz子信道682为空SB的情况下,整个第二242频调块686可受影响(240个交叠频调加上2个右边缘频调)。
在一些实现中,7个DC频调可被拆分成跨20MHz边界的3+4个频调,并且可用作20MHz边界的保护频带。第三242频调块687包括跨20MHz边界690的3个频调,因此假定有2个右保护频调,则在第四物理20MHz子信道684为空SB时,有总共5个受影响频调692。第四242频调块688与20MHz边界690相距3个频调。尽管前面的描述涉及242频调块685-689,但是26、56和106频调块可按相同的方式受影响(并且针对不同的PHY 20MHz子信道,相同RU的不同频调可受影响)。例如,106频调块695(以及其他频调块)可包括关于第一物理20MHz子信道681的至少4个受影响频调693,并且关于第二物理20MHz子信道682的所有频调可受影响,以此类推。此外,在保护频调数目更低或更高的实现中,可分别影响更多或更少的总频调。
用于非毗连信道的独立PPDU
图7示出了RU副载波索引的示例。如图7中示出的RU副载波索引可对应于本文中描述的160MHz和320MHz 4x码元历时频调规划(也参考160MHz选项和320MHz选项来标记)。例如,关于160MHz选项所描述的160MHz频调规划可具有26、52、106、242、484和996个频调的RU大小。较低80MHz子信道中的副载波索引可减小512,而较高80MHz子信道中的副载波索引可增加512。例如,80MHz频调规划可使用索引范围[-512,511],并且可具有1024点。160MHz频调规划可复制两个80MHz频调规划。由此,160MHz频调规划的下半部分可使用索引范围[-1024,-1],其来自80MHz频调规划索引范围减去512(例如,[-512,511]–512=[-1024,-1])。上半部分可使用范围[0,1024],其来自80MHz频调规划索引范围加上512(例如,[-512,511]+512=[0,1023])。通过参考索引如何相关,可基于或参考80MHz来描述160MHz中的RU边界、空频调或导频频调。
关于320MHz选项所描述的320MHz频调规划也可具有26、52、106、242、484和996个频调的RU大小。最低80MHz子信道中的副载波索引可减小1536,而第二最低80MHz子信道中的副载波索引减小512。第二最高80MHz子信道中的副载波索引可增加512,而最高80MHz子信道中的副载波索引可增加1536。
图8A示出了使用3HE80频调规划的重复的示例4x 240MHz频调规划提议。
图8B示出了使用2个HE160频调规划的重复或4个HE80频调规划的重复的示例4x320MHz频调规划提议。
在一些方面,所选4x频调规划可以是独立于硬件实现且与带宽模式(例如,320MHz相对于4x80 MHz,或者160+80MHz相对于3x80 MHz)无关地选择的。
图9A-9C示出了RU副载波索引的示例。
图9A示出了用于极高吞吐量(EHT)80(2x选项1)的26频调、52频调、106频调和242频调RU频调规划。频调规划由HE40 SU或OFDMA频调规划超频2倍来形成。26频调RU频调规划具有约4.1MHz的粒度。如所示出的,各26频调RU被各种数量的空频调(例如,1个空频调或2个空频调)分隔开,其具有12个左+11个右保护频调配置和5频调DC。52频调RU频调规划具有约8.1MHz的粒度。如所示出的,各52频调RU被各种数量的空频调(例如,1或2个空频调)分隔开,其具有12个左+11个右保护频调配置和5频调DC。106频调RU频调规划具有约16.6MHz的粒度。如所示出的,各106频调RU被1个空频调分隔开,其具有12个左+11个右保护频调配置和5频调DC。该1个空频调可将106频调RU与边缘频调、26频调RU和5频调DC分隔开。242频调RU频调规划具有约37.8MHz的粒度。如所示出的,242频调RU具有12个左+11个右保护频调配置和5频调DC。在此类方面,用于对这些频调规划进行前置码穿孔的最小频率组块是PHY20MHz。如本文中提及的,由于第5和第14个26频调RU跨越PHY 20MHz边界,因此在使用前置码穿孔的情况下这些RU可被禁用。
EHT160频调规划和EHT320频调规划可分别基于各自超频2倍的HE80和HE160频调规划(2x选项2A)。图9B示出了用于通过HE80/HE160超频2倍形成的2xEHT160/EHT320(2x选项2A)的26频调、52频调、106频调、242频调、484频调和996频调RU频调规划。26频调RU频调规划具有约4.1MHz的粒度。如所示出的,各26频调RU被1或2个空频调分隔开,其具有12个左+11个右保护频调配置和7频调DC,其中在该7频调DC的任一侧上具有13频调RU。52频调RU频调规划具有约8.1MHz的粒度。如所示出的,各52频调RU被1或2个空频调分隔开,其具有12个左+11个右保护频调配置和7频调DC,其中在该7频调DC的任一侧上具有13频调RU。106频调RU频调规划具有约16.6MHz的粒度。如所示出的,各106频调RU被1或2个空频调分隔开,其具有12个左+11个右保护频调配置和7频调DC,其中在该7频调DC的任一侧上具有13频调RU。242频调RU频调规划具有约37.8MHz的粒度。如图所示出的,242频调RU具有12个左+11个右保护频调配置和7频调DC,其中在该7频调DC的任一侧上具有13频调RU。如所示出的,484频调RU具有12个左+11个右保护频调配置和7频调DC,其中在该7频调DC的任一侧上具有13频调RU。如所示出的,996频调RU是具有12个左+11个右保护频调配置且不具有DC的单个996频调RU。不会在PHY 20MHz组块处发生前置码穿孔(例如,对齐),因为这些频调规划对于前置码穿孔而言不友好。例如,在PHY 20MHz组块的情况下,各种频调跨越20MHz边界,包括第5个26频调RU、第10个26频调RU、第5个52频调RU、第3个106频调RU、第14个26频调RU、第24个26频调RU、第28个26频调RU、第12个52频调RU、第6个106频调RU、以及第33个26频调RU。这些RU中的每一者可具有跨越相应20MHz边界的不同数目的频调。
替换地,EHT160和EHT320频调规划可分别基于两个和四个EHT80频调规划的重复(2x选项2B)。图9C示出了用于使用2或4EHT80频调规划的重复的2xEHT160/EHT320(2x选项2B)的26频调、52频调、106频调、242频调和996频调RU频调规划。26频调RU频调规划具有约4.1MHz的粒度。如所示出的,各26频调RU被1或2个空频调分隔开,其具有12个左+11个右保护频调配置、将第4与第5个PHY20块分隔开的23频调DC、以及将第2与第3个PHY20块以及第6与第7个PHY20块分隔开的5个空频调。52频调RU频调规划具有约8.1MHz的粒度。如所示出的,各52频调RU被1或2个空频调分隔开,其具有12个左+11个右保护频调配置、将第4与第5个PHY20块分隔开的23频调DC、以及将第2与第3个PHY20块以及第6与第7个PHY20块分隔开的5个空频调。106频调RU频调规划具有约16.6MHz的粒度。如所示出的,各106频调RU被26频调RU和1个空频调分隔开,其具有12个左+11个右保护频调配置、以及将第4与第5个PHY20块分隔开的23频调DC、以及将第2与第3个PHY20块以及第6与第7个PHY20块分隔开的5个空频调。242频调RU频调规划具有约37.8MHz的粒度。如所示出的,各242频调RU被5个空频调分隔开,其具有12个左+11个右保护频调配置和23频调DC。如所示出的,996频调RU是具有12个左+11个右保护频调配置且不具有DC的单个996频调RU。用于前置码穿孔的PHY 20MHz边界对齐可以通过禁用第5、第14、第23和第32个26频调RU来实现,其具有相比于2x选项2A而言略低的效率。
在涉及EHT BW及更高的总BW的一些实现中,可实现因EHT及更高的总BW而异的短训练字段(STF)和长训练字段(LTF)序列设计。类似地,也可实现计及穿孔的STF和LTF序列设计。例如,当与STF序列中的频调索引相对应的值落在未被指派用户的RU内时,这些STF序列中的系数可被设为零。
由于相邻BSS对某些信道或子信道的占用、现行技术对某些信道或子信道的占用等,可存在穿孔。在一种或多种带宽模式中,穿孔可使得BW的至少一部分不可用于传输或通信。在一些实现中,穿孔可基于预定BW(诸如20MHz)的倍数或基于RU大小。在一些实现中,当BW的一个或多个子信道或部分被穿孔时,所选频调规划可基于可用的(例如,未经穿孔的)RU。
EHT频调规划设计
EHT频调规划可类似于如图6A-6B、16A-16C和17A-17B中进一步详细地讨论的4x码元历时频调规划。对于240或320MHz信道,可实现2x或4x码元历时频调规划。例如,用于240或320MHz信道的频调规划以及信号生成可以是针对具有80、160和320MHz大小的每个毗连子信道来完成的。用于240或320MHz信道的此类频调规划可针对分别基于HE80和HE160频调规划的80和160MHz子信道来实现4x码元历时频调规划。这些240和320MHz信道可分别使用3或4个HE80频调规划的重复。例如,图8A和图8B示出了用于240和320MHz信道的由HE80频调规划构成的一些示例频调规划。2x码元历时频调规划中用于80MHz信道的频调规划可使用超频2倍的HE40频调规划。2x码元历时频调规划中的160和320MHz信道可要么分别使用超频2倍的HE80和HE160频调规划,要么分别复制2个和4个EHT 80MHz信道频调规划。2x码元历时频调规划中的240MHz信道可使用超频2倍的[HE40HE80](当240MHz信道被视为80+160MHz时)或超频2倍的[HE80 HE40](当240MHz信道被视为160+80MHz时)或超频2倍的[HE40 HE40HE40](当240MHz信道被视为3x80 MHz时)。例如,参见图9A-9C。
用于240MHz和320MHz信道的频调规划可基于用于较小子信道的频调规划的重复或扩展。图16A示出了用于20MHz信道的示例频调规划。图16B示出了用于40MHz信道的示例频调规划。图16C示出了用于80MHz信道的示例频调规划。在一些实现中,用于20MHz、40MHz或60MHz的频调规划可被扩展以填充240MHz或320MHz带宽。
频调规划还可定义空副载波和导频副载波。在一些实现中,空副载波和导频副载波可基于较小子信道。图17A示出了用于20、40和80MHz信道的示例空副载波索引。图17B示出了用于20、40、80和160MHz信道的示例导频副载波索引。
EHT短训练字段(STF)序列设计
用于2x码元历时频调规划的EHT STF序列可如本文中所描述地设计,并且可适用于所有带宽模式(例如,可适用于本文中所描述的总BW以及未在本文中显式地讨论的任何附加BW)。然而,对于240或320MHz的总BW,STF序列设计可以是级联STF序列和相位旋转设计。
2x频调规划下的EHT STF频调设计
针对2x码元历时的STF频调规划可被设计成使得在4x码元历时参数设计下,每个26频调RU在非基于触发的(非TB)EHT-STF中具有3-4个STF频调以及在基于触发的(TB)EHT-STF中具有6-7个STF频调。图10-12中提供了进一步细节。
