CN1118831C - Method for measuring power of pressurized-water reactor core for nuclear power station - Google Patents

Method for measuring power of pressurized-water reactor core for nuclear power station Download PDF

Info

Publication number
CN1118831C
CN1118831C CN00107808A CN00107808A CN1118831C CN 1118831 C CN1118831 C CN 1118831C CN 00107808 A CN00107808 A CN 00107808A CN 00107808 A CN00107808 A CN 00107808A CN 1118831 C CN1118831 C CN 1118831C
Authority
CN
China
Prior art keywords
beta
theta
pressure
enthalpy
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN00107808A
Other languages
Chinese (zh)
Other versions
CN1274162A (en
Inventor
徐昌荣
陈黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Hollysys Co Ltd
Original Assignee
Beijing Hollysys Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Hollysys Co Ltd filed Critical Beijing Hollysys Co Ltd
Priority to CN00107808A priority Critical patent/CN1118831C/en
Publication of CN1274162A publication Critical patent/CN1274162A/en
Application granted granted Critical
Publication of CN1118831C publication Critical patent/CN1118831C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

The present invention discloses a method for measuring the power of a reactor core of a pressurized water reactor in a nuclear power station. The measuring values of the temperature, the pressure, the flow capacity, etc. of a working medium of a secondary loop in a steam generator in the pressurized water reactor are measured to calculate enthalpy rise generated by the working medium of the secondary loop in the process of passing through the steam generator, and thus, energy transferred to the secondary loop from a primary loop of the reactor is obtained; energy obtained and lost by the first loop through other kinds of equipment is considered to calculate the power of the reactor core of the reactor by an energy balance principle. Thus, the present invention can greatly improve the speed and the precision of power measurement and improve the economic benefit of the operation of the machine set of the nuclear power station.

