CN111880049A - 一种基于极性反转频域介电响应的油纸套管受潮定位方法 - Google Patents

一种基于极性反转频域介电响应的油纸套管受潮定位方法 Download PDF

Info

Publication number
CN111880049A
CN111880049A CN202010461056.2A CN202010461056A CN111880049A CN 111880049 A CN111880049 A CN 111880049A CN 202010461056 A CN202010461056 A CN 202010461056A CN 111880049 A CN111880049 A CN 111880049A
Authority
CN
China
Prior art keywords
curve
tan
test
oiled paper
bushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010461056.2A
Other languages
English (en)
Other versions
CN111880049B (zh
Inventor
张大宁
穆海宝
张冠军
赵浩翔
丁宁
姚欢民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010461056.2A priority Critical patent/CN111880049B/zh
Publication of CN111880049A publication Critical patent/CN111880049A/zh
Application granted granted Critical
Publication of CN111880049B publication Critical patent/CN111880049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1245Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of line insulators or spacers, e.g. ceramic overhead line cap insulators; of insulators in HV bushings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本申请公开了提供了一种基于极性反转频域介电响应的油纸套管受潮定位方法,其包括下述步骤:1)对油纸套管进行基于极性反转频域介电响应的FDS测试,具体测试方式为采用两种接线方式的对比测试;2)根据步骤1)所得的FDS测试结果,绘制两种接线方式的tanδ‑f曲线,或者绘制两种接线方式的tanδ差值‑f曲线;3)根据步骤2)所得的两种接线方式的tanδ‑f曲线的差异或tanδ差值‑f曲线的形状,判定油纸套管受潮定位。该方法不易受到外界干扰、测试激励电压幅值以及杂质离子等的影响,受潮定位结果准确;通过该受潮定位方法可以获取油纸套管的具体受潮部位;该受潮定位方法操作简单,对待测试油纸套管没有损伤,更有利于实现油纸套管的现场测试。

Description

一种基于极性反转频域介电响应的油纸套管受潮定位方法
技术领域
本申请涉及一种基于极性反转频域介电响应的油纸套管受潮定位方法,属于电气设备性能评估技术领域。
背景技术
随着我国电力工业的快速发展,大量高电压等级、大容量的变压器、电抗器等电力设备投入运行,对现场设备维护水平提出了更高的要求。作为大型油纸绝缘变压器外绝缘的重要组成部分,高电压油纸绝缘套管具备使用量大、价格昂贵及绝缘性能优良等特点,其绝缘性能直接影响变压器的稳定运行。因此,对其绝缘状态进行科学有效的诊断评价决定了高压电网的安全稳定。
套管按用途可分为穿墙套管、多油断路器套管和变压器套管等。按结构来分,包括纯瓷套管和、瓷与复合介质套管。套管按还可分为电容型套管和非电容型套管,电容型套管主要用于电压等级100kV及以上的变压器、电抗器等电力设备中。按内绝缘材料分,电容型套管又可分为树脂粘合纸(Resin Bonded Paper,RBP)、树脂浸渍纸(Resin ImpregnatedPaper,RIP)和油浸纸(Oil Impregnated Paper,OIP)电容型套管。