在基于2x码元历时频调规划的EHT 80和160MHz信道中,由于每个数据频调规划基于超频2倍的HE40和HE80频调规划,因此每个26频调RU跨越更宽范围的频调(例如,在4x码元历时频调规划中为26x2-1=51个频调)。由此,相比于4x码元历时频调规划而言,非TBEHT STF和TB EHT-STF在2x码元历时频调规划中提供了恰适的频调覆盖。由此,EHT 80和160MHz信道可对相应BW中的HE-STF使用相同的STF频调设计。EHT 320MHz信道可对该EHT320MHz信道的每个80MHz子信道中的80MHz HE-STF使用相同的STF频调设计。
图10示出了用于HE80频调规划的26频调RU中的短训练字段(STF)频调的示例明细。该明细指示11ax HE80中的每个26频调RU中的STF频调在4x码元历时参数设计下的映射,其中对非TB HE-STF使用1-2个STF频调并且对TB HE-STF使用3-4个STF频调。HE160频调规划可以是类似的。
图11示出了2x码元历时下用于80MHz频调规划的26频调RU中的STF频调的示例明细。该明细指示2x码元历时的EHT 80MHz频调规划中的每个26频调RU中的STF频调在4x码元历时参数设计下的映射,其中对非TB EHT-STF使用3-4个STF频调并且对TB EHT-STF使用6-7个STF频调。
图12示出了2x码元历时下用于160MHz频调规划的26频调RU中的STF频调的示例明细。该明细指示2x码元历时的EHT 160MHz频调规划中的每个26频调RU中的STF频调在4x码元历时参数设计下的映射,其中对非TB EHT-STF使用3-4个STF频调并且对TB EHT-STF使用6-7个STF频调。
EHT STF序列设计
对于160MHz及更小的信道,非TB STF序列可被用于非TB PPDU,并且TB STF序列可被用于TB PPDU。对于160MHz的总BW中的160MHz模式和80+80MHz模式,跨分段的级联STF序列可被标示为[STF_0,STF_1],其中STF_i是用于第i最低80MHz子信道的STF序列。在一些实现中,用于160MHz模式和80+80MHz模式两者的级联非TB STF序列是相同的。例如,这些级联非TB STF序列可以是用于非TB PPDU的两个HE或其他80MHz非TB STF序列的重复,其在一个或多个40MHz子信道中遵从符号翻转(即,180度相位旋转)。在一些实现中,用于160MHz模式和80+80MHz模式两者的级联TB STF序列是相同的,其中它们可以是用于TB PPDU的两个HE或其他80MHz TB STF序列的重复,其在一个或多个40MHz子信道中遵从符号翻转(即,180度相位旋转)。在一些实现中,对于非TB STF序列和TB序列两者,在第0和第1最低40MHz子信道(即,最低80MHz子信道)中可不存在符号翻转或相位旋转,并且相位旋转系数可被预先确定成在第2最低40MHz子信道中为-1以及在第3最低(即,最高)40MHz子信道中为+1。
对于240和320MHz总BW,在一些实现中,相同的非TB STF序列可被用于非TB PPDU并且相同的TB STF序列可被用于TB PPDU(如上所述),而不管用于数据频调规划的码元历时如何(例如,不管频调规划是2x码元历时频调规划还是4x码元历时频调规划)。在一些实现中,在形成总240MHz BW的模式中,跨分段的级联STF序列可被标示为[STF_0,STF_1,STF_2],其中STF_i是用于第i最低80MHz子信道的STF序列。在一些实现中,级联非TB STF序列是用于非TB PPDU的三个HE或其他80MHz非TB STF序列的重复,其在一个或多个子信道中遵从符号翻转或相位旋转。在一些实现中,级联TB STF序列是用于TB PPDU的三个HE或其他80MHz TB STF序列的重复,其在一个或多个子带中遵从符号翻转或相位旋转。在一些实现中,在形成总320MHz BW的模式中,跨分段的级联STF序列可被标示为[STF_0,STF_1,STF_2,STF_3],其中STF_i是用于第i最低80MHz子信道的STF序列。在一些实现中,级联非TB STF序列是用于非TB PPDU的四个HE或其他80MHz非TB STF序列的重复,其在一个或多个子带中遵从符号翻转或相位旋转。在一些实现中,级联TB STF序列是用于TB PPDU的四个HE或其他80MHz TB STF序列的重复,其在一个或多个子信道中遵从符号翻转或相位旋转。
基本级联STF序列
基本级联STF序列可涉及多个HE或其他80MHz STF序列的重复,而在任何子信道中没有符号翻转或相位旋转。在一些实现中,基本级联STF序列可针对非TB STF序列和TB STF序列两者来实现。在一些实现中,在240或320MHz总BW中,非TB HE-STF序列中的基本级联STF序列可包括使用HES-496:16:496={M,1,-M,0,-M,1,-M}*(1+j)/sqrt(2)的第0、第1和第2最低80MHz分段中的每一者。在一些实现中,在240或320MHz总BW中,TB HE-STF序列中的基本级联STF序列可包括使用HES-504:8:504={M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M}*(1+j)/sqrt(2),HES-504=0,HES504=0的第0、第1、第2和第3最低80MHz分段中的每一者。
相位旋转设计
在一些实现中,一个或多个级联STF序列可包括符号翻转或相位旋转。例如,可向240或320MHz总BW的一个或多个子信道中的基本STF序列应用一个或多个相位旋转(例如,+1、+j、-1、-j,其分别表示0、90、180、270度相位旋转),以使STF信号的峰均功率比(PAPR)最小化。在一些实现中,可评估PAPR并将其用作毗连240和320MHz BW中的条件或因素。
在一些实现中,每个40MHz子信道可具有它自己的相位旋转系数。相位旋转设计或EHT STF序列中使用的子信道的大小可基于一个或多个旧式系统子信道大小。在一些实现中,非TB STF和TB STF序列中的相位旋转系数可以不相同。在一些实现中,总160MHz BW中的相位旋转系数可以不是总240和320MHz BW中的相位旋转系数的一部分或者不与之相同。在一些实现中,总240MHz BW中的相位旋转系数可以不是总320MHz BW中的相位旋转系数的一部分或者不与之相同。相应地,在选项0中,可向每个40MHz子信道应用随机或普通相位旋转系数。替换地,在选项0a中,将不向每个40MHz子信道应用相位旋转,这意味着该序列是基本级联STF序列。在一些实现中,在每个80MHz子信道的80MHz中复制HE-STF。在一些实现中,选项0b可涉及第0和第2个80MHz子信道没有相位旋转,而第1和第3个80MHz子信道有与旧式系统中的160和80+80MHz子信道中的较高80MHz子信道相同的相位旋转。在一些实现中,EHTSTF序列可在第0和第1最低80MHz子信道以及第2和第3最低80MHz子信道中使用80+80MHz形式的HE-STF。
在一些实现中,选项1涉及在第0和第1最低40MHz子信道(例如,第0最低80MHz子信道)中没有相位旋转。在一些实现中,在第四选项中,其他40MHz子信道可被指派与第0和第1最低40MHz子信道中的相位旋转系数相似或不同的相位旋转系数。在一些实现中,选项2涉及在第0和第1最低40MHz(例如,第0最低80MHz)子信道中没有相位旋转。在一些实现中,在第五选项中,第2和第3最低40MHz(例如,第1最低80MHz)子带分别使用-1和+1作为相位旋转系数。在一些实现中,其他40MHz子信道可被指派与针对第五选项的其他40MHz子信道所标识的相位旋转系数相同或不同的相位旋转系数。在一些实现中,在第五选项中,第0和第1最低80MHz的级联STF序列与旧式系统中的160和80+80MHz子信道中的级联STF序列相同。在一些实现中,除了选项2之外还应用选项3,从而进一步使得对于相同的总BW,非TB STF序列中的相位旋转系数与TB STF序列中的相位旋转系数相同。在一些实现中,除了选项2之外还应用选项4,并进一步迫使总240MHz BW中的第4和第5最低40MHz(即,第2最低80MHz)子信道使用与总320MHz BW中所使用的相位旋转系数相同的相位旋转系数。在一些实现中,在选项3之上应用选项5,从而进一步迫使总240MHz BW中的第4和第5最低40MHz(即,第2最低80MHz)子信道使用与总320MHz BW中的相位旋转系数相同的相位旋转系数。
在一些实现中,对于相位旋转系数为a_coef(0:5)的非TB HE-STF序列,第0最低80MHz片段使用HES-496:16:496={a_coef(0)*[M,1,-M],0,a_coef(1)*[-M,1,-M]}*(1+j)/sqrt(2),并设置a_coef(0:1)=1。在一些实现中,第1最低80MHz片段使用HES-496:16:496={a_coef(2)*[M,1,-M],0,a_coef(3)*[-M,1,-M]}*(1+j)/sqrt(2)。在一些实现中,第2最低80MHz片段使用HES-496:16:496={a_coef(4)*[M,1,-M],0,a_coef(5)*[-M,1,-M]}*(1+j)/sqrt(2)。在一些实现中,对于相位旋转系数为b_coef(0:5)的TB HE-STF序列,第0最低80MHz片段使用HES-504:8:504={b_coef(0)*[M,-1,M,-1,-M,-1,M],0,b_coef(1)*[-M,1,M,1,-M,1,-M]}*(1+j)/sqrt(2),HES-504=0,HES504=0,并设置b_coef(0:1)=1。在一些实现中,第1最低80MHz片段使用HES-504:8:504={b_coef(2)*[M,-1,M,-1,-M,-1,M],0,b_coef(3)*[-M,1,M,1,-M,1,-M]}*(1+j)/sqrt(2),HES-504=0,HES504=0。在一些实现中,第2最低80MHz片段使用HES-504:8:504={b_coef(4)*[M,-1,M,-1,-M,-1,M],0,b_coef(5)*[-M,1,M,1,-M,1,-M]}*(1+j)/sqrt(2),HES-504=0,HES504=0。相应地,基于上面所标识的选项,在一些实现中,对于选项0a:a_coef(0:5)=1,b_coef(0:5)=1。在一些实现中,对于选项0b:a_coef(0:1)=1,a_coef(3:5)=1,a_coef(2)=-1,b_coef(0:1)=1,b_coef(3:5)=1,b_coef(2)=-1。在一些实现中,对于选项1:设置a_coef(0:1)=1以及b_coef(0:1)=1。在一些实现中,在选项1中,a_coef(2:5)和b_coef(2:5)未被指派,从而导致8个未知系数。在一些实现中,对于选项2:设置a_coef(0:1)=1,a_coef(2)=-1,a_coef(3)=1,b_coef(0:1)=1,b_coef(2)=-1,b_coef(3)=1。在一些实现中,在选项2中,a_coef(4:5)和b_coef(4:5)未被指派,从而导致4个未知系数。