Description

A kind of method for measuring power of pressurized-water reactor core for nuclear power station
(1) technical field
The invention belongs to the measuring power of pressurized-water reactor core for nuclear power station technology.
Nuclear power station run duration, pressurized-water reactor core power are crucial parameters.Have only core power is measured accurately and rapidly, could guarantee reactor safety, economical operation.If the core power measured value is lower than actual value, reactor will move above under the condition of its operational factor, and reactor burns out easily, thereby initiation reaction heap accident jeopardizes equipment and personal safety.On the contrary, if the core power measured value is higher than actual value, reactor does not reach its specified service condition, and outside liberated heat of reactor and the generated energy that causes thus all are lower than design load, and the economy of unit will be affected.
(2) background technology
For pressurized-water reactor core power, useful in the world heat balance principle is measured.The heat balance method of that two the pressurized-water reactor core power in China GNPS adopt Electricite De France to provide is measured.There are two circulating water loops in presurized water reactor, one loop works medium absorption reaction is stacked heat, and by heat exchanger heat is passed to the water of secondary circuit, and the water of secondary circuit becomes the very high wet saturated steam of mass dryness fraction after absorbing heat, the pushing turbine work done finally becomes heat energy the electric energy of generator.Heat balance method of is exactly by measuring the heat that the secondary circuit actuating medium obtains, consider the internal heat loss simultaneously, calculating the reactor liberated heat, thereby obtain reactor core power.By actual measurement temperature, pressure and flow, can obtain reactor core power more exactly by heat balance method of, but in the heat Balance Calculation method that Electricite De France provides, what the water and steam thermodynamic properties calculated employing is simple binomial method, and its computational accuracy remains further to be improved.
(3) summary of the invention
The purpose of this invention is to provide a kind ofly, can improve the measuring method of pressurized-water reactor core power measurement precision utilizing on the basis of heat balance method of.
Technical scheme of the present invention is: a kind of method for measuring power of pressurized-water reactor core for nuclear power station, it is characterized in that: (1) will handle PC and be connected with the data acquisition PC, the data acquisition PC is connected with the isolation acquisition module, and the terminal cabinet of isolating acquisition module and power station unit is connected; (2) gather correlation parameter by isolating acquisition module, and the parameter that collects is input to acquisition PC machine, utilize the data of acquisition PC machine, the program by in the operation processing PC just can obtain reactor core power, and its concrete steps are:
1) the constant data that need in the time of will measuring are input to be handled in the PC, and these data comprise: 1. jet chimney diameter D, steam generator export to difference in height Δ z, coefficient of friction resistance λ between length L, pressure unit and the steam pipe axis of pressure unit interface under the reference temperature; 2. main feed system pipe diameter D under the reference temperature 1, from the main feed system to the steam generator inlet length L 1, pressure unit and feed pipe between centers difference in height Δ z 1, coefficient of friction resistance λ 1,3. the feedwater orifice plate diameter d under the reference temperature e, give water conduit circular section diameter D under the reference temperature e, the 4. mudhole board diameter d under the reference temperature p, reference temperature down blow conduit circular section diameter D p
2) gather momentum parameter by isolating acquisition module, these data comprise: 1. steam generator top hole pressure P VVP, 2. steam generator inlet pressure P of steam mean flow rate V, steam generator outlet steam quality x Are, the differential pressure that 3. feeds water Δ p Ei, 4. blowdown differential pressure Δ p Pi
3) handling PC utilizes momentum parameter and constant parameter to calculate, the feedwater flow, blowdown flow, steam flow, feedwater enthalpy, blowdown enthalpy, outlet enthalpy of wet steam and other thermals source that calculate the steam generator secondary circuit are passed to the heat of reactor cooling system, and the concrete operation way is: 1. calculate each secondary circuit enthalpy of wet steam: according to formula P = Pvvp + ρ ′ gΔz + 1 2 ( 4 πD 2 ) 2 Q 2 ρ + λ 8 L Q 2 ρπ 2 D 5 , calculate the steam generator top hole pressure, according to this pressure value, calculate the enthalpy of saturation water and saturated dry steam under this pressure by the ASME formula, obtain the enthalpy of wet steam again according to the mass dryness fraction of wet steam, concrete computing formula is as follows: β = P P c Be relative pressure, θ = T T C Be relative temperature, X = V V C Be relative specific volume, ϵ = h p C V C Be relative enthalpy, wherein P c, T c, V cBe the value of critical point, when the pressure of known saturation water or saturated vapour, can iterate by following formula and try to achieve saturation temperature: β ( θ ) = exp ( 1 θ Σ i = 1 5 k i ( 1 - θ ) i 1 + k 6 ( 1 - θ ) + k 7 ( 1 - θ ) 2 - ( 1 - θ ) k 8 ( 1 - θ ) 2 + k 9 ) The computing formula of unsaturated water and saturation water is: x 1=A 11a 5Z -5/17+ { A 12+ A 13θ+A 14θ 2+ A 15(a 6-θ) 10+ A 16(a 7+ θ 19) -1}
-(a 811) -1(A 17+2A 18β+3A 19β 2)
-A 20θ 18(a 92){-3(a 10+β) -4+a 11}+3A 21(a 12-θ)β 2
+ 4A 22θ -20β 3Wherein:
Z=Y+(a 3Y 2-2a 4θ+2a 5β) 1/2
Y=1-a 1θ 2-a 2θ -6 ϵ 1 = a 0 + A 0 θ - Σ v = 1 10 ( v - 2 ) A v θ v - 1 + A 11 [ Z { 17 ( Z 29 - Y 12 ) + 5 θ Y ′ 12 } + a 4 θ - ( a 3 - 1 ) θY Y ′ ] Z - 5 / 17 + { A 12 - A 14 θ 2 + A 15 ( 9 θ + a 6 ) ( a 6 - θ ) 9 + A 16 ( 20 θ 19 + a 7 ) ( a 7 + θ 19 ) - 2 } β - ( 12 θ 11 + a 8 ) ( a 8 + θ 11 ) - 2 ( A 17 β + A 18 β 2 + A 19 β 3 ) + A 20 θ 18 ( 17 a 9 + 19 θ 2 ) { ( a 10 + β ) - 3 + a 11 β } A 21 a 12 β 3 + 21 A 22 θ - 20 β 4 The computing formula of saturated vapour is: X 2 = I 1 θ / β - Σ μ = 1 5 μ β μ - 1 Σ v = 1 n ( μ ) B μv X z ( μ , v ) - Σ μ = 6 8 ( μ - 2 ) β 1 - μ Σ v = 1 n ( μ ) β μv X z ( μ , v ) { β 2 - μ + Σ λ = 1 1 ( μ ) b μλ X x ( μ , λ ) } 2 + 11 ( β β L ) Σ v = 0 5 B 9 v X v
Wherein:
X=exp{b(1-θ)} ϵ 2 = a 0 + B 0 θ - Σ v = 1 5 B 0 v ( v - 2 ) θ v - 1 - Σ μ = 1 5 β μ Σ v = 1 n ( μ ) B μv ( 1 + z ( μ , v ) bθ ) X z ( μ , v )
Figure C0010780800112