油浸纸电容型套管是高电压等级变压器的主要附件之一,其外绝缘一般为带伞裙的瓷套,内绝缘为同轴串联的油浸绝缘纸电容芯子。电容型套管一是起到将绕组抽头引出的功能,同时也是重要的支撑部件。
套管受潮是其绝缘故障出现的主要诱因之一,油浸绝缘纸中水分的积聚使得局部放电明显增加,击穿场强大幅降低,进而引发电力事故。与油浸绝缘纸受潮诊断研究相比,国内外学者针对油浸绝缘纸老化与受潮的区分研究较少。一般认为老化与受潮对油纸绝缘纸的介电特性具有较为类似的影响。由于老化生成了较多的弱极性小分子酸,如甲酸、乙酸和乙酰丙酸等。这些小分子酸的特性与水分相似,并且与水分、构成绝缘纸的纤维素有较好的亲和性。频域介电谱测试标准中指出单一的老化与受潮因素在一定程度上可使得频域介电谱的曲线具有相同幅值和曲线走势,因此对于两种曲线的诱导因素识别存在一定的难度。
在油纸复合绝缘中,绝缘纸的亲水能力是绝缘油的104倍。因此,97%的水分集中在绝缘纸中。并且由于纤维素的晶区较为致密,水分不容易进入,而主要存在绝缘纸的非晶区中。在纤维素的非晶区中存在着较多的亲水性羟基(-OH),这些羟基成为了初级水分子的附着点。进一步,更多的水分以氢键的形式附着在初级水分子上。非晶区的水分会加速纤维素在热应力解链过程,从而使得非晶区纤维素更加疏松。局部的高水分在高温或高场强下产生汽泡,从而使得油纸套管的局部放电增强和绝缘强度降低。
因而,有必要针对油纸套管局部受潮的位置开展研究,提出合理有效的评估方法。同时,油纸套管中径向受潮分布是油纸套管的绝缘评估中重要的信息,不仅可指导现场油纸套管设备检修、维护及诊断,更进一步可为生产厂家提供优化改进的反馈信息。
发明内容
为了解决上述问题,本申请提供了一种基于极性反转频域介电响应的油纸套管受潮定位方法,该方法不易受到外界干扰、测试激励电压幅值以及杂质离子等的影响,受潮定位结果准确;通过该受潮定位方法可以获取油纸套管的具体受潮部位,是靠近导杆受潮、还是靠近末屏受潮、或是均匀受潮或对称受潮;该受潮定位方法操作简单,对待测试油纸套管没有损伤,更有利于实现油纸套管的现场测试。
根据本申请的一个方面,提供了一种基于极性反转频域介电响应的油纸套管受潮定位方法,其包括下述步骤:
1)对油纸套管进行基于极性反转频域介电响应的FDS测试,具体测试方式为采用两种接线方式的对比测试,其中,接线方式一为测试仪的高压端接油纸套管的末屏引线、测量端接油纸套管的导电杆,接线方式二为测试仪的高压端接套管模型的导电杆,测量端接套管模型的末屏引线;
2)根据步骤1)所得的FDS测试结果,绘制所述接线方式一与所述接线方式二tanδ-f曲线,或者绘制所述接线方式一与所述接线方式二的tanδ差值-f曲线;
3)根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ-f曲线的差异或根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ差值-f曲线的形状,判定油纸套管受潮定位。
根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ-f曲线的差异判定油纸套管受潮定位,tanδ-f曲线的差异主要是指相同测试频率下的所述接线方式一与所述接线方式二的tanδ幅值的大小差异。具体操作方式为:如果接线方式一的tanδ-f曲线幅值大于接线方式二的tanδ-f曲线幅值,判定为靠近导电杆处受潮;如果接线方式二的tanδ-f曲线幅值大于接线方式一的tanδ-f曲线幅值,判定为靠近末屏处受潮;如果接线方式二的tanδ-f曲线与接线方式一的tanδ-f曲线基本重合,判定为油纸套管受潮均匀或对称受潮。
根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ差值-f曲线的形状判定油纸套管受潮定位,tanδ差值-f曲线的形状主要是指曲线的变化趋势,在低频段是否出现峰值或谷值,根据出现的峰值或谷值判定油纸套管的受潮定位。具体操作方式为:如果所述tanδ差值-f曲线的在低频段出现峰值,判定为靠近导电杆处受潮;如果所述tanδ差值-f曲线的在低频段出现谷值,判定为靠近末屏处受潮;如果所述tanδ差值-f曲线的在低频段未出现峰值和谷值,判定为油纸套管受潮均匀或对称受潮。