在一些实现中,对于相位旋转系数为c_coef(0:7)的非TB HE-STF序列,第0最低80MHz片段使用HES-496:16:496={c_coef(0)*[M,1,-M],0,c_coef(1)*[-M,1,-M]}*(1+j)/sqrt(2),并设置c_coef(0:1)=1。在一些实现中,第1最低80MHz片段使用HES-496:16:496={c_coef(2)*[M,1,-M],0,c_coef(3)*[-M,1,-M]}*(1+j)/sqrt(2)。在一些实现中,第2最低80MHz片段使用HES-496:16:496={c_coef(4)*[M,1,-M],0,c_coef(5)*[-M,1,-M]}*(1+j)/sqrt(2)。在一些实现中,第3最低80MHz片段使用HES-496:16:496={c_coef(6)*[M,1,-M],0,c_coef(7)*[-M,1,-M]}*(1+j)/sqrt(2)。在一些实现中,对于相位旋转系数为d_coef(0:7)的TB HE-STF序列,第0最低80MHz片段使用HES-504:8:504={d_coef(0)*[M,-1,M,-1,-M,-1,M],0,d_coef(1)*[-M,1,M,1,-M,1,-M]}*(1+j)/sqrt(2),HES-504=0,HES504=0,并设置d_coef(0:1)=1。在一些实现中,第1最低80MHz片段使用HES-504:8:504={d_coef(2)*[M,-1,M,-1,-M,-1,M],0,d_coef(3)*[-M,1,M,1,-M,1,-M]}*(1+j)/sqrt(2),HES-504=0,HES504=0。在一些实现中,第2最低80MHz片段使用HES-504:8:504={d_coef(4)*[M,-1,M,-1,-M,-1,M],0,d_coef(5)*[-M,1,M,1,-M,1,-M]}*(1+j)/sqrt(2),HES-504=0,HES504=0。在一些实现中,第3最低80MHz片段使用HES-504:8:504={d_coef(6)*[M,-1,M,-1,-M,-1,M],0,d_coef(7)*[-M,1,M,1,-M,1,-M]}*(1+j)/sqrt(2),HES-504=0,HES504=0。相应地,基于上面所标识的选项,在一些实现中,对于选项0a:c_coef(0:7)=1,d_coef(0:7)=1。在一些实现中,对于选项0b:c_coef(0:1)=1,c_coef(3:5)=1,c_coef(2)=-1,c_coef(6)=-1,c_coef(7)=1,d_coef(0:1)=1,d_coef(3:5)=1,d_coef(2)=-1,d_coef(6)=-1,d_coef(7)=1。在一些实现中,对于选项1:设置c_coef(0:1)=1以及d_coef(0:1)。在一些实现中,在选项1中,c_coef(2:7)和d_coef(2:7)未被指派,从而导致12个未知系数。在一些实现中,对于选项2:设置c_coef(0:1)=1,c_coef(2)=-1,c_coef(3)=1,d_coef(0:1)=1,d_coef(2)=-1,d_coef(3)=1。在一些实现中,在选项2中,c_coef(4:7)和d_coef(4:7)未被指派,从而导致8个未知系数。在一些实现中,对于选项3:设置a_coef(0:1)=1,a_coef(2)=-1,a_coef(3)=1,b_coef(0:1)=1,b_coef(2)=-1,b_coef(3)=1,c_coef(0:1)=1,c_coef(2)=-1,c_coef(3)=1,d_coef(0:1)=1,d_coef(2)=-1,d_coef(3)=1。在一些实现中,在选项2中,a_coef(4:5),b_coef(4:5),c_coef(4:7)和d_coef(4:7)受限于a_coef(4:5)=b_coef(4:5)以及c_coef(4:7)=d_coef(4:7)而未被指派,从而导致6个未知系数。在一些实现中,对于选项4:设置a_coef(0:1)=1,a_coef(2)=-1,a_coef(3)=1,b_coef(0:1)=1,b_coef(2)=-1,b_coef(3)=1,c_coef(0:1)=1,c_coef(2)=-1,c_coef(3)=1,d_coef(0:1)=1,d_coef(2)=-1,d_coef(3)=1。在一些实现中,在选项4中,a_coef(4:5),b_coef(4:5),c_coef(4:7)和d_coef(4:7)受限于a_coef(4:5)=c_coef(4:5)以及b_coef(4:5)=d_coef(4:5)而未被指派,从而导致8个未知系数。在一些实现中,对于选项5:设置a_coef(0:1)=1,a_coef(2)=-1,a_coef(3)=1,b_coef(0:1)=1,b_coef(2)=-1,b_coef(3)=1,c_coef(0:1)=1,c_coef(2)=-1,c_coef(3)=1,d_coef(0:1)=1,d_coef(2)=-1,d_coef(3)=1。在一些实现中,在选项5中,a_coef(4:5),b_coef(4:5),c_coef(4:7)和d_coef(4:7)受限于a_coef(4:5)=b_coef(4:5)=c_coef(4:5)=d_coef(4:5)以及c_coef(6:7)=d_coef(6:7)而未被指派,从而导致4个未知系数。
图13示出了240MHz非基于触发的(TB)和TB STF序列的示例相位旋转系数。第一表1310示出了针对240MHz的示例STF TB序列。第二表1320示出了针对240MHz的示例STF TB序列。在一些实现中,所示出的相位旋转系数在240MHz非TB STF和TB STF序列中得到了优化。
图13中关于240Mhz的非TB和TB STF序列、图14中关于320MHz的非TB STF序列、以及图15中关于320MHz的TB STF序列给出了这些系数的一些示例值。
图14示出了用于320MHz非TB STF序列的示例相位旋转系数。在一些实现中,所示出的相位旋转系数在320MHz非TB STF序列中得到了优化。
图15示出了用于320MHz TB STF序列的示例相位旋转系数。在一些实现中,所示出的相位旋转系数在320MHz TB STF序列中得到了优化。
示例STF序列
下面是针对各种信道大小的使用4x参数设计的若干示例子STF序列。如本文中描述的,这些子STF序列可被复制、级联、相位旋转、或其任何组合,以形成用于240MHz或320MHz信道的STF序列。
对于HE-STF字段,M序列被定义为
·M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}
对于20MHz信道:
·非TB HE-STF序列:HES-112:16:112=M*(1+j)/sqrt(2),HES0=0
·TB HE-STF序列:HES-120:8:120={M,0,-M}*(1+j)/sqrt(2)
对于40MHz信道:
·非TB HE-STF序列:HES-240:16:240={M,0,-M}*(1+j)/sqrt(2)
·TB HE-STF序列:HES-248:8:248={M,-1,-M,0,M,-1,M}*(1+j)/sqrt(2),HES-248=0,HES248=0
对于80MHz信道:
·非TB HE-STF序列:HES-496:16:496={M,1,-M,0,-M,1,-M}*(1+j)/sqrt(2)
·TB HE-STF序列:HES-504:8:504={M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M}*(1+j)/sqrt(2),HES-504=0,HES504=0
对于160MHz信道:
·非TB HE-STF序列:HES-1008:16:1008={M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,-M}*(1+j)/sqrt(2)
·TB HE-STF序列:HES-1016:8:1016={M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M,0,-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M}*(1+j)/sqrt(2),HES-1016=0,HES-8=0,HES8=0,HES1016=0
对于80+80MHz信道:
·非TB HE-STF序列:较低80MHz片段使用HES-496:16:496={M,1,-M,0,-M,1,-M}*(1+j)/sqrt(2),而较高80MHz分段使用HES-496:16:496={-M,-1,M,0,-M,1,-M}*(1+j)/sqrt(2)
·TB HE-STF序列:较低80MHz片段使用HES-504:8:504={M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M}*(1+j)/sqrt(2),HES-504=0,HES504=0,而较高80MHz片段使用HES-504:8:504={-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M}*(1+j)/sqrt(2),HES-504=0,HES504=0
对于OFDMA传输,如果STF序列中的系数对应于落在没有被指派用户的RU内的频调索引,则这些值被设为零。
示例基于触发的(TB)反馈NDP STF序列
下面是针对各种信道大小的若干示例HE TB反馈NDP STF序列。如本文中描述的,这些STF序列可被用作形成用于240MHz或320MHz信道的STF序列的子STF序列。这些子STF序列可被复制、级联、相位旋转、或其任何组合,以形成STF序列。
HE TB反馈NDP STF序列
对于20MHz信道宽度的HE TB反馈NDP,STF序列由下式给出:
Figure BDA0002681176300000331
其中HES-120:8:120是20MHz信道中的HE TB STF序列。
对于40MHz信道宽度的HE TB反馈NDP,STF序列由下式给出:
Figure BDA0002681176300000332
若RU频调集索引≤18
Figure BDA0002681176300000333
若RU频调集索>18
Figure BDA0002681176300000334
对于80MHz信道宽度的HE TB反馈NDP,STF序列由下式给出:
Figure BDA0002681176300000335
若RU频调集索引≤18
Figure BDA0002681176300000336
若18<RU频调集索引≤36
Figure BDA0002681176300000337
若36<RU频调集索引≤54
Figure BDA0002681176300000338
若54<RU频调集索引≤72
Figure BDA0002681176300000339
对于160MHz信道宽度的HE TB反馈NDP,STF序列由下式给出:
Figure BDA00026811763000003310
若RU频调集索引≤18
Figure BDA00026811763000003311
若18<RU频调集索引≤36
Figure BDA00026811763000003312
若36<RU频调集索引≤54
Figure BDA00026811763000003313
若54<RU频调集索引≤72
Figure BDA00026811763000003314
若72<RU频调集索引≤90
Figure BDA00026811763000003315
若90<RU频调集索引≤108
Figure BDA00026811763000003316
若108<RU频调集索引≤126
Figure BDA00026811763000003317