+ β ( β β L ) 10 Σ v = 0 6 [ { 1 + θ ( 10 β L ′ β L + vb ) } B 9 v X v ] The assignment of each amount is as follows in above-mentioned each formula: I1=4.260321148A0=6824.687741, A1=-542.2063673, A2=-20966.66205, A3=39412.86787A4=-67332.77739, A5=99023.81028, A6=-109391.1774, A7=85908.41667A8=-45111.68742, A9=14181.38926, A10=-2017.271113, A11=7.982692717A12=-0.02616571843, A13=0.00152241179, A14=0.02284279054, A15=242.1647003, A16=1.269716088E-10, A17=2.074838328E-07A18=2.17402035E-08, A19=1.105710498E-09, A20=12.93441934A21=0.00001308119072, A22=6.047626338E-14a1=0.8438375405, a2=0.0005362162162, a3=1.72, a4=0.07342278489a5=0.0497585887, a6=0.65371543, a7=0.00000115, a8=0.000015108a9=0.14188, a10=7.002753165, a11=0.0002995284926, a12=0.204B0=16.83599274, B01=28.56067796, B02=-54.38923329, B03=0.4330662834, B04=-0.6547711697, B05=0.08565182058B11=0.06670375918, B12=1.388983801, B21=0.08390104328B22=0.02614670893, B23=-0.03373439453, B31=0.4520918904B32=0.1069036614, B41=-0.5975336707, B42=-0.08847535804B51=0.5958051609, B52=-0.5159303373, B53=0.2075021122B61=0.1190610271, B62=-0.09867174132, B71=0.1683998803B72=-0.05809438001, B81=0.006552390126, B82=0.0005710218649B90=193.6587558, B91=-1388.522425, B92=4126.607219B93=-6508.211677, B94=5745.984054, B95=-2693.088365B96=523.5718623b=0.7633333333, b61=0.4006073948, b71=0.08636081627b81=-0.8532322921, b82=0.3460208861n (1)=2, n (2)=3, n (3)=2, n (4)=2, n (5)=3, n (6)=2, n (7)=2n (8)=2z (1,1)=13, z (2,1)=18, z (3,1)=18, z (4,1)=25, z (5,1)=and 32z (6,1)=12, z (7,1)=24, z (8,1)=24, z (1,2)=3, z (2,2)=2z (3,2)=10, z (4,2)=14, z (5,2)=28, z (6,2)=11, z (7,2)=18z (8,2)=14, z (2,3)=1, z (5,3)=24l (6)=1, l (7)=1, l (8)=2x (6,1)=14, x (7,1)=19, x (8,1)=54x (8,2)=27k1=-7.691234564, k2=-26.08023696, k3=-168.1706546k4=64.23285504, k5=-118.9646225, k6=4.16711732k7=20.97506, k8=1.0E10, k9=9Tc=647.3K, Pc=22120000N/m 2, Vc=0.00317m 3/ kgH Esi1i* PcVc H Vsi2i* PcVcH Vi=x i* H Vsi+ (1-x i) * H Esi=x i* ε 2i* PcVc+ (1-x i) * ε 1i* 2. PcVc calculates the feedwater enthalpy of each secondary circuit: according to formula P = P ARE + ρ ′ gΔz + 1 2 ( 4 πD 2 ) 2 Q 2 ρ - λ 8 LQ 2 ρπ 2 D 5 Calculate the steam generator inlet pressure, revise on the basis of actual measurement temperature T 1 and draw the feed temperature value, calculate the feedwater enthalpy by the ASME formula then, concrete formula is: ϵ 1 = a 0 + A 0 θ - Σ v = 1 10 ( v - 2 ) A v θ v - 1 + A 11 [ Z { 17 ( Z 29 - Y 12 ) + 5 θ Y ′ 12 } + a 4 θ - ( a 3 - 1 ) θY Y ′ ] Z - 5 / 17 + { A 12 - A 14 θ 2 + A 15 ( 9 θ + a 6 ) ( a 6 - θ ) 9 + A 16 ( 20 θ 19 + a 7 ) ( a 7 + θ 19 ) - 2 } β - ( 12 θ 11 + a 8 ) ( a 8 + θ 11 ) - 2 ( A 17 β + A 18 β 2 + A 19 β 3 ) + A 20 θ 18 ( 17 a 9 + 19 θ 2 ) { ( a 10 + β ) - 3 + a 11 β } + A 21 a 12 β 3 + 21 A 22 θ - 20 β 4 Feedwater enthalpy Hei=ε 1i* 3. PcVc calculates each secondary circuit blowdown enthalpy: the blowdown enthalpy is got the enthalpy of steam generator exit saturation water, i.e. Hei=ε 1i* 4. PcVc calculates each secondary circuit feedwater flow, and concrete formula is as follows: Q ei = C ei · E ei · ϵ ei πd ei 2 / 4 · 2 ρ ei Δ P ei = α ei · ϵ ei · πd ei 2 / 4 · 2 ρ ei Δ P ei Wherein: Q EiBe feedwater flow, C EiBe efflux coefficient, E Ei=1/ (1-β Ei 4) 1/2, β Ei=d E '/ D E ', d E 'Being the orifice plate diameter under the operating condition, is d under the reference temperature eModified value, D E 'For operating condition downcomer circular section diameter, be D under the reference temperature eModified value, ε eBe the expansion factor of fluid, ρ eBe the device upstream fluid density, Δ P eBe pressure reduction, α eBe coefficient of flow, efflux coefficient C EiObtain by the Stolz equation: C e = C 1 e + C 2 e ( 10 6 Re De ) 0.75 Wherein: C 1 e = 0.5959 + 0.0312 βe 2.1 - 0.1840 β e 8 + 0.090 L 1 e βe 4 1 - βe 4 - 0.0337 L 2 e ′ βe 3
C 2e=0.0029βe 2.5 Re De = vDe μe = 4 Qe πμDe Be Reynolds number μ eBe the viscosity under the operating condition, β Ei=d E '/ D E 'Be diameter ratio, L 1eFor the orifice plate upstream face to the ratio L of the distance between the pressure port of upstream with pipe diameter 2e 'For 5. orifice plate downstream face to the distance between the pressure port of downstream and the ratio of pipe diameter calculate the blowdown flow of each secondary circuit, the computing formula of blowdown flow is: Q pi = C pi · E pi · ϵ pi πd pi 2 / 4 · 2 ρ pi Δ P pi = α pi · ϵ pi πd pi 2 / 4 · 2 ρ pi Δ P pi Wherein: Q PiBe blowdown flow, C PiBe efflux coefficient, E Pi=1/ (1-β Pi 4) 1/2, β Pi=d Pi '/ D Pi, d Pi ', be the orifice plate diameter under the operating condition, be d under the reference temperature PiModified value, D Pi 'For operating condition downcomer circular section diameter, be D under the reference temperature PiModified value, ε PiBe the expansion factor of fluid, ρ PiBe the device upstream fluid density, Δ P PiBe pressure reduction, α PiBe coefficient of flow, efflux coefficient C PiObtain by the Stolz equation: C p = C 1 p + C 2 p ( 10 6 Re Dp ) 0.75 Wherein: C 1 p = 0.5959 + 0.0312 β p 2.1 - 0.1840 β p 8 + 0.090 L 1 p β p 4 1 - β p 4 - 0.0337 L 2 p ′ β p 3 C 2p=0.0029β p 2.5 Re Dp = v D p μ p = 4 Q p π μ p D p Be Reynolds number μ pBe the viscosity under the operating condition, β p i=d P '/ D P 'Be diameter ratio, L 1pFor the orifice plate upstream face to the ratio L of the distance between the pressure port of upstream with pipe diameter 2p 'For 6. orifice plate downstream face to the ratio of the distance between the pressure port of downstream and pipe diameter calculates the heat W Δ pr that other thermals source are passed to reactor cooling system, computing formula is: the heat that the heat that heat+replenishment pump that positive energy exchange=main pump is brought into is brought into+the voltage stabilizing well heater is brought into-(heat+system's thermal loss that heat+reactor cooling system that heat+the sealing water-to-water heat exchanger is taken away of taking away of non-regenerative heat exchanger is taken away), the numerical value change of W Δ pr is little under the nominal situation, so desirable constant, the total thermal loss value of reactor circuit is 11MW.4) utilize the operation values of above-mentioned each secondary circuit, calculate nuclear reactor power, computing formula is: WR = Σ i = 1 3 [ ( Hvi - Hei ) Qei - ( Hvi - Hpi ) Qpi ] - WΔPr
Principle of work of the present invention is: the enthalpy liter that produces when calculating secondary circuit working medium by steam generator by measured values such as secondary circuit actuating medium temperature, pressure, flows in the steam generator in the pressurized water reactor, thereby obtain the energy that reactor-loop is passed to secondary circuit, and then the energy that a loop is obtained by other equipment and the energy consideration that loses enter, and obtains reactor core power by principle of energy balance.Specify as follows:
Heat balance method of is in measuring pressurized water reactor in the steam generator on the basis of physical parameters such as secondary circuit actuating medium temperature, pressure, flow, the enthalpy liter that produces when calculating secondary circuit working medium by steam generator, thereby obtain the energy that reactor-loop is passed to secondary circuit, and then the energy that a loop is obtained by miscellaneous equipment and the energy consideration that loses enter, and obtains the reactor core thermal power by principle of energy balance.Under steady state mode of operation, can obtain following energy-balance equation: WR = Σ i = 1 3 WS G i - WΔPr - - - ( 1 ) Wherein:
WR is reactor core (NSSS) thermal power (MW)
WSGi is the thermal power (MW) that the secondary circuit actuating medium obtains in i the steam generator
W Δ Pr is the heat that other thermal source is passed to reactor cooling system in the unit interval (MW)
Formula (1) is got by the thermal equilibrium relation, and promptly the heat of steam generator is provided by reactor and other thermal source, so the heat that the heat that steam generator obtains deducts other thermal source to be provided is the reactor core thermal power.
The heat that secondary circuit working medium obtains in a certain steam generator is tried to achieve by following computing formula:
WSG=HvQv+HpQp-HeQe (2)
Qv=Qe-Qp (3)
The implication of each symbol is in the formula: Qe is a steam generator secondary circuit feedwater flow (kg/s), Qp is a steam generator secondary circuit blowdown flow (kg/s), Qv is a steam generator secondary circuit steam flow (kg/s), He is steam generator secondary circuit feedwater enthalpy (kJ/kg), Hp is a steam generator secondary circuit blowdown enthalpy (kJ/kg), and Hv is steam generator secondary circuit outlet enthalpy of wet steam (kJ/kg).
The implication of formula (2), (3) for p.s. quality be that Qe, specific enthalpy are that the unsaturated water of He enters steam generator by steam generator secondary circuit inlet, after the steam generator heating, flow out by two outlets.One is the blowdown outlet, and the outflow mass rate is that Qp, specific enthalpy are the saturation water of Hp.Another is the wet steam outlet, and the outflow mass rate is that Qv, specific enthalpy are the wet steam of Hv.
(3) substitution (2) is obtained:
WSG=(Hv-He)Qe-(Hv-Hp)Qp (4)
The enthalpy of wet steam can be expressed as:
Hv=x Hvs+(1-x)Hes (5)
X is a steam generator outlet steam quality (dimensionless), and 1-x is the content (dimensionless) of water in the steam generator outlet steam, and Hes is the enthalpy (kJ/kg) of saturation water, and Hvs is the enthalpy (kJ/kg) of saturated vapour.The implication of formula (5) is: wet steam is made up of two parts, and a part is a saturated vapour, and the quality percentage composition is x; Another part is synthermal saturation water, and the quality percentage composition is 1-x.
(4) brought in (1) obtain: WR = Σ i = 1 3 [ ( Hvi - Hei ) Qei - ( Hvi - Hpi ) Hpi ] - WΔPr - - - ( 6 )
Wet steam enthalpy Hv is determined by the pressure of steam generator steam (vapor) outlet.Suppose that the steam quality of three steam generators is identical and be constant.Pressure P is obtained through correction by measured value Pvvp, the position pressure reduction Pz that pressure loss Δ P, pressure unit and the conduit axis difference in height that correction term has dynamic pressure Pd, steam generator to be exported to pressure unit causes. Pd = 1 2 ρV 2 = 1 2 ( 4 πD 2 ) 2 Q 2 ρ
Pz=ρ′gΔz ΔP = λ L D ρ 2 V 2 = λ 8 LQ 2 ρπ 2 D 5
Wherein: V is steam mean flow rate (m/s), and Q is steam mass flow (kg/s), and ρ is vapour density (kg/m 3), D is jet chimney diameter (m), and L is the length (m) that steam generator exports to the pressure unit interface, and ρ ' is the density (kg/m of water in the conduit 3), Δ z is the difference in height (m) between pressure unit and steam pipe axis, λ is the coefficient of friction resistance, and is relevant with the pipeline relative roughness with Reynolds number.Therefore the steam generator top hole pressure is: P = Pvvp + ρ ′ gΔz + 1 2 ( 4 πD 2 ) 2 Q 2 ρ + λ 8 LQ 2 ρπ 2 D 5 - - - ( 7 )
Obtain the pressure of steam generator outlet wet steam by following formula after, can try to achieve the enthalpy of saturation water and dry saturated steam under this pressure, obtain the enthalpy of wet steam then by dryness of wet steam by water and steam thermodynamic properties computing formula.The ASME formula that the computing formula of water and steam thermodynamic properties provides for ASME, this formula obtains after being put in order according to experimental data separately by state scientists such as the U.S., the former Soviet Union, Germany, Japan, has bigger authority in the world.
Water and steam is divided into four zones by temperature, pressure, and to have provided respectively be the relative pressure of independent variable, the relative algebraic expression of specific volume, relative enthalpy and relative entropy with the relative temperature to the ASME formula in each district.Owing to only use wherein a part of formula in two zones in the KME system, so only list these formula here.Variable-definition: β = P P C Be relative pressure, θ = T T C Be relative temperature, X = V V C Be relative specific volume ϵ = h p C V C Be relative enthalpy
P wherein C, T C, V CBe the value of critical point.When the pressure of known saturation water or saturated vapour, can iterate by following formula and try to achieve saturation temperature: β ( θ ) = exp ( 1 θ Σ i = 1 5 k i ( 1 - θ ) i 1 + k 6 ( 1 - θ ) + k 7 ( 1 - θ ) 2 - ( 1 - θ ) k 8 ( 1 - θ ) 2 + k 9 ) - - - ( 10 ) The computing formula of unsaturated water and saturation water is: x 1=A 11a 5Z -5/17+ { A 12+ A 13θ+A 14θ 2+ A 15(a 6-θ) 10+ A 16(a 7+ θ 19) -1}
-(a 811) -1(A 17+2A 18β+3A 19β 2)
(11)
-A 20θ 18(a 92){-3(a 10+β) -4+a 11}+3A 21(a 12-θ)β 2
+4A 22θ -20β 3
Z=Y+(a 3Y 2-2a 4θ+2a 5β) 1/2
Wherein:
Y=1-a 1θ 2-a 2θ -6 ϵ 1 = a 0 + A 0 θ - Σ v = 1 10 ( v - 2 ) A v θ v - 1 + A 11 [ Z { 17 ( Z 29 - Y 12 ) + 5 θ Y ′ 12 } + a 4 θ - ( a 3 - 1 ) θY Y ′ ] Z - 5 / 17 + { A 12 - A 14 θ 2 + A 15 ( 9 θ + a 6 ) ( a 6 - θ ) 9 + A 16 ( 20 θ 19 + a 7 ) ( a 7 + θ 19 ) - 2 } β - ( 12 θ 11 + a 8 ) ( a 8 + θ 11 ) - 2 ( A 17 β + A 18 β 2 + A 19 β 3 ) + A 20 θ 18 ( 17 a 9 + 19 θ 2 ) { ( a 10 + β ) - 3 + a 11 β } + A 21 a 12 β 3 + 21 A 22 θ - 20 β 4 - - - ( 12 )
The computing formula of saturated vapour is: X 2 = I 1 θ / β - Σ μ = 1 5 μβ μ - 1 Σ v = 1 n ( μ ) B μv X z ( μ , v ) - Σ μ = 6 8 ( μ - 2 ) β 1 - μ Σ v = 1 n ( μ ) β μv X z ( μ , v ) { β 2 - μ + Σ λ = 1 1 ( μ ) b μλ X x ( μ , λ ) } 2 - - - ( 13 ) + 11 ( β β L ) Σ v = 0 5 B 9 v X v
Wherein:
X=exp{b(1-θ)} ϵ 2 = a 0 + B 0 θ - Σ v = 1 5 B 0 v ( v - 2 ) θ v - 1 - Σ μ = 1 5 β μ Σ v = 1 n ( μ ) B μv ( 1 + z ( μ , v ) bθ ) X z ( μ , v )
Figure C0010780800182
+ β ( β β L ) 10 Σ v = 0 6 [ { 1 + θ ( 10 β L ′ β L + vb ) } B 9 v X x
Can obtain the enthalpy that feeds water by the temperature and pressure value of measuring steam generator inflow point: when known steam generator inlet feed pressure and feed temperature, can try to achieve the enthalpy of water under this pressure and temperature by water and steam thermodynamic properties computing formula ASME formula.
Pressure can record static pressure PARE by the main feed system upstream and obtain through correction, and correction term has dynamic pressure Pd, pressure loss Δ P, position pressure reduction Pz. Pd = 1 2 ρV 2 = 1 2 ( 4 πD 2 ) 2 Q 2 ρ , Pz = ρ ′ gΔz , ΔP = λ L D ρ 2 V 2 = λ 8 LQ 2 ρπ 2 D 5