步骤1)所述FDS测试的电场强度为7V/mm以上,优选的,电场强度为15Vmm、30V/mm、45V/mm、60V/mm、75V/mm、90V/mm、105V/mm、130V/mm、145V/mm、160V/mm。随着测试电场强度的增加,离子的等效迁移率减小,导致宏观空间的弛豫时间变大。测试电场强度越大,接线方式一与接线方式二的tanδ幅值差异越大,接线方式一与接线方式二的tanδ差值也越大且峰值向低频偏移。
步骤1)所述FDS测试的测试温度为30℃以上,优选的测试温度为40℃、50℃、60℃。随着测试温度的降低,tanδ-f曲线的差异的频段在降低,当测试温度为30℃时,tanδ-f曲线中观察不到明显的损耗峰主峰值,这说明随着温度的降低,宏观空间电荷极化松弛时间在增加,现有的测试频段无法测量到主峰值。
为了更确切的定位油纸套管受潮的位置,在进行FDS测试前,对油纸套管的不均匀性进行测试。在所述步骤1)之前还包括:步骤0),评估所述油纸套管受潮不均匀性,根据所述油纸套管的tanδ-f测试曲线特性或松弛时间常数-测试电压曲线特性确定所述油纸套管受潮是否为不均匀的。
根据所述油纸套管的tanδ-f测试曲线特性评估油纸套管受潮不均匀性的具体步骤为:
011)建立所述油纸套管不同受潮程度的tanδ-f标准曲线;
012)对所述油纸套管进行FDS测试;
013)对油纸套管受潮不均匀性进行判定,针对步骤012)所述FDS测试结果,绘制tanδ-f测试曲线,并与步骤011)中所述的tanδ-f标准曲线比较,如果所述tanδ-f测试曲线与所述tanδ-f标准曲线在中低频段有交点,则判定油纸套管受潮不均匀,否则,油纸套管受潮均匀。
根据所述油纸套管的复电容C*-f曲线特性评估油纸套管受潮不均匀性的具体步骤为:
021)建立所述油纸套管不同受潮程度的复电容C*-f标准曲线;
022)对所述油纸套管进行FDS测试;
023)对油纸套管受潮不均匀性进行判定,针对步骤022)所述FDS测试结果,绘制复电容C*-f测试曲线,并与步骤021)中所述的复电容C*-f标准曲线比较,如果所述复电容C′-f测试曲线与所述复电容C′-f标准曲线在低频段上翘且所述复电容C″-f测试曲线与所述复电容C″-f标准曲线在低频段有交点,则判定油纸套管受潮不均匀,否则,油纸套管受潮均匀。
根据所述油纸套管的松弛时间常数-测试电压曲线特性评估油纸套管受潮不均匀性的具体步骤为:
031)在不同测试电压下,测试所述油纸套管的所述接线方式一与所述接线方式二的所述去极化电流差值,借助Debye模型提取出不同测试电压下的松弛时间常数;
032)绘制步骤031)所述松弛时间常数与电压的曲线;
033)根据步骤032)所述松弛时间常数-电压曲线的形状判定油纸套管受潮不均匀性,如果所述松弛时间常数-电压曲线在高测试电压段出现峰值,判定油纸套管受潮不均匀,否则油纸套管受潮均匀或对称受潮。
进一步的,所述松弛时间常数-电压曲线在高测试电压段出现的峰值越大,判定油纸套管受潮不均匀程度越大。
所述松弛时间常数的表达式如下:
Figure BDA0002510972920000051
其中,kb——玻尔兹曼常数,1.380649×10-23;T——绝对温度/K;εr——液体相对介电常数;n±——正负离子的浓度;μ±——正负离子的迁移率。
本申请的有益效果包括但不限于:
1.根据本申请的基于极性反转频域介电响应的油纸套管受潮定位方法,该定位方法操作简单,只需将FDS测试接线方式更改一下,通过比较两种接线方式的tanδ-f曲线的差异或根据两种接线方式的tanδ差值-f曲线的形状,即可定位油纸套管的受潮位置,由于只是经过接线方式修改,FDS测试在同一环境中进行,故测试结果不会受到环境的变化而受到不利的影响。
2.根据本申请的基于极性反转频域介电响应的油纸套管受潮定位方法,对待测试油纸套管没有损伤,更有利于实现油纸套管的现场测试。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请的两种径向受潮不均匀的套管模型。