若126<RU频调集索引≤144
Figure BDA0002681176300000341
对于80+80MHz信道宽度的较低80MHz片段的HE TB反馈NDP,STF序列与80MHz信道宽度的STF序列相同。
对于80+80MHz信道宽度的较高80MHz片段的HE TB反馈NDP,STF序列由下式给出:
Figure BDA0002681176300000342
若72<RU频调集索引≤90
Figure BDA0002681176300000343
若90<RU频调集索引≤108
Figure BDA0002681176300000344
若108<RU频调集索引≤126
Figure BDA0002681176300000345
若126<RU频调集索引≤144
Figure BDA0002681176300000346
如果20MHz操作非AP STA在大于20MHz的信道宽度上发送HE TB反馈NDP报告响应,则不传送与该20MHz操作非AP STA的DC频调交叠的HE-STF频调。
对于OFDMA传输或前置码穿孔场景,如果以上等式中的系数对应于落在没有被指派用户的RU内的频调索引,则这些值被设为零。
用于240MHz和320MHz信道的EHT TB反馈NDP STF序列的设计可取决于EHT TB STF序列的设计。下面是用于EHT TB反馈NDP STF序列的示例公式,其示出了EHT TB反馈NDPSTF序列是EHT TB STF序列的函数。因此,TB STF序列的最优设计(其具有针对各个子STF的特定相位旋转)可适用于EHT TB反馈NDP STF序列的设计。
EHT TB反馈NDP STF序列设计
HE TB反馈NDP中针对每个RU频调集索引(RU_TONE_SET_INDEX)的STF序列可被视为信道带宽的HE TB STF序列中具有对应的频调索引范围的子序列。
对于EHT,EHT TB反馈NDP中针对每个RU频调集索引的STF序列可被视为信道带宽的EHT TB STF序列中具有对应的频调索引范围的子序列。因此,用于现有带宽(20MHz、40MHz、80MHz、160MHz或80+80MHz)的EHT TB反馈NDP STF序列可与HE TB反馈NDP STF序列相同。
对于总240MHz,假设可定义对应于从1到216的值的RU频调集索引。对于总320MHz,假设可定义对应于从1到288的值的RU频调集索引。
对于总240MHz,针对级联TB STF序列,人工频调索引范围是[-2048,1023]。将级联TB STF序列标示为HES240MHz=HES-2040:8:1016。对于毗连240MHz信道,TB反馈NDP STF序列由下式给出:
Figure BDA0002681176300000351
若RU频调集索引≤18
Figure BDA0002681176300000352
若18<RU频调集索引≤36
Figure BDA0002681176300000353
若36<RU频调集索引≤54
Figure BDA0002681176300000354
若54<RU频调集索引≤72
Figure BDA0002681176300000355
若72<RU频调集索引≤90
Figure BDA0002681176300000356
若90<RU频调集索引≤108
Figure BDA0002681176300000357
若108<RU频调集索引≤126
Figure BDA0002681176300000358
若126<RU频调集索引≤144
Figure BDA0002681176300000359
若144<RU频调集索引≤162
Figure BDA00026811763000003510
若162<RU频调集索引≤180
Figure BDA00026811763000003511
若180<RU频调集索引≤198
Figure BDA00026811763000003512
若198<RU频调集索引≤216
对于非毗连160+80MHz信道,其中160MHz子信道处于较低频率而80MHz子信道处于较高频率,较低160MHz子信道的TB反馈NDP STF序列由下式给出:
Figure BDA00026811763000003513
若RU频调集索引≤18
Figure BDA00026811763000003514
若18<RU频调集索引≤36
Figure BDA00026811763000003515
若36<RU频调集索引≤54
Figure BDA00026811763000003516
若54<RU频调集索引≤72
Figure BDA00026811763000003517
若72<RU频调集索引≤90
Figure BDA00026811763000003518
若90<RU频调集索引≤108
Figure BDA00026811763000003519
若108<RU频调集索引≤126
Figure BDA0002681176300000361
若126<RU频调集索引≤144
而较高80MHz的TB反馈NDP STF序列由下式给出:
Figure BDA0002681176300000362
若144<RU频调集索引≤162
Figure BDA0002681176300000363
若162<RU频调集索引≤180
Figure BDA0002681176300000364
若180<RU频调集索引≤198
Figure BDA0002681176300000365
若198<RU频调集索引≤216
对于非毗连160+80MHz信道,其中80MHz子信道处于较低频率而160MHz子信道处于较高频率,较低80MHz子信道的TB反馈NDP STF序列由下式给出:
Figure BDA0002681176300000366
若RU频调集索引≤18
Figure BDA0002681176300000367
若18<RU频调集索引≤36
Figure BDA0002681176300000368
若36<RU频调集索引≤54
Figure BDA0002681176300000369
若54<RU频调集索引≤72
而较高160MHz的TB反馈NDP STF序列由下式给出:
Figure BDA00026811763000003610
若72<RU频调集索引≤90
Figure BDA00026811763000003611
若90<RU频调集索引≤108
Figure BDA00026811763000003612
若108<RU频调集索引≤126
Figure BDA00026811763000003613
若126<RU频调集索引≤144
Figure BDA00026811763000003614
若144<RU频调集索引≤162
Figure BDA00026811763000003615
若162<RU频调集索引≤180
Figure BDA00026811763000003616
若180<RU频调集索引≤198
Figure BDA00026811763000003617
若198<RU频调集索引≤216
对于非毗连80+80+80MHz信道,最低80MHz子信道的TB反馈NDP STF序列与80MHz子信道处于较低频率的160+80MHz信道中的较低80MHz子信道的TB反馈NDP STF序列相同。而第二最低80MHz子信道的TB反馈NDP STF序列由下式给出:
Figure BDA00026811763000003618
若72<RU频调集索引≤90
Figure BDA00026811763000003619
若90<RU频调集索引≤108
Figure BDA0002681176300000371
若108<RU频调集索引≤126
Figure BDA0002681176300000372
若126<RU频调集索引≤144
并且较高80MHz的TB反馈NDP STF序列与80MHz子信道处于较高频率的160+80MHz信道中的较高80MHz子信道的TB反馈NDP STF序列相同。
对于总320MHz,针对级联TB STF序列,人工频调索引范围是[-2048,2047]。将级联TB STF序列标示为HES320MHz=HES-2040:8:2040。对于毗连240MHz信道,TB反馈NDP STF序列由下式给出:
Figure BDA0002681176300000373
若RU频调集索引≤18
Figure BDA0002681176300000374
若18<RU频调集索引≤36
Figure BDA0002681176300000375
若36<RU频调集索引≤54
Figure BDA0002681176300000376
若54<RU频调集索引≤72
Figure BDA0002681176300000377
若72<RU频调集索引≤90
Figure BDA0002681176300000378
若90<RU频调集索引≤108
Figure BDA0002681176300000379
若108<RU频调集索引≤126
Figure BDA00026811763000003710
若126<RU频调集索引≤144
Figure BDA00026811763000003711
若144<RU频调集索引≤162
Figure BDA00026811763000003712
若162<RU频调集索引≤180
Figure BDA00026811763000003713
若180<RU频调集索引≤198
Figure BDA00026811763000003714
若198<RU频调集索引≤216
Figure BDA00026811763000003715
若216<RU频调集索引≤234
Figure BDA00026811763000003716
若234<RU频调集索引≤252
Figure BDA00026811763000003717
若252<RU频调集索引≤270
Figure BDA00026811763000003718
若270<RU频调集索引≤288
对于非毗连160+160MHz信道,较低160MHz子信道的TB反馈NDP STF序列由下式给出:
Figure BDA00026811763000003719
若RU频调集索引≤18
Figure BDA00026811763000003720
若18<RU频调集索引≤36
Figure BDA0002681176300000381
若36<RU频调集索引≤54
Figure BDA0002681176300000382
若54<RU频调集索引≤72
Figure BDA0002681176300000383
若72<RU频调集索引≤90
Figure BDA0002681176300000384
若90<RU频调集索引≤108
Figure BDA0002681176300000385
若108<RU频调集索引≤126
Figure BDA0002681176300000386
若126<RU频调集索引≤144
而较高160MHz的TB反馈NDP STF序列由下式给出:
Figure BDA0002681176300000387
若144<RU频调集索引≤162
Figure BDA0002681176300000388
若162<RU频调集索引≤180
Figure BDA0002681176300000389
若180<RU频调集索引≤198
Figure BDA00026811763000003810
若198<RU频调集索引≤216