Wherein: V is feedwater mean flow rate (m/s), and Q is feed-water quality flow (kg/s), and D is main feed system pipe diameter (m), and L is the length (m) of inlet from the main feed system to the steam generator, and ρ ' is the density (kg/m of water in the transmitter conduit 3), Δ z is the difference in height (m) of pressure unit and feed pipe between centers, λ is the coefficient of friction resistance, and is relevant with the pipeline relative roughness with Reynolds number.
Therefore the steam generator inlet pressure is: P = P ARE + ρ ′ gΔz + 1 2 ( 4 πD 2 ) 2 Q 2 ρ - λ 8 LQ 2 ρπ 2 D 5 - - - ( 5 )
On the basis of measured temperature, consider that the main feed system pipeline to the thermal loss between the steam generator inlet, can obtain the feed temperature value.Thermal loss numerical value is amassed by the coefficient of heat transfer and pipe surface and calculates.
The blowdown enthalpy is got the enthalpy of steam generator exit saturation water.The computing method of enthalpy are with reference to the computing method of wet steam enthalpy, and pressure is the vapor pressure that measures.
Feedwater flow Qe is measured by orifice flowmeter, and according to the relevant regulations of international standard ISO5167-1-92 (alternate standard of NFX10-102), fluid pressure difference and fluid density are calculated feedwater flow by density and differential manometer before and after the measuring diaphragm.
Fluid density is obtained by pressure and temperature.Consider the orifice plate sectional area, can obtain the computing formula of fluid flow: Q = C · E · ϵ · π d 2 / 4 · 2 ρΔP = α · ϵ · π d 2 / 4 · 2 ρΔP - - - ( 16 ) Wherein: Q is flow (kg/s), and C is efflux coefficient (dimensionless), and this coefficient obtains according to the NFX10-102 criterion calculation.E is progressive velocity coefficient (dimensionless), E=1/ (1-β 4) 1/2, wherein: β be diameter than (dimensionless), β=d/D, d are the orifice plate diameter (m) under the operating condition, D is an operating condition downcomer circular section diameter (m), notes: D and d should be revised by the expansion factor of sheet material and tubing.ε is the expansion factor (dimensionless) of fluid, incompressible fluid ε=1, and ρ is device upstream fluid density (kg/m 3), Δ P is pressure reduction (Pa), α is that coefficient of flow (dimensionless) efflux coefficient C is obtained by the Stolz equation: C = C 1 + C 2 ( 10 6 Re D ) 0.75 Wherein: C 1 = 0.5959 + 0.0312 β 2.1 - 0.1840 β 8 + 0.090 L 1 β 4 1 - β 4 - 0.0337 L 2 ′ β 3 C 2 = 0.0029 β 2.5 , Re D = vD μ = 4 Q πμD Be Reynolds number, μ is the viscosity (kg/s.m) under the operating condition, and β=d/D is the diameter ratio, and L1=e1/D is that the orifice plate upstream face is to the ratio of the distance between the pressure port of upstream with pipe diameter, L ' 2=e2/D is that the orifice plate downstream face is to the ratio of the distance between the pressure port of downstream with pipe diameter.
The computing method of blowdown flow are identical with the computing method of feedwater flow, do not repeat them here.
Other thermal source is transferred to the thermal power (W Δ Pr) of reactor cooling system:
The heat of input has: the heat that the heat that the heat that main pump is brought into, replenishment pump are brought into, voltage stabilizing well heater are brought into.The heat of output has: the heat that non-regenerative heat exchanger is taken away, the heat that the sealing water-to-water heat exchanger is taken away, the heat that reactor cooling system is taken away, system's thermal loss.
More than every heat can try to achieve by energy budget method according to the ruuning situation of relevant devices.Concrete grammar is: obtained the intake of relevant devices and exported energy by pressure, temperature and flow measurements, the difference of the two is the energy that exchanges between this equipment and the steam generator.The numerical value change of W Δ Pr is little under the nominal situation, so desirable constant.Be taken as 11MW according in the past three total thermal loss in loop of operating experience.
Advantage of the present invention is: by measuring the enthalpy liter that produces when measured values such as secondary circuit actuating medium temperature, pressure, flow calculate secondary circuit working medium by steam generator in the steam generator in the pressurized water reactor, thereby obtain the energy that reactor-loop is passed to secondary circuit, and then the energy that a loop is obtained by other equipment and the energy consideration that loses enter, and calculates reactor core power by principle of energy balance.Therefore, can improve power measurement speed and accuracy greatly, improve the economic benefit of nuclear power station unit operation.
(4) description of drawings
The present invention is further illustrated below in conjunction with accompanying drawing and example.
Fig. 1 is pressurized water reactor of the present invention one loop and secondary circuit structural representation;
Fig. 2 is that measurements and calculations equipment of the present invention connects block diagram;
Fig. 3 is an executive routine logic diagram of the present invention.
Among Fig. 1, pressurized water reactor one loop and secondary circuit connect each other by steam generator.
Among Fig. 2, handle PC and be connected with the data acquisition PC, the data acquisition PC is connected with the isolation acquisition module, isolates acquisition module and is connected with ready-made measurement signal line.
Among Fig. 3, the constant parameter is input to the processing PC, after the processing PC powers up and brings into operation, handling PC utilizes momentum parameter and constant parameter to calculate, the feedwater flow, blowdown flow, steam flow, feedwater enthalpy, blowdown enthalpy, outlet enthalpy of wet steam and other thermals source that calculate each secondary circuit of steam generator are passed to the heat of reactor cooling system, calculate pressurized-water reactor core power at last.
(5) embodiment
In order to verify the measurement effect of above-mentioned measuring method, to calculate by the real time data of GNPS, result of calculation is as shown in the table:
Thermal power calculated value (MW) 260.5 509.8 1380.1 1727.0 2121.8
Thermal power actual value (MW) 260.8 510.8 1381.4 1728.6 2123.6
The thermal power error of calculation (MW) -0.3 -0.5 -1.3 -1.6 -1.8
Thermal power calculated value (MW) 2359.4 2428.5 2544.0 2882.8 2899.1
Thermal power actual value (MW) 2361.4 2430.6 2546.2 2885.4 2901.7
The thermal power error of calculation (MW) -2.0 -2.1 -2.2 -2.6 -2.6
Last table result of calculation shows: nuclear reactor core power calculation value and actual value that this kind measuring method obtains differ very little, and maximum absolute error is 2,6MW, 1% of not enough full scale.