图2为本申请的不同径向受潮分布的套管模型。
图3为本申请的不同接线方式对套管模型tanδ-f曲线的影响,其中,(a)1#模型、(b)2#模型、(c)3#模型、(d)4#模型。
图4为本申请的不同测试电压时不同接线方式的油纸套管模型tanδ-f曲线。
图5为本申请的不同温度下不同测试电压时不同接线方式的油纸套管模型tanδ-f曲线,其中,(a)30℃、(b)40℃、(c)50℃。
图6为本申请的相同测试电压时不同温度的两种接线方式tanδ差值-f曲线,其中,(a)1#模型、(b)2#模型。
图7为本申请基于极性反转频域介电响应的油纸套管受潮定位方法的基本操作流程图。
图8为本申请的增加油纸套管不均匀性性评估步骤的具体操作流程图。
图9为本申请的根据所述油纸套管的tanδ-f测试曲线特性评估油纸套管受潮不均匀性的具体操作流程图。
图10为本申请的根据所述油纸套管的复电容C*-f曲线特性评估油纸套管受潮不均匀性的具体操作流程图。
图11为本申请的根据所述油纸套管的松弛时间常数-测试电压曲线特性评估油纸套管受潮不均匀性的具体操作流程图。
图12为本申请的不同平均含水量的油纸套管的tanδ-f曲线,其中,(a)平均含水量2%、(b)平均含水量3%、(c)平均含水量4%。
图13为本申请的不同平均含水量的油纸套管的C*-f曲线,其中,(a)平均含水量2%、(b)平均含水量3%、(c)平均含水量4%。
图14为本申请的不同受潮模型的油纸套管的松弛时间常数与测试电压的曲线。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
本申请的油纸套管受潮定位方法,适用的油纸套管的径向厚度为2-15mm,优选的为4-10mm,更优选的为5-8mm。
对于实际的油纸套管及套管实验模型,在受潮不均匀时,其内部水分含量沿径向递增或递减,从而形成水分梯度,如图1所示。
为了便于说明本申请的定位方法的机理,构建不同受潮位置的油纸套管模型,油纸套管径向含水量分布如表1,套管模型如图2所示,其中,每层油纸的厚度为1.6mm,油纸套管的径向厚度为6.4mm。利用介电响应测试仪配合TREK623B放大器对上述套管模型进行FDS测试。测量频率范围:1mHz~5kHz,温度为30℃以上,测试电压峰值为50V~800V。测试过程不采用多频叠加测试,在激励源频率低于1Hz时只对一个周期内的电压电流波形进行采集分析。为避免多次测试之间的互相影响,多次测试间隔时间为10分钟。采用两种接线方式对比测试,接线方式一为测试仪的高压端接套管模型的末屏引线,测量端接套管模型的导电杆;接线方式二为测试仪的高压端接套管模型的导电杆,测量端接套管模型的末屏引线。
表1油纸绝缘套管模型径向受潮分布
Figure BDA0002510972920000081
针对前四种套管模型的测试结果如图3所示,由图3可以看出,两种接线方式对1#和2#模型的测试结果带来明显不同的影响。图3(a)与(b)中,两种接线方式对曲线的中高频段无影响,曲线基本重合;而在低频段(0.001Hz~0.1Hz),两种接线方式产生了明显的不同。对于1#模型,在图3(a)中,接线方式一的tanδ-f曲线幅值大于接线方式二的幅值,即为电压正半周先加在含水量较高的区域时tanδ-f曲线幅值较小。对于2#模型,在图3(b)中,接线方式二的tanδ-f曲线幅值大于接线方式一的幅值,即为电压正半周先加在含水量较高的区域时tanδ-f曲线幅值较小。图3(c)与(d)中,两种接线方式对曲线的全频段无影响,两条曲线基本重合。则径向含水量分布中心对称时,改变接线方式对两条曲线无影响。因此,在油纸套管受潮不均匀的情况下,接线方式一的低频段的tanδ-f曲线幅值大于接线方式二的幅值,判定靠近导电杆处受潮,否则,靠近末屏处受潮;在油纸套管受潮均匀或对称受潮的情况下,两种接线方式对曲线的全频段无影响,两条曲线基本重合。