Figure BDA00026811763000003811
若216<RU频调集索引≤234
Figure BDA00026811763000003812
若234<RU频调集索引≤252
Figure BDA00026811763000003813
若252<RU频调集索引≤270
Figure BDA00026811763000003814
若270<RU频调集索引≤288
对于160MHz子信道处于最低频率的非毗连160+80+80MHz信道,较低160MHz子信道的TB反馈NDP STF序列与160+160Mhz信道中的较低160MHz子信道的TB反馈NDP STF序列相同。而中间80MHz子信道的TB反馈NDP STF序列由下式给出:
Figure BDA00026811763000003815
若144<RU频调集索引≤162
Figure BDA00026811763000003816
若162<RU频调集索引≤180
Figure BDA00026811763000003817
若180<RU频调集索引≤198
Figure BDA00026811763000003818
若198<RU频调集索引≤216
而较高80MHz子信道的TB反馈NDP STF序列由下式给出:
Figure BDA00026811763000003819
若216<RU频调集索引≤234
Figure BDA00026811763000003820
若234<RU频调集索引≤252
Figure BDA00026811763000003821
若252<RU频调集索引≤270
Figure BDA00026811763000003822
若270<RU频调集索引≤288
对于160MHz子信道处于中间频率的非毗连160+80+80MHz信道,较低80MHz子信道的TB反馈NDP STF序列被给出为:
Figure BDA0002681176300000391
若RU频调集索引≤18
Figure BDA0002681176300000392
若18<RU频调集索引≤36
Figure BDA0002681176300000393
若36<RU频调集索引≤54
Figure BDA0002681176300000394
若54<RU频调集索引≤72
而中间160MHz子信道的TB反馈NDP STF序列被给出为:
Figure BDA0002681176300000395
若72<RU频调集索引≤90
Figure BDA0002681176300000396
若90<RU频调集索引≤108
Figure BDA0002681176300000397
若108<RU频调集索引≤126
Figure BDA0002681176300000398
若126<RU频调集索引≤144
Figure BDA0002681176300000399
若144<RU频调集索引≤162
Figure BDA00026811763000003910
若162<RU频调集索引≤180
Figure BDA00026811763000003911
若180<RU频调集索引≤198
Figure BDA00026811763000003912
若198<RU频调集索引≤216
并且较高80MHz子信道的TB反馈NDP STF序列与160Mhz子信道处于最低频率的160+80+80MHz信道中的较高80Mhz子信道的TB反馈NDP STF序列相同。
对于160MHz子信道处于较高频率的非毗连160+80+80MHz信道,最低80MHz子信道的TB反馈NDP STF序列与160Mhz处于中间频率的160+80+80MHz信道中的最低80Mhz子信道的TB反馈NDP STF序列相同。而第二最低80MHz子信道的TB反馈NDP STF序列被给出为:
Figure BDA00026811763000003913
若72<RU频调集索引≤90
Figure BDA00026811763000003914
若90<RU频调集索引≤108
Figure BDA00026811763000003915
若108<RU频调集索引≤126
Figure BDA00026811763000003916
若126<RU频调集索引≤144
并且160MHz子信道的TB反馈NDP STF序列与160+160MHz信道中的较高160MHz子信道的TB反馈NDP STF序列相同。
对于非毗连80+80+80+80Mhz信道,最低和第二最低80Mhz子信道的TB反馈NDP STF序列与160MHz子信道处于较高频率的160+80+80MHz信道中的TB反馈NDP STF序列相同。而第三最低80MHz和较高80MHz子信道的TB反馈NDP STF序列与160MHz子信道处于较低频率的160+80+80MHz信道中的TB反馈NDP STF序列相同。
如果20MHz操作非AP STA在大于20MHz的信道宽度上发送HE TB反馈NDP报告响应,则不传送与该20MHz操作非AP STA的DC频调交叠的HE-STF频调。
对于OFDMA传输或前置码穿孔场景,如果以上等式中的系数对应于落在没有被指派用户的RU内的频调索引,则这些值被设为零。
EHT长训练字段(LTF)序列设计
用于2x和4x码元历时频调规划的EHT LTF序列可如本文中所描述地设计,并且可适用于所有带宽模式(例如,可适用于本文中所描述的总BW以及未在本文中显式地讨论的任何附加BW)。
EHT LTF序列设计
对于160MHz及以下的总BW(包括80+80MHz),旧式1x、2x和4x码元历时LTF频调规划序列可被用于EHT LTF序列。例如,下面(使用4x参数设计)示出了针对20MHz的LTF序列。为了简洁起见,略去了其他BW和码元历时的LTF序列。
20MHz的1x LTF序列,其中频调索引范围是[-122:122]
·HELTF-122,122={0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0}
20MHz的2x LTF序列,其中频调索引范围是[-122:122]
·HELTF-122,122={-1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,0,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,+1}
20MHz的4x LTF序列,其中频调索引范围是[-122:122]
·HELTF-122,122={-1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,+1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,-1,+1,-1,+1,+1,+1,0,0,0,-1,+1,-1,+1,-1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,-1,-1,-1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,-1,+1,+1,-1,+1,+1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,+1,-1,+1,+1}
在一些实现中,对于总160MHz BW中的160MHz模式和80+80MHz模式,跨分段的级联STF序列可被标示为[LTF_0,LTF_1],其中LTF_i是用于第i最低80MHz子信道的LTF序列。在一些实现中,用于总160MHz BW中的160MHz模式和80+80MHz模式两者的级联LTF序列是相同的,其中它们是相同码元历时的两个旧式80MHz LTF序列的重复,而无需在任何子信道中进行相位旋转。
在一些实现中,对于较高BW(诸如240MHz和320MHz),LTF序列可取决于4x或2x码元历时频调规划设计。例如,对于240总BW中的各模式,具有特定码元历时的跨分段的级联LTF序列可被标示为[LTF_0,LTF_1,LTF_2],其中LTF_i是用于第i最低80MHz子信道的LTF序列。例如,在一些实现中,对于总320BW中的各模式,具有特定码元历时的跨分段的级联LTF序列可被标示为[LTF_0,LTF_1,LTF_2,LTF_3],其中LTF_i是用于第i最低80MHz子信道的LTF序列。在一些实现中,在选项1中,每个子信道(或分段)可取决于BW模式来对该子信道BW使用LTF序列。相应地,可在每个80MHz子信道中使用80MHz的HE-LTF。在一些实现中,在选项2中,不管BW模式如何,并且对于给定的总BW,级联LTF序列可被用于所有BW模式。
2x频调规划下的EHT LTF频调设计
针对2x码元历时的STF频调规划可被设计成使得每个26频调RU在非基于触发的(TB)HE-STF中有1-2个STF频调以及在TB HE-STF中有3-4个STF频调。图10-12中提供了进一步细节。
在基于2x码元历时频调规划的EHT 80和160MHz信道中,由于每个数据频调规划基于超频2倍的HE40和HE80频调规划,因此每个26频调RU跨越更宽范围的频调(例如,在4x码元历时频调规划中为26x2-1=51个频调)。由此,相比于4x码元历时频调规划而言,非TB HESTF和TB HE-STF在2x码元历时频调规划中提供了恰适的频调覆盖。由此,EHT 80和160MHz子信道可对相应BW中的HE-STF使用相同的STF频调设计。EHT 320MHz信道可对该EHT320MHz信道的每个80MHz子信道中的80MHz HE-STF使用相同的STF频调设计。
EHT 4x频调规划下的EHT LTF频调设计
在一些实现中,EHT 4x码元历时频调规划可在每个80MHz子信道中使用HE80频调规划。在一些实现中,在选项1中,在每个EHT 80MHz子信道中使用80MHz的HE-LTF。在一些实现中,在选项2中,在每个EHT 80MHz子信道中使用80MHz的HE-LTF,其在一个或多个子信道中遵从符号翻转或相位旋转。在一些实现中,对于级联LTF序列中的符号翻转或相位旋转设计,某些相位旋转(例如,+1、+j、-1、-j,其分别表示0、90、180、270度相位旋转)可被应用于一个或多个子信道中的基本LTF序列,以最小化或减小LTF信号的峰均功率比(PAPR)。在一些实现中,可在毗连240和320MHz BW模式中评估PAPR。在一些实现中,对于相位旋转系数,对每个子信道应用一个系数,其中每个子信道可以是40或80MHz子信道单元。在一些实现中,LTF序列中针对不同码元历时的相位旋转系数可以不相同。在一些实现中,总160MHz BW中的相位旋转系数可以不是总240和320MHz BW中的相位旋转系数的一部分。在一些实现中,总240MHz BW中的相位旋转系数可以不是总320MHz BW中的相位旋转系数的一部分。在一些实现中,在选项0中,不在LTF序列中使用相位旋转,因此使得所有相位旋转系数等于1。在一些实现中,相位旋转系数的其他选项是可能的。
EHT 2x频调规划下的EHT LTF频调设计
在一些实现中,使用2x码元历时频调规划。在一些实现中,在用于EHT 2x码元历时频调规划的LTF设计的选项A中,超频2倍的HE40频调规划被用于EHT 80MHz信道,而超频2倍的HE80和HE160频调规划被用于EHT 160和320MHz信道。在一些实现中,240MHz信道使用超频2倍的[HE40 HE80]频调规划(当被视为80+160MHz时)或超频2倍的[HE80 HE40]频调规划(当被视为160+80MHz时)或超频2倍的[HE40 HE40 HE40]频调规划(当被视为3x80MHz时)。在一些实现中,在选项b中,超频2倍的HE HE40频调规划被用于EHT 80MHz信道。在一些实现中,EHT 80MHz子信道分别被复制2次、3次或4次以用于EHT 160、240和320MHz信道。