Claims (1)

1, a kind of method for measuring power of pressurized-water reactor core for nuclear power station is characterized in that:
(1) will handle PC and be connected with the data acquisition PC, the data acquisition PC is connected with the isolation acquisition module, isolates acquisition module and is connected with the in-site measurement signal wire;
(2) gather correlation parameter by isolating acquisition module, and the parameter that collects is input to acquisition PC machine, utilize the data of acquisition PC machine, the program by in the operation processing PC just can obtain reactor core power, and its concrete steps are:
1) the constant data that need in the time of will measuring are input to be handled in the PC, and these data comprise: 1. jet chimney diameter D, steam generator export to difference in height Δ z, coefficient of friction resistance λ between length L, pressure unit and the steam pipe axis of pressure unit interface under the reference temperature; 2. main feed system pipe diameter D under the reference temperature 1, from the main feed system to the steam generator inlet length L 1, pressure unit and feed pipe between centers difference in height Δ z 1, coefficient of friction resistance λ 1,3. the feedwater orifice plate diameter d under the reference temperature e, give water conduit circular section diameter D under the reference temperature e, the 4. mudhole board diameter d under the reference temperature p, reference temperature down blow conduit circular section diameter D p
2) gather momentum parameter by isolating acquisition module, these data comprise: 1. steam generator top hole pressure P VVP, 2. steam generator inlet pressure P of steam mean flow rate V, steam generator outlet steam quality x ARE, the differential pressure that 3. feeds water Δ p Ei, 4. blowdown differential pressure Δ p Pi
3) handling PC utilizes momentum parameter and constant parameter to calculate, the feedwater flow, blowdown flow, steam flow, feedwater enthalpy, blowdown enthalpy, outlet enthalpy of wet steam and other thermals source that calculate the steam generator secondary circuit are passed to the heat of reactor cooling system, and the concrete operation way is:
1. calculate each secondary circuit enthalpy of wet steam: according to formula P = Pvvp + ρ ′ gΔz + 1 2 ( 4 π D 2 ) 2 Q 2 ρ + λ 8 L Q 2 ρ π 2 D 5 , calculate the steam generator top hole pressure, according to this pressure value, calculate the enthalpy of saturation water and saturated dry steam under this pressure by the ASME formula, obtain the enthalpy of wet steam again according to the mass dryness fraction of wet steam, concrete computing formula is as follows: β = P P C Be relative pressure, θ = T T C Be relative temperature, X = V V C Be relative specific volume, ϵ = h p C V C Be relative enthalpy, wherein P c, T c, V cBe the value of critical point, when the pressure of known saturation water or saturated vapour, can iterate by following formula and try to achieve saturation temperature: β ( θ ) = exp ( 1 θ Σ i = 1 5 k i ( 1 - θ ) i 1 + k 6 ( 1 - θ ) + k 7 ( 1 - θ ) 2 - ( 1 - θ ) k 8 ( 1 - θ ) 2 + k 9 ) The computing formula of unsaturated water and saturation water is: x 1=A 11a 5Z -5/17+ { A 12+ A 13θ+A 14θ 2+ A 15(a 6-θ) 10+ A 16(a 7+ θ 19) -1}
-(a 811) -1(A 17+2A 18β+3A 19β 2)
-A 20θ 18(a 92){-3(a 10+β) -4+a 11}+3A 21(a 12-θ)β 2
+ 4A 22θ -20β 3Wherein:
Z=Y+(a 3Y 2-2a 4θ+2a 5β) 1/2
Y=1-a 1θ 2-a 2θ -6 ϵ 1 = a 0 + A 0 θ - Σ v = 1 10 ( v - 2 ) A v θ v - 1 + A 11 [ Z { 17 ( Z 29 - Y 12 ) + 5 θ Y ′ 12 } + a 4 θ - ( a 3 - 1 ) θY Y ′ ] Z - 5 / 17 + { A 12 - A 14 θ 2 + A 15 ( 9 θ + a 6 ) ( a 6 - θ ) 9 + A 16 ( 20 θ 19 + a 7 ) ( a 7 + θ 19 ) - 2 } β - ( 12 θ 11 + a 8 ) ( a 8 + θ 11 ) - 2 ( A 17 β + A 18 β 2 + A 19 β 3 ) + A 20 θ 18 ( 17 a 9 + 19 θ 2 ) { ( a 10 + β ) - 3 + a 11 β } + A 21 a 12 β 3 + 21 A 22 θ - 20 β 4 The computing formula of saturated vapour is: X 2 = I 1 θ / β - Σ μ = 1 5 μ β μ - 1 Σ v = 1 n ( μ ) B μv X z ( μ , v ) - Σ μ = 6 8 ( μ - 2 ) β 1 - μ Σ v = 1 n ( μ ) β μv X z ( μ , v ) { β 2 - μ + Σ λ = 1 1 ( μ ) b μλ X x ( μ , λ ) } 2 + 11 ( β β L ) Σ v = 0 5 B 9 v X v
Wherein:
X=exp{b(1-θ)} ϵ 2 = a 0 + B 0 θ - Σ v = 1 5 B 0 v ( v - 2 ) θ v - 1 - Σ μ = 1 5 β μ Σ v = 1 n ( μ ) B μv ( 1 + z ( μ , v ) bθ ) X z ( μ , v )
Figure C0010780800042
+ β ( β β L ) 10 Σ v = 0 6 [ { 1 + θ ( 10 β L ′ β L + vb ) } B 9 v X v ] The assignment of each amount is as follows in above-mentioned each formula: I1=4.260321148A0=6824.687741, A1=-542.2063673, A2=-20966.66205, A3=39412.86787A4=-67332.77739, A5=99023.81028, A6=-109391.1774, A7=85908.41667A8=-45111.68742, A9=14181.38926, A10=-2017.271113, A11=7.982692717A12=-0.02616571843, A13=0.00152241179, A14=0.02284279054, A15=242.1647003, A16=1.269716088E-10, A17=2.074838328E-07A18=2.17402035E-08, A19=1.105710498E-09, A20=12.93441934A21=0.00001308119072, A22=6.047626338E-14a1=0.8438375405, a2=0.0005362162162, a3=1.72, a4=0.07342278489a5=0.0497585887, a6=0.65371543, a7=0.00000115, a8=0.000015108a9=0.14188, a10=7.002753165, a11=0.0002995284926, a12=0.204B0=16.83599274, B01=28.56067796, B02=-54.38923329, B03=0.4330662834, B04=-0.6547711697, B05=0.08565182058B11=0.06670375918, B12=1.388983801, B21=0.08390104328B22=0.02614670893, B23=-0.03373439453, B31=0.4520918904B32=0.1069036614, B41=-0.5975336707, B42=-0.08847535804B51=0.5958051609, B52=-0.5159303373, B53=0.2075021122B61=0.1190610271, B62=-0.09867174132, B71=0.1683998803B72=-0.05809438001, B81=0.006552390126, B82=0.0005710218649B90=193.6587558, B91=-1388.522425, B92=4126.607219B93=-6508.211677, B94=5745.984054, B95=-2693.088365B96=523.5718623b=0.7633333333, b61=0.4006073948, b71=0.08636081627b81=-0.853232292 1, b82=0.3460208861n (1)=2, n (2)=3, n (3)=2, n (4)=2, n (5)=3, n (6)=2, n (7)=2n (8)=2z (1,1)=13, z (2,1)=18, z (3,1)=18, z (4,1)=25, z (5,1)=and 32z (6,1)=12, z (7,1)=24, z (8,1)=24, z (1,2)=3, z (2,2)=2z (3,2)=10, z (4,2)=14, z (5,2)=28, z (6,2)=11, z (7,2)=18z (8,2)=14, z (2,3)=1, z (5,3)=241 (6)=1,1 (7)=1,1 (8)=2x (6,1)=14, x (7,1)=19, x (8,1)=54x (8,2)=27k1=-7.691234564, k2=-26.08023696, k3=-168.1706546k4=64.23285504, k5=-118.9646225, k6=4.16711732k7=20.97506, k8=1.0E10, k9=9Tc=647.3K, Pc=22120000N/m 2, Vc=0.00317m 3/ kgH Esi1i* PcVc H Vsi2i* PcVcH Vi=x i* H Vsi+ (1-x i) * H Esi=x i* ε 2i* PcVc+ (1-x i) * ε 1i* PcVc