若只考虑水分的影响,1#模型中含水量较大的区域内聚集了大量的OH-离子和H+离子。在接线方式一中的激励电压前半周(负极性),导电杆附近的区域首先聚集H+离子。在经过半个周期后极性反转,H+离子逐渐减小并经过一段时间的延迟后逐渐聚集OH-离子。而在接线方式二中的前半周期(正极性),OH-离子首先大量在导电杆附近区域聚集。由于OH-离子的迁移率远小于H+离子,因而接线方式一中的前半周期内离子浓度相对更大。又由于离子浓度相对电场变化存在一定的迟滞效应,前半周期内浓度分布基本决定了整个周期内浓度分布幅值。整体而言,当电压正极先加在含水量大的区域时,产生的电导损耗相对较小。
为了更明确的说明测试电场强度对该受潮定位方法的影响,本申请所述FDS测试的电场强度为7V/mm以上,优选的,电场强度为15Vmm、30V/mm、45V/mm、60V/mm、75V/mm、90V/mm、105V/mm、130V/mm、145V/mm、160V/mm。测试电场强度等于测试电压除以油纸套管的径向厚度。在满足上述测试电场强度的前提下,选取测试电压为50V、200V、400V、800V,对1#油纸套管模型进行了受潮定位实验,图4显示了不同测试电压时不同接线方式的油纸套管模型tanδ-f曲线。相同测试电压下,接线方式二的损耗小于接线方式一的损耗。在单周期FDS测试中,当含水量大的纸层靠近正极时积聚的负离子(以OH-为代表)明显小于含水量大的纸层靠近负极时积聚的正离子(以H+为代表),相应的电导电流及电导损耗也较小,即为含水量大的纸层靠近正极时(接线方式二)tanδ幅值较小。
随着测试电压的增加,tanδ-f曲线在低频段呈减小趋势。随着激励电压的增加,改变接线方式带来tanδ-f曲线差异变得越明显,场强的增加使得离子运动轨迹受到纤维素的阻碍作用,等效为离子迁移率减小,而质子传导对迁移率的贡献受纤维素阻碍影响较小,对应着tanδ-f曲线中两种接线方式的电导损耗的差值增大。
两种接线方式的tanδ-f曲线差值随频率增加先增加后减小,从而构成一个“环形”。根据测试电压的增大,离子的运动速度赶不上外加电场的变化,正负离子迁移率不同使得tanδ-f曲线差异开始体现出来。有两种原因导致这种现象,一是电极极化导致的离子积聚,测试电压较低时,离子有足够的时间参与电场下的运动,从电极的一端迁移到另一端,离子迁移率的影响被削弱;二是由于油纸之间界面极化损耗引起。
为了更明确的说明测试温度对该受潮定位方法的影响,在测试温度为30℃、40℃、50℃下,对1#油纸套管模型进行了受潮定位实验,图5显示了不同温度下不同测试电压时不同接线方式的油纸套管模型tanδ-f曲线。根据图5显示的tanδ-f曲线变化规律,可以判定,随着温度的降低,tanδ-f曲线出现损耗峰的频率也随着降低,原因在于随着温度的降低,宏观空间电荷极化松弛时间在增加。当测试温度为30℃时,tanδ-f曲线中观察不到明显的损耗峰主峰值。
为进一步说明不同接线方式的tanδ差值-f曲线的变化规律,对1#模型和2#模型,在测试电压为800V下,分别按接线方式一和接线方式二进行了30℃、40℃、50℃的FDS测试,绘制了接线方式一与接线方式二的tanδ差值-f曲线,图6显示了1#模型和2#模型的相同测试电压时不同温度的两种接线方式tanδ差值-f曲线。对于不同受潮模型的tanδ差值-f曲线具有明显的不同,对于导电杆受潮的1#模型来说,tanδ差值-f曲线出现明显的损耗峰;而对于末屏受潮的2#模型来说,tanδ差值-f曲线出现明显的谷值。反过来,根据tanδ差值-f曲线的形状,就可以判定油纸套管的受潮位置。随着测试温度的增加,tanδ差值-f曲线的损耗峰峰值或谷值频率往高频方向移动,且峰值或谷值的绝对值也逐渐增大。
图7显示了基于极性反转频域介电响应的油纸套管受潮定位方法的基本操作流程。一种基于极性反转频域介电响应的油纸套管受潮定位方法,其包括下述步骤:
1)对油纸套管进行基于极性反转频域介电响应的FDS测试,具体测试方式为采用两种接线方式的对比测试,其中,接线方式一为测试仪的高压端接油纸套管的末屏引线、测量端接油纸套管的导电杆,接线方式二为测试仪的高压端接套管模型的导电杆,测量端接套管模型的末屏引线;
2)根据步骤1)所得的FDS测试结果,绘制所述接线方式一与所述接线方式二的tanδ-f曲线,或者绘制所述接线方式一与所述接线方式二的tanδ差值-f曲线;
3)根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ-f曲线的差异或根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ差值-f曲线的形状,判定油纸套管受潮定位。