在一些实现中,1x和2x码元历时LTF可分别从超频2倍的2x和4x HE-LTF推导出。在一些实现中,超频2倍的2x和4x HE-LTF 40MHz频调规划可被分别用作用于80MHz信道的1x和2x EHT-LTF。在一些实现中,对于用于160和320MHz信道的1x和2x EHT-LTF,根据本文中描述的选项a,使用超频2倍的2x和4x HE-LTF 80和160MHz。在一些实现中,对于用于160和320MHz信道的1x和2x EHT-LTF,根据本文中描述的选项b,超频2倍的2x和4x HE-LTF 40MHz被复制2次或4次。
表1针对各种条件或能力示出了类型I(1x和2x码元历时HE-LTF)与类型II(1x和2x码元历时LTF,其基于超频2倍的2x和4x HE-LTF)LTF的比较。
Figure BDA0002681176300000431
Figure BDA0002681176300000441
表1
表2针对各种子信道示出了类型I和类型II LTF的LTF频调比较。如所提到的,在一些实现中,对于80MHz子信道,类型I LTF可覆盖类型II LTF中的所有经填充频调。如所提到的,在一些实现中,对于160MHz子信道,类型I和类型II LTF可能无法覆盖彼此的所有经填充频调。
Figure BDA0002681176300000442
Figure BDA0002681176300000451
表2
选项B频调规划
如本文中描述的,用于80MHz子信道的1x和2x HE-LTF可覆盖40MHz子信道中超频2倍的2x和4x HE-LTF中的所有经填充频调。在一些实现中,在选项b频调规划中,160、240和320MHz频调规划基于80MHz频调规划(例如,HE40超频2倍)的重复。
在一些实现中,对于选项1,针对80和160MHz子信道,可在相应的EHT信道BW中使用1x和2x旧式HE-LTF。在一些实现中,针对240和320MHz信道,可在一个或多个子信道中遵从符号翻转或相位旋转来复制80MHz的3个或4个HE-LTF。在一些实现中,对于选项2,针对总240和320MHz BW,在一个或多个子信道中遵从符号翻转或相位旋转地复制80MHz的3个或4个HE-LTF。在一些实现中,根据选项1和选项2的LTF设计还可应用以上关于EHT 4x频调规划所描述的选项。在一些实现中,所设计的80和160MHz的LTF可用于针对旧式探测和EHT探测两者传达空数据分组(NDP)。
选项A频调规划
在一些实现中,选项1可对80MHz子信道使用1x和2x HE LTF,并且可提供用于160MHz子信道的两个选项。在第一选项1a中,HE PPDU可使用HE-LTF,而EHT PPDU可使用从超频2倍的HE-LTF推导出的LTF。在第二选项1b中,1x和2x LTF可覆盖所有旧式和EHT频调。在一些实现中,针对320MHz信道,在一个或多个子信道中遵从符号翻转或相位旋转地复制160MHz子信道中的2个LTF。在一些实现中,在选项2中,可如上面在选项1a中所描述地处理160MHz子信道。在一些实现中,针对320MHz信道,320MHz级联LTF序列是通过在一个或多个子信道中遵从符号翻转或相位旋转地复制160MHz的2个LTF来生成的。
表3包括根据本文中关于特定子信道BW所描述的选项的LTF设计,其指示在4x码元历时参数设计下所描述的选项中哪些频调被填充。
Figure BDA0002681176300000461
表3
在一些实现中,160MHz选项2可使用1x和2x LTF来覆盖所有旧式和EHT频调。在一些实现中,由于对旧式STA的兼容性,旧式160MHz HE-LTF序列中的现有频调中的值保持不变。在一些实现中,可能需要填充旧式160MHz HE-LTF序列中的以下16个缺失频调:1x LTF中的4个频调:[±8,±512];以及2x LTF中的12个频调:[±6,±8,±10,±510,±512,±514]。在一些实现中,对于不同码元历时的LTF序列,相同LTF频调可具有不同值。在一些实现中,缺失频调的值可基于以下各项来确定:使LTF信号的PAPR最小化;每个缺失频调为+1或-1(基于这些值在现有LTF序列中为仅有的非零值)(以维持旧式兼容性);可将相位旋转系数(诸如+1、+j、-1、-j)应用于每个缺失频调以进一步使PAPR最小化;以及选自+1、+j、-1和-j之一。在选项0a中,在一些实现中,相同值被用于所有16个缺失频调,并且该值可以是+1、+j、-1或-j中的任一者。在选项0b中,在一些实现中,相同值被选择用于8个正索引频调,而进行符号翻转的同一值被选择用于8个负索引频调,其中这些值选自+1、+j、-1或-j。在选项0c中,在一些实现中,相同值被选择用于具有相同绝对索引(例如,索引+8和-8)的频调。在一些实现中,其他选项是可能的。
在一些实现中,240MHz选项2可对选项a使用超频2倍的[HE40 HE80]频调规划(当被视为80+160MHz时)或超频2倍的[HE80 HE40]频调规划(当被视为160+80MHz时)或超频2倍的[HE40 HE40 HE40]频调规划(当被视为3x80MHz时)。因此,在LTF设计的一些实现中,每个80MHz子信道使用1x和2x HE-LTF,并且每个160MHz子信道对160MHz(选项2)使用1x和2xLTF,其在一个或多个子信道中遵从符号翻转或相位旋转。在一些实现中,320MHz选项2可以在一个或多个子信道中遵从符号翻转或相位旋转地复制160MHz(选项2)的2个LTF,其中这些LTF是选项2 160MHz LTF。
在一些实现中,所应用的符号翻转或相位旋转是基于某些相位旋转(例如+1、+j、-1、-j,其分别表示0、90、180、270度相位旋转)应用于一个或多个子信道中的基本LTF序列以最小化LTF信号的PAPR来确定的。在一些实现中,所应用的符号翻转或相位旋转是基于评估毗连240和320MHz BW模式中的此类PAPR来确定的。在一些实现中,所应用的符号翻转或相位旋转是基于根据不同MIMO设置(诸如,单输入单输出(SISO)、4Tx乘4Rx乘4ss等)所生成的具有单流导频(SSP)的LTF信号来确定的。在一些实现中,相位旋转系数是根据以下各项来确定的:一个系数被用于子信道(例如,40MHz、80MHz等);总240MHz BW中的相位旋转系数可能不是总320MHz BW中的相位旋转系数的一部分;无相位旋转(例如,相位旋转系数均为1);或者其他选项是可能的。
提供本公开中的示例是旨在帮助读者理解。然而,在其他实现中,信息和信号可使用各种各样的不同技艺和技术中的任一种来表示。例如,贯穿上面描述始终可能被述及的数据、指令、命令、信息、信号、位(比特)、码元、和码片可由电压、电流、电磁波、磁场或磁粒子、光场或光粒子、或其任何组合来表示。
实施技术
如先前所提及的,信息和信号可使用各种各样的不同技艺和技术中的任一种来表示。例如,贯穿上面描述始终可能被述及的数据、指令、命令、信息、信号、位(比特)、码元、和码片可由电压、电流、电磁波、磁场或磁粒子、光场或光粒子、或其任何组合来表示。
对本公开中所描述的实现的各种改动对于本领域技术人员可能是明显的,并且本文中所定义的普适原理可应用于其他实现而不会脱离本公开的精神或范围。由此,本公开并非旨在被限定于本文中示出的实现,而是应被授予与权利要求、本文中所公开的原理和特征一致的最广范围。措辞“示例”在本文中排他地用来意指“用作示例、实例、或解说”。本文中描述为“示例”的任何实现不应被解释为胜过其他实现的唯一、优选或有利实现。
本说明书中可在分开实现的上下文中描述的某些特征也可组合地实现在单个实现中。相反,可在单个实现的上下文中描述的各种特征也可在多个实现中分开地或以任何合适的子组合实现。此外,虽然特征在上文可能被描述为以某些组合的方式起作用且甚至最初是如此要求保护的,但来自所要求保护的组合的一个或多个特征在一些情形中可从该组合中去掉,且所要求保护的组合可以针对子组合、或子组合的变体。
上述方法的各种操作可由能够执行这些操作的任何合适的装置来执行,包括硬件、软件、电路、或模块的任何组合。一般而言,在附图中所解说的任何操作可由能够执行这些操作的相对应的功能性装置来执行。
结合本公开所描述的各种解说性逻辑框、模块、以及电路可用设计成执行本文中所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列信号(FPGA)或其他可编程逻辑器件(PLD)、分立的门或晶体管逻辑、分立的硬件组件或其任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,处理器可以是任何市售的处理器、控制器、微控制器或状态机。处理器还可被实现为计算设备的组合,例如DSP与微处理器的组合、多个微处理器、与DSP核心协作的一个或多个微处理器、或任何其他此类配置。
在一个或多个方面,所描述的功能可在硬件、软件、固件或其任何组合中实现。如果在软件中实现,则各功能可以作为一条或多条指令或代码存储在计算机可读介质上或藉其进行传送。计算机可读介质包括计算机存储介质和通信介质两者,包括促成计算机程序从一地向另一地转移的任何介质。存储介质可以是能被计算机访问的任何可用介质。作为示例而非限定,此类计算机可读介质可包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储或其他磁存储设备、或能用于携带或存储指令或数据结构形式的期望程序代码且能被计算机访问的任何其他介质。任何连接也被正当地称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)、或诸如红外、无线电、以及微波之类的无线技术从网站、服务器、或其他远程源传送的,则该同轴电缆、光纤电缆、双绞线、DSL、或诸如红外、无线电、以及微波之类的无线技术就可被包括在介质的定义之中。如本文中所使用的盘(disk)和碟(disc)包括压缩碟(CD)、激光碟、光碟、数字多用碟(DVD)、软盘和蓝光碟,其中盘(disk)往往以磁的方式再现数据,而碟(disc)用激光以光学方式再现数据。由此,在一些方面,计算机可读介质可包括非瞬态计算机可读介质(例如,有形介质)。另外,在一些方面,计算机可读介质可包括瞬态计算机可读介质(例如,信号)。以上介质的组合被包括在计算机可读介质的范围内。
本文所公开的方法可包括用于达成所描述的方法的一个或多个步骤或动作。这些方法步骤或动作可以彼此互换而不会脱离权利要求的范围。换言之,除非指定了步骤或动作的特定次序,否则具体步骤或动作的次序或使用可以改动而不会脱离权利要求的范围。
此外,在一些实现中,用于执行本文所描述的方法和技术的模块或其他恰适装置可由用户终端或基站在适用的场合下载和/或以其他方式获得。例如,此类设备能被耦合到服务器以促成用于执行本文中所描述的方法的装置的转移。替换地,本文中所描述的各种方法能经由存储装置(例如,RAM、ROM、诸如压缩碟(CD)或软盘之类的物理存储介质等)来提供,以使得一旦将该存储装置耦合到或提供给用户终端或基站,该设备就能获得各种方法。此外,可利用适于向设备提供本文所描述的方法和技术的任何其他合适的技术。
尽管上述内容针对本公开的各方面,然而可设计出本公开的其他和进一步的方面而不会脱离其基本范围,且其范围是由所附权利要求来确定的。