2. calculate the feedwater enthalpy of each secondary circuit: according to formula P = P ARE + ρ ′ gΔz + 1 2 ( 4 π D 2 ) 2 Q 2 ρ - λ 8 L Q 2 ρ π 2 D 5 Calculate the steam generator inlet pressure, revise on the basis of actual measurement temperature T 1 and draw the feed temperature value, calculate the feedwater enthalpy by the ASME formula then, concrete formula is: ϵ 1 = a 0 + A 0 θ - Σ v = 1 10 ( v - 2 ) A v θ v - 1 + A 11 [ Z { 17 ( Z 29 - Y 12 ) + 5 θ Y ′ 12 } + a 4 θ - ( a 3 - 1 ) θ YY ′ ] Z - 5 / 17 + { A 12 - A 14 θ 2 + A 15 ( 9 θ + a 6 ) ( a 6 - θ ) 9 + A 16 ( 20 θ 19 + a 7 ) ( a 7 + θ 19 ) - 2 } β - ( 12 θ 11 + a 8 ) ( a 8 + θ 11 ) - 2 ( A 17 β + A 18 β 2 + A 19 β 3 ) + A 20 β 18 ( 17 a 9 + 19 a 2 ) { ( a 10 + β ) - 3 + a 11 β } + A 21 a 12 β 3 + 21 A 22 θ - 20 β 4 Feedwater enthalpy Hei=ε 1i* PcVc
3. calculate each secondary circuit blowdown enthalpy: the blowdown enthalpy is got the enthalpy of steam generator exit saturation water, promptly
Hei=ε li*PcVc
4. calculate each secondary circuit feedwater flow, concrete formula is as follows: Q ei = C ei · E ei · ϵ ei · πd ei 2 / 4 · 2 ρ ei Δ P ei = α ei · ϵ ei · πd ei 2 / 4 · 2 ρ ei Δ P ei Wherein: Q EiBe feedwater flow, C EiBe efflux coefficient, E Ei=1/ (1-β Ei 4) 1/2, β Ei=d E '/ D E ', d E 'Being the orifice plate diameter under the operating condition, is d under the reference temperature eModified value, D E 'For operating condition downcomer circular section diameter, be D under the reference temperature eModified value, ε eBe the expansion factor of fluid, ρ eBe the device upstream fluid density, Δ P eBe pressure reduction, α eBe coefficient of flow, efflux coefficient C EiObtain by the Stolz equation: C e = C 1 e + C 2 e ( 10 6 Re De ) 0.75 Wherein: C 1 e = 0.5959 + 0.0312 βe 2.1 - 0.1840 β e 8 + 0.090 L 1 e βe 4 1 - βe 4 - 0.0337 L 2 e ′ βe 3
C 2e=0.0029βe 2.5 Re De = vDe μe = 4 Qe πμDe Be Reynolds number μ eBe the viscosity under the operating condition, β Ei=d E '/ D E 'Be diameter ratio, L 1eFor the orifice plate upstream face to the ratio L` of the distance between the pressure port of upstream with pipe diameter 2eFor the orifice plate downstream face to the ratio of the distance between the pressure port of downstream with pipe diameter
5. calculate the blowdown flow of each secondary circuit, the computing formula of blowdown flow is: Q ei = C pi · E pi · ϵ pi πd pi 2 / 4 · 2 ρ pi Δ P pi = α pi · ϵ pi πd pi 2 / 4 · 2 ρ pi Δ P pi Wherein: Q PiBe blowdown flow, C PiBe efflux coefficient, E Pi=1/ (1-β Pi 4) 1/2, β Pi=d Pi '/ D Pi, d Pi 'Being the orifice plate diameter under the operating condition, is d under the reference temperature PiModified value, D Pi 'For operating condition downcomer circular section diameter, be D under the reference temperature PiModified value, ε PiBe the expansion factor of fluid, ρ PiBe the device upstream fluid density, Δ P PiBe pressure reduction, α PiBe coefficient of flow, efflux coefficient C PiObtain by the Stolz equation: C P = C 1 p + C 2 p ( 10 6 Re Dp ) 0.75 Wherein: C 1 p = 0.5959 + 0.0312 β p 2.1 - 0.1840 β p 8 + 0.090 L 1 p β p 4 1 - β p 4 - 0.0337 L 2 ′ β p 3
C 2p=0.0029β p 2.5 Re Dp = v D p μ p = 4 Q p π μ p D p Be Reynolds number μ pBe the viscosity under the operating condition, β p i=d P '/ D P 'Be diameter ratio, L 1pFor the orifice plate upstream face to the ratio L` of the distance between the pressure port of upstream with pipe diameter 2pFor the orifice plate downstream face to the ratio of the distance between the pressure port of downstream with pipe diameter
6. calculate other thermals source and pass to the heat W Δ pr of reactor cooling system, computing formula is: the heat that the heat that heat+replenishment pump that positive energy exchange=main pump is brought into is brought into+the voltage stabilizing well heater is brought into-(heat+system's thermal loss that heat+reactor cooling system that heat+the sealing water-to-water heat exchanger is taken away of taking away of non-regenerative heat exchanger is taken away), the numerical value change of W Δ pr is little under the nominal situation, so desirable constant, the total thermal loss value of reactor circuit is 11MW.
4) utilize the operation values of above-mentioned each secondary circuit, calculate nuclear reactor power, computing formula is: WR = Σ i = 1 3 [ ( Hvi - Hei ) Qei - ( Hvi - Hpi ) Qpi ] - WΔPr
CN00107808A 2000-06-21 2000-06-21 Method for measuring power of pressurized-water reactor core for nuclear power station Expired - Lifetime CN1118831C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN00107808A CN1118831C (en) 2000-06-21 2000-06-21 Method for measuring power of pressurized-water reactor core for nuclear power station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN00107808A CN1118831C (en) 2000-06-21 2000-06-21 Method for measuring power of pressurized-water reactor core for nuclear power station