根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ-f曲线的差异判定油纸套管受潮定位,tanδ-f曲线的差异主要是指相同测试频率下的所述接线方式一与所述接线方式二的tanδ幅值的大小差异。具体操作方式为:如果接线方式一的tanδ-f曲线幅值大于接线方式二的tanδ-f曲线幅值,判定为靠近导电杆处受潮;如果接线方式二的tanδ-f曲线幅值大于接线方式一的tanδ-f曲线幅值,判定为靠近末屏处受潮;如果接线方式二的tanδ-f曲线与接线方式一的tanδ-f曲线基本重合,判定为油纸套管受潮均匀或对称受潮。
根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ差值-f曲线的形状判定油纸套管受潮定位,tanδ差值-f曲线的形状主要是指曲线的变化趋势,在低频段是否出现峰值或谷值,根据出现的峰值或谷值判定油纸套管的受潮定位。具体操作方式为:如果所述tanδ差值-f曲线的在低频段出现峰值,判定为靠近导电杆处受潮;如果所述tanδ差值-f曲线的在低频段出现谷值,判定为靠近末屏处受潮;如果所述tanδ差值-f曲线的在低频段未出现峰值和谷值,判定为油纸套管受潮均匀或对称受潮。
进一步的,为了提高油纸套管受潮定位精准度,在进行油纸套管FDS测试之前进行油纸套管受潮均匀性的判定,图8显示了增加油纸套管不均匀性性评估步骤的具体操作流程,步骤0),评估所述油纸套管受潮不均匀性,根据所述油纸套管的tanδ-f测试曲线特性、所述油纸套管的C*-f曲线或松弛时间常数-测试电压曲线特性确定所述油纸套管受潮是否为不均匀的。
图9显示了根据所述油纸套管的tanδ-f测试曲线特性评估油纸套管受潮不均匀性的具体操作流程,具体步骤包括:011)建立所述油纸套管不同受潮程度的tanδ-f标准曲线;012)对所述油纸套管进行FDS测试;013)对油纸套管受潮不均匀性进行判定,针对步骤012)所述FDS测试结果,绘制tanδ-f测试曲线,并与步骤011)中所述的tanδ-f标准曲线比较,如果所述tanδ-f测试曲线与所述tanδ-f标准曲线在中低频段有交点,则判定油纸套管受潮不均匀,否则,油纸套管受潮均匀。
图10显示了根据所述油纸套管的复电容C*-f曲线特性评估油纸套管受潮不均匀性的具体操作流程,具体步骤包括:021)建立所述油纸套管不同受潮程度的复电容C*-f标准曲线;022)对所述油纸套管进行FDS测试;023)对油纸套管受潮不均匀性进行判定,针对步骤022)所述FDS测试结果,绘制复电容C*-f测试曲线,并与步骤021)中所述的复电容C*-f标准曲线比较,如果所述复电容C′-f测试曲线与所述复电容C′-f标准曲线在低频段上翘且所述复电容C″-f测试曲线与所述复电容C″-f标准曲线在低频段有交点,则判定油纸套管受潮不均匀,否则,油纸套管受潮均匀。
图11显示了根据所述油纸套管的松弛时间常数-测试电压曲线特性评估油纸套管受潮不均匀性的具体操作流程,具体步骤包括:031)在不同测试电压下,测试所述油纸套管的所述接线方式一与所述接线方式二的所述去极化电流差值,借助Debye模型提取出不同测试电压下的松弛时间常数;032)绘制步骤031)所述松弛时间常数与电压的曲线;033)根据步骤032)所述松弛时间常数-电压曲线的形状判定油纸套管受潮不均匀性,如果所述松弛时间常数-电压曲线在高测试电压段出现峰值,判定油纸套管受潮不均匀,否则油纸套管受潮均匀或对称受潮。
所述松弛时间常数的表达式如下:
Figure BDA0002510972920000121
其中,kb——玻尔兹曼常数,1.380649×10-23;T——绝对温度/K;εr——液体相对介电常数;n±——正负离子的浓度;μ±——正负离子的迁移率。