Claims (19)

1.一种用于无线通信的装置,包括:
处理系统,其被配置成:
生成供使用具有240MHz或320MHz总信道带宽之一的第一信道经由无线网络进行传输的消息,以及
生成所述消息的长训练字段(LTF),其中所述LTF包括至少部分地基于所述第一信道的所述240MHz或320MHz总信道带宽的序列;以及
接口,其被配置成输出所述消息以供经由所述无线网络进行传输。
2.如权利要求1所述的装置,其中所述LTF是由针对带宽小于所述240MHz或320MHz总信道带宽的信道所定义的子LTF的级联序列形成的。
3.如权利要求2所述的装置,其中所述处理系统被配置成:向所述级联序列中的至少一个子LTF应用相位旋转。
4.如权利要求1所述的装置,其中所述处理系统被配置成:通过对针对较小带宽信道所定义的子LTF进行超频来准备所述LTF。
5.如权利要求4所述的装置,其中所述处理系统被配置成:为用于所述240MHz或320MHz总信道带宽的频调规划中的缺失频调添加序列值,所述缺失频调是在对所述子LTF进行超频之后留下的。
6.如权利要求5所述的装置,其中所述处理系统被配置成:向所述序列值中的至少一些序列值应用相位旋转。
7.如权利要求6所述的装置,其中所述相位旋转被配置成相比于无相位旋转的LTF而言减小所述消息的峰均功率比(PAPR)。
8.如权利要求1所述的装置,其中所述LTF是由用于80MHz带宽信道的子LTF的级联序列形成的。
9.如权利要求8所述的装置,其中所述处理系统被配置成:向所述子LTF中的至少一些子LTF应用相位旋转。
10.一种用于无线通信的方法,包括:
生成供使用具有240MHz或320MHz总信道带宽之一的第一信道经由无线网络进行传输的消息;
生成所述消息的长训练字段(LTF),其中所述LTF包括至少部分地基于所述第一信道的所述240MHz或320MHz总信道带宽的序列;以及
经由接口来输出所述消息以供经由所述无线网络进行传输。
11.如权利要求10所述的方法,其中所述LTF是由针对带宽小于所述240MHz或320MHz总信道带宽的信道所定义的子LTF的级联序列形成的。
12.如权利要求11所述的方法,进一步包括:向所述级联序列中的至少一个子LTF应用相位旋转。
13.如权利要求10所述的方法,进一步包括:通过对针对较小带宽信道所定义的子LTF进行超频来准备所述LTF。
14.如权利要求13所述的方法,进一步包括:为用于所述240MHz或320MHz总信道带宽的频调规划中的缺失频调添加序列值,所述缺失频调是在对所述子LTF进行超频之后留下的。
15.如权利要求14所述的方法,进一步包括:向所述序列值中的至少一些序列值应用相位旋转。
16.如权利要求15所述的方法,其中所述相位旋转被配置成相比于无相位旋转的LTF而言减小所述消息的峰均功率比(PAPR)。
17.如权利要求10所述的方法,其中所述LTF是由用于80MHz带宽信道的子LTF的级联序列形成的。
18.如权利要求17所述的方法,进一步包括:向所述子LTF中的至少一些子LTF应用相位旋转。
19.一种无线通信设备,包括:
外壳;
天线,其附连到所述外壳并且电耦合到收发机;
所述收发机,用于使用具有240MHz或320MHz总信道带宽之一的第一信道来与无线网络进行通信;以及
处理系统,其被配置成:
生成供经由所述收发机进行传输的消息;
生成所述消息的长训练字段(LTF),其中所述LTF包括至少部分地基于所述第一信道的所述240MHz或320MHz总信道带宽的训练序列;以及
经由所述收发机来输出所述消息。
CN201980019236.0A 2018-03-16 2019-03-15 经由大带宽信道的无线通信 Pending CN111886839A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862644239P 2018-03-16 2018-03-16
US62/644,239 2018-03-16
US16/354,086 2019-03-14
US16/354,086 US20190289612A1 (en) 2018-03-16 2019-03-14 Wireless communication via a large bandwidth channel
PCT/US2019/022534 WO2019178511A1 (en) 2018-03-16 2019-03-15 Wireless communication via a large bandwidth channel