Publications (2)

Publication Number Publication Date
CN1274162A CN1274162A (en) 2000-11-22
CN1118831C true CN1118831C (en) 2003-08-20

Family

ID=4578951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00107808A Expired - Lifetime CN1118831C (en) 2000-06-21 2000-06-21 Method for measuring power of pressurized-water reactor core for nuclear power station

Country Status (1)

Country Link
CN (1) CN1118831C (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846535B (en) * 2009-03-25 2011-12-28 江苏核电有限公司 Method for measuring steam-water mismatching amount of steam generator
CN102261936B (en) * 2011-06-14 2012-07-25 山东电力研究院 Method for determining high-pressure emergency drainage leakage flow rate
JP5785468B2 (en) * 2011-09-29 2015-09-30 アズビル株式会社 Gas-liquid two-phase fluid state control device and gas-liquid two-phase fluid state control method
CN103871520A (en) * 2012-12-11 2014-06-18 中国核动力研究设计院 Major loop flow quantity accurate measurement method based on digitization technology
CN103294898A (en) * 2013-05-10 2013-09-11 西安交通大学 Method for calculating single rod power of overall reactor core
CN103246205B (en) * 2013-05-14 2015-05-27 上海交通大学 Nuclear reactor outage analog system and method thereof
CN103839600B (en) * 2014-03-18 2016-03-02 中国科学院合肥物质科学研究院 A kind of flow measurement device for pool natural circulation reactor and measuring method
CN104200061A (en) * 2014-07-31 2014-12-10 北京广利核系统工程有限公司 Method for calculating power of third-generation nuclear power station pressurized water reactor core
CN105910843B (en) * 2016-07-06 2017-03-08 中国核动力研究设计院 A kind of heat loss method of testing of thermal technology's combined test apparatus
CN109029829B (en) * 2018-07-26 2020-07-17 中广核工程有限公司 Method and system for calculating internal pressure of upper section of steam generator of nuclear power plant
CN109243642A (en) * 2018-09-06 2019-01-18 中国船舶重工集团公司第七〇九研究所 A kind of natural circulation flow indirect measurement systems and measurement method
CN109887625B (en) * 2019-03-07 2022-04-22 中国核动力研究设计院 Detector failure coping method and current recovery method for reactor core online monitoring
CN112259271B (en) * 2020-09-28 2023-09-12 台山核电合营有限公司 Reactor core thermal power calculation method and device for nuclear power station DCS
CN113944924B (en) * 2021-10-18 2023-08-22 西安热工研究院有限公司 Automatic control system and method for outlet steam temperature of evaporator of high-temperature gas cooled reactor unit
CN114203316B (en) * 2021-11-08 2022-10-21 华能核能技术研究院有限公司 Method and system for measuring reactor power under non-thermal balance working condition of high-temperature gas cooled reactor
CN116842752B (en) * 2023-07-19 2024-04-12 东南大学 System-level simplified nonlinear modeling method for pressurized water reactor nuclear power plant

Also Published As

Publication number Publication date
CN1274162A (en) 2000-11-22

Similar Documents

Publication Publication Date Title
CN1118831C (en) Method for measuring power of pressurized-water reactor core for nuclear power station
Gong et al. Application of entropy production theory to hydro-turbine hydraulic analysis
Kamali et al. A simulation model and parametric study of MED–TVC process
CN107784156B (en) Method for calculating parameters of steam discharge system of nuclear power plant
CN113642132B (en) CFD-based tube bundle structure flow induced vibration evaluation critical flow velocity analysis method
Yuan et al. Numerical study of hydrodynamic and thermodynamic characteristics of a heat exchanger muffler
Norouzi et al. Geometric and thermodynamic optimization of a heat recovery steam generator: a constructal design
CN110378006B (en) Method for determining position of branch pipe stop valve of nuclear power plant system
Kim et al. Preliminary sizing of printed circuit steam generators with zigzag channels
Khokhlov et al. Computational model for high-pressurized heat recovery steam generator heat transfer study
Slagter Finite element solution of axial turbulent flow in a bare rod bundle using a one-equation turbulence model
Gu et al. Performance analysis and structural optimization of torsional flow heat exchangers with sinusoidal corrugated baffle
Hai et al. Modelling and simulation of water control system of vertical natural circulation steam generators
Ge et al. Thermal-hydraulic design and transient analysis of passive cooling system for CPR1000 spent fuel storage pool
Hu et al. Investigation into abnormal heat transfer mechanism of supercritical carbon dioxide in vertically upward Tube
Kim et al. Experimental and numerical study on local pressure distributions in a system-integrated modular reactor
CN110489796B (en) Effectiveness judgment method of heat pipe-based nuclear reactor heat exporting system
CN112652414B (en) C-shaped tube bundle of reactor steam generator
CN113685796B (en) Method for determining steam purging parameters of boiler tubes of power station
Yudov et al. Three-dimensional simulation of a VVER-1000 reactor’s pressure chamber in the modes with asymmetrical loop operation using a KORSAR/CFD computation code
Zhang et al. Heat dissipation analysis and optimization of gas turbine box based on field synergy principle
Pietralik et al. Validation of the THIRST steam generator thermalhydraulic code against the CLOTAIRE phase II experimental data
Song et al. Dynamic Modeling of the Supercritical Carbon Dioxide Simple Recuperated Brayton Cycle
CN115809558A (en) Thermal power generating unit energy storage characterization method and system based on heat flow modeling
Matysko et al. Model of supercritical two-phase steam-water injector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: BEIJING HELISHI SYSTEM ENGINEERING CORPORATION

Free format text: FORMER NAME OR ADDRESS: BEIJING HELISHI SYSTEM ENGINEERING CO., LTD.

CP01 Change in the name or title of a patent holder

Address after: No. 10 city road, building materials, Beijing, Xisanqi

Patentee after: Beijing HollySys System Engineering Co., Ltd.

Address before: No. 10 city road, building materials, Beijing, Xisanqi

Patentee before: Beijing HollySys System Engineering Co., Ltd.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20030820