Publications (1)

Publication Number Publication Date
CN111886839A true CN111886839A (zh) 2020-11-03

Family

ID=67904231

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201980019236.0A Pending CN111886839A (zh) 2018-03-16 2019-03-15 经由大带宽信道的无线通信
CN201980019189.XA Pending CN112219377A (zh) 2018-03-16 2019-03-15 经由大带宽信道的无线通信

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201980019189.XA Pending CN112219377A (zh) 2018-03-16 2019-03-15 经由大带宽信道的无线通信

Country Status (3)

Country Link
US (2) US20190289612A1 (zh)
CN (2) CN111886839A (zh)
WO (2) WO2019178493A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953630A (zh) * 2019-05-14 2020-11-17 华为技术有限公司 发送和接收物理层协议数据单元的方法和装置
CN112911729A (zh) * 2021-01-29 2021-06-04 成都极米科技股份有限公司 隧道直接链路建立的方法、终端及存储介质
US11817980B2 (en) 2020-01-03 2023-11-14 Huawei Technologies Co., Ltd. Method and apparatus for transmitting physical layer protocol data unit

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11509413B2 (en) * 2018-06-28 2022-11-22 Intel Corporation Apparatus, system and method of an orthogonal frequency-division multiplexing (OFDM) transmission over a wide bandwidth
WO2020022707A1 (ko) * 2018-07-25 2020-01-30 엘지전자 주식회사 무선랜 시스템에서 ppdu를 전송하는 방법 및 장치
CN116319228B (zh) * 2018-07-27 2023-10-20 华为技术有限公司 设计短训练序列的方法和装置
WO2020040622A1 (ko) * 2018-08-24 2020-02-27 엘지전자 주식회사 무선랜 시스템에서 프리앰블 펑처링이 수행된 광대역에서 ppdu를 전송하는 방법 및 장치
US11870630B2 (en) * 2018-09-07 2024-01-09 Lg Electronics, Inc Method and apparatus for applying optimized phase rotation by considering preamble puncturing in 802.11AX and various RF capabilities
WO2020050529A1 (ko) * 2018-09-07 2020-03-12 엘지전자 주식회사 Wlan 시스템에서 80mhz 기반의 프리앰블 펑처링이 수행된 광대역에서 다양한 rf 능력을 고려하여 최적화된 위상 회전을 적용하는 방법 및 장치
WO2020111638A1 (ko) * 2018-11-29 2020-06-04 엘지전자 주식회사 무선랜 시스템에서 eht ppdu를 송신하는 방법 및 장치
EP3896929A4 (en) * 2018-12-12 2022-06-15 LG Electronics Inc. METHOD AND DEVICE FOR STF SIGNAL GENERATION IN A WLAN SYSTEM
US12003356B2 (en) * 2018-12-13 2024-06-04 Lg Electronics Inc. Method and apparatus for transmitting EHT PPDU in wireless LAN system
US10904061B2 (en) * 2019-01-16 2021-01-26 Qualcomm Incorporated Signal phase rotation
US20220103317A1 (en) * 2019-02-19 2022-03-31 Lg Electronics Inc. Method and apparatus for receiving eht ppdu in wireless lan system
US20220140962A1 (en) * 2019-02-19 2022-05-05 Lg Electronics Inc. Method and apparatus for receiving eht ppdu in wireless lan system
US11432199B2 (en) * 2019-05-31 2022-08-30 Mediatek Singapore Pte. Ltd. Resource units for wide band transmission in a wireless network
US11219078B2 (en) 2019-09-05 2022-01-04 Apple Inc. System and method for enhanced high throughput (EHT) stations
US20240097952A1 (en) * 2019-10-10 2024-03-21 Lg Electronics Inc. Method and device for receiving ppdu through broadband in wireless lan system
US20220353121A1 (en) * 2019-10-10 2022-11-03 Lg Electronics Inc. Method and device for receiving ppdu through broadband in wireless lan system
US20220399970A1 (en) * 2019-11-07 2022-12-15 Lg Electronics Inc. Ltf compressed transmission
CN112821998A (zh) * 2019-11-15 2021-05-18 华为技术有限公司 传输物理层协议数据单元的方法和装置
US20220407620A1 (en) * 2019-11-19 2022-12-22 Lg Electronics Inc. Method and device for receiving ppdu through broadband in wireless lan system
WO2021101160A1 (ko) * 2019-11-19 2021-05-27 엘지전자 주식회사 무선랜 시스템에서 광대역을 통해 ppdu를 수신하는 방법 및 장치
KR20220113463A (ko) * 2020-02-11 2022-08-12 엘지전자 주식회사 무선랜 시스템에서 광대역을 통해 ppdu를 수신하는 방법 및 장치
US20230130228A1 (en) * 2020-02-12 2023-04-27 Lg Electronics Inc. Method and device for receiving ppdu through 240 mhz band in wireless lan system
JP7447276B2 (ja) * 2020-02-20 2024-03-11 エルジー エレクトロニクス インコーポレイティド 無線LANシステムにおける広帯域に対する1x EHT-STFシーケンスを設定する方法及び装置
US11601239B2 (en) 2020-02-28 2023-03-07 Qualcomm Incorporated Physical (PHY) layer control for wireless local area network (WLAN) communication
WO2021182744A1 (ko) * 2020-03-10 2021-09-16 엘지전자 주식회사 320mhz를 위한 1x ltf 시퀀스
US11817984B2 (en) * 2020-03-10 2023-11-14 Lg Electronics Inc. 1X LTF sequence for 320 MHz
WO2021187854A1 (ko) * 2020-03-19 2021-09-23 엘지전자 주식회사 무선랜 시스템에서 광대역에 대한 2x eht-stf 시퀀스를 설정하는 방법 및 장치
US20210297209A1 (en) * 2020-03-23 2021-09-23 Qualcomm Incorporated Multi-generation communication in a wireless local area network (wlan)
US20230155874A1 (en) * 2020-04-07 2023-05-18 Lg Electronics Inc. Method and apparatus for applying phase rotation in units of 10 mhz bands in wireless lan system
US20230121707A1 (en) * 2020-04-09 2023-04-20 Lg Electronics Inc. Method and device for applying phase rotation optimized for wide band in wireless lan system
CN115769553A (zh) 2020-05-14 2023-03-07 高通股份有限公司 无线局域网(wlan)中的多代通信
JP2021182677A (ja) * 2020-05-18 2021-11-25 キヤノン株式会社 通信装置、制御方法、およびプログラム
CN113765951B (zh) * 2020-06-02 2024-06-04 华为技术有限公司 传输物理层协议数据单元的方法和装置
CN116489242A (zh) * 2020-06-05 2023-07-25 华为技术有限公司 传输/接收物理层协议数据单元的方法和装置
CN117155529A (zh) * 2020-06-08 2023-12-01 华为技术有限公司 传输/接收物理层协议数据单元的方法和装置
CN113825230A (zh) 2020-06-19 2021-12-21 华为技术有限公司 一种资源指示方法及接入点和站点
US20210399933A1 (en) * 2020-06-22 2021-12-23 Qualcomm Incorporated Long training field with reduced peak-to-average power ratio
US11627027B2 (en) * 2020-06-24 2023-04-11 Qualcomm Incorporated Transmission of punctured null data packets and partial bandwidth feedback
KR20230007472A (ko) * 2020-07-02 2023-01-12 엘지전자 주식회사 무선랜 시스템에서 데이터가 복제된 ppdu를 80mhz 대역을 통해 수신하는 방법 및 장치
CN113923082B (zh) * 2020-07-10 2023-03-10 华为技术有限公司 传输ppdu的方法及相关装置
US20210399923A1 (en) * 2020-09-02 2021-12-23 Xiaogang Chen Extreme high throughput training fields for trigger based null data packet feedback
US11979866B2 (en) 2020-09-10 2024-05-07 Samsung Electronics Co., Ltd. Apparatus and method for channel sounding based on aggregated physical protocol data unit
CN116567822A (zh) * 2020-10-28 2023-08-08 华为技术有限公司 Ppdu的上行带宽指示方法及相关装置
US20220141052A1 (en) * 2020-11-02 2022-05-05 Avago Technologies International Sales Pte. Limited Ltf sequences for 320 mhz wifi channels
CN116886486B (zh) * 2020-12-26 2024-06-18 华为技术有限公司 信息传输方法及装置
US20220263636A1 (en) * 2021-02-17 2022-08-18 Mediatek Singapore Pte. Ltd. EHT-STF Transmission For Distributed-Tone Resource Units In 6GHz Low-Power Indoor Systems
WO2023204598A1 (ko) * 2022-04-20 2023-10-26 엘지전자 주식회사 무선랜 시스템에서 새로운 뉴머롤로지에 대한 stf 송신 또는 수신 방법 및 장치
WO2023204601A1 (ko) * 2022-04-20 2023-10-26 엘지전자 주식회사 무선랜 시스템에서 새로운 뉴머롤로지에 대한 stf 송신 또는 수신 방법 및 장치
WO2023204597A1 (ko) * 2022-04-20 2023-10-26 엘지전자 주식회사 무선랜 시스템에서 새로운 뉴머롤로지에 대한 stf 송신 또는 수신 방법 및 장치
WO2023204600A1 (ko) * 2022-04-20 2023-10-26 엘지전자 주식회사 무선랜 시스템에서 새로운 뉴머롤로지에 대한 stf 송신 또는 수신 방법 및 장치
US20240089160A1 (en) * 2022-09-14 2024-03-14 Mediatek Inc. STF Sequence Design For Wide Bandwidths In Wireless Communications
WO2024122983A1 (ko) * 2022-12-05 2024-06-13 엘지전자 주식회사 무선랜 시스템에서 밀리미터파 대역 기반의 ppdu 송수신을 수행하는 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140211704A1 (en) * 2013-01-28 2014-07-31 Qualcomm Incorporated Extending range and delay spread in wifi bands
CN105142207A (zh) * 2011-04-15 2015-12-09 英特尔公司 无线网络中的信道接入方法和布置
US20150365263A1 (en) * 2014-06-11 2015-12-17 Marvell World Trade Ltd. Compressed orthogonal frequency division multiplexing (ofdm) symbols in a wireless communication system
CN106487737A (zh) * 2015-08-26 2017-03-08 华为技术有限公司 传输he-ltf序列的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8717865B2 (en) * 2009-07-17 2014-05-06 Qualcomm Incorporated Method and apparatus for constructing very high throughput short training field sequences
EP2702734A4 (en) * 2011-04-28 2015-03-11 Intel Corp METHODS AND ARRANGEMENTS FOR COMMUNICATIONS IN LOW-POWER WIRELESS NETWORKS
CN105830410B (zh) * 2013-10-25 2020-07-03 马维尔亚洲私人有限公司 一种用于生成用于经由通信信道传输的物理层数据单元的方法和装置
EP3198817B8 (en) * 2014-09-23 2020-04-01 NXP USA, Inc. Short training field for wifi
US10135662B2 (en) * 2014-12-02 2018-11-20 Lg Electronics Inc. Method for generating preamble sequence in wireless LAN system
TWI750048B (zh) * 2016-01-14 2021-12-11 美商內數位專利控股公司 無線區域網路中控制及操作的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105142207A (zh) * 2011-04-15 2015-12-09 英特尔公司 无线网络中的信道接入方法和布置
US20140211704A1 (en) * 2013-01-28 2014-07-31 Qualcomm Incorporated Extending range and delay spread in wifi bands
US20150365263A1 (en) * 2014-06-11 2015-12-17 Marvell World Trade Ltd. Compressed orthogonal frequency division multiplexing (ofdm) symbols in a wireless communication system
CN106487737A (zh) * 2015-08-26 2017-03-08 华为技术有限公司 传输he-ltf序列的方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953630A (zh) * 2019-05-14 2020-11-17 华为技术有限公司 发送和接收物理层协议数据单元的方法和装置
US11817980B2 (en) 2020-01-03 2023-11-14 Huawei Technologies Co., Ltd. Method and apparatus for transmitting physical layer protocol data unit
CN112911729A (zh) * 2021-01-29 2021-06-04 成都极米科技股份有限公司 隧道直接链路建立的方法、终端及存储介质

Also Published As

Publication number Publication date
CN112219377A (zh) 2021-01-12
WO2019178511A1 (en) 2019-09-19
US20190289612A1 (en) 2019-09-19
US20190288895A1 (en) 2019-09-19
WO2019178493A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
CN111886839A (zh) 经由大带宽信道的无线通信
CN111279647B (zh) 在无线通信网络中经由子带进行通信的系统和方法
US10856311B2 (en) Systems and methods of communicating via sub-bands in wireless communication networks
US20190253296A1 (en) Systems and methods of communicating via sub-bands in wireless communication networks
US10129873B2 (en) Non-contiguous channel allocation and bonding for wireless communication networks
CN111295858B (zh) 用于前置码穿孔的方法和装置
CN106973433B (zh) 用于多用户上行链路带宽分配的方法和装置
US10863515B2 (en) Pilot sequences in data streams
CN106717097B (zh) 用于无线通信网络中有效的资源分配的系统和方法
WO2019089207A1 (en) Techniques for interleaving in single user preamble puncturing
EP3063897B1 (en) Methods and apparatus for wireless communication using a mixed format

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201103

WD01 Invention patent application deemed withdrawn after publication