离子积聚导致的宏观空间电荷极化的介电常数可演变为Debye松弛方程,意味着宏观空间电荷极化符合Debye单一极化模型。从而为径向受潮不均匀的去极化电流分析提供了具有明确物理意义的依据。然而,由于去极化电流中包含多种去极化分量,从去极化电流中直接提取宏观空间电荷去极化电流分量依然十分困难。通过改变电压的施加方式,可以直接建立起与宏观空间电荷极化的直接关系。同时去极化电流差值与测试温度、激励电压及径向含水量分布具有高度的关联性,且去极化的电流的差值与偶极子极化、界面极化等关联度较低。两种接线方式下去极化电流差值的本质原因为正负离子迁移率差异,其表现方式为两种接线方式下不同极化程度的空间电荷极化的去极化过程。
根据实验现象得,上述的电流差值可定义为两种不同强度的宏观空间电荷极化之差。Debye模型在描述单一介质或单一极化过程具有较高的准确度。因此,去极化电流差值松弛过程的特征时间常数可间接用于反映浓差极化的松弛过程。借助Debye模型针对仅与宏观空间电荷极化相关的去极化电流差值建模,提炼出反映不同电压时的松弛极化特征时间常数,从而间接反映宏观空间电荷极化及初始含水量分布。
图12显示了不同平均含水量的油纸套管的tanδ-f曲线,比较了受潮不均匀的油纸套管的tanδ-f曲线与受潮均匀的油纸套管的tanδ-f曲线变化趋势,能够清晰的看出受潮不均匀的油纸套管的tanδ-f曲线变化趋势明显不同于受潮均匀的油纸套管的tanδ-f曲线变化趋势,根据tanδ-f曲线变化趋势的不同,可以判定油纸套管受潮的不均匀性。
图12(a)显示了平均含水量2%的tanδ-f曲线。不均匀系数越大的样品组合其tanδ-f曲线围绕均匀组合波动越大。相对于受潮均匀的样品,不均匀样品的tanδ-f曲线的中高频段的介质损耗增大,低频段有所减小。相对于受潮均匀的样品,两种受潮不均匀的组合均存在明显的介质损耗峰,其中1.10%+2.84%的样品组合的损耗峰在0.01Hz到0.1Hz之间,且高频段曲线趋势与2.84%的曲线相似。0.41+3.91%的样品组合的损耗峰在0.01Hz到0.1Hz之间,相比于2.84%的曲线有明显凸起。0.41+3.91%的样品组合相比1.10%+2.84%的样品组合不均匀系数更大,且tanδ-f曲线出现损耗峰的起始频率也较大。0.41+3.91%的样品组合的界面极化时间常数减小。两种受潮不均匀的组合与受潮均匀样品之间存在一个共同的曲线交点,交点对应的频率近似为0.0046Hz。
图12(b)显示了平均含水量3%的tanδ-f曲线。不均匀系数越大的样品组合其tanδ-f曲线围绕均匀组合波动越大,其中0.41+6.11%的样品组合曲线波动程度最大。0.41+6.11%的样品的tanδ-f曲线高频部分逐渐逼近于6.11%的受潮均匀样品的tanδ-f曲线,而低频部分逐渐逼近于0.41%的受潮均匀样品的tanδ-f曲线。对于1.10%+5.08%的样品组合与dry+6.11%的样品组合,两者的tanδ-f曲线趋势相似。而对于2.03%+3.91%的样品组合与dry+6.11%的样品组合两者曲线近似程度较低。三组曲线的相似程度表明,不均匀系数较为接近的组合其tanδ-f曲线趋势也较为相似。各曲线随着不均匀系数的增加,各曲线损耗峰的起始频率也在逐渐增加,对应着界面极化时间常数在减小。三种受潮不均匀的组合与受潮均匀样品之间存在一个共同的曲线交点,交点对应的频率近似为0.15Hz。
图12(c)显示了平均含水量4%的tanδ-f曲线。与图12(a)、图12(b)中曲线规律类似,随着不均匀系数的增加曲线的损耗峰峰值频率呈增加趋势,且两组受潮不均匀曲线与受潮均匀曲线存在明显的交点,交点频率1Hz。
图13显示了不同平均含水量的油纸套管的C*-f曲线,比较了受潮不均匀的油纸套管的C*-f曲线与受潮均匀的油纸套管的C*-f曲线变化趋势,能够清晰的看出受潮不均匀的油纸套管的C*-f曲线变化趋势明显不同于受潮均匀的油纸套管的C*-f曲线变化趋势,结合复电容实部C′和复电容虚部C″随着频率的变化趋势,可以判定油纸套管受潮的不均匀性。
图13(a)显示了平均含水量2%的C*-f曲线。0.41+3.91%的样品组合复电容实部C′比1.10%+2.84%的样品组合较大,2%+2%与1.10%+2.84%的样品组合复电容实部C′在高频段接近重合,低频段后者略有增加。0.41+3.91%的样品组合的界面极化对应的附加电容更大。图13(a)中复电容虚部C″变化较大,但与tanδ-f曲线变化基本相似。
图13(b)显示了平均含水量3%的C*-f曲线。样品组合不均匀系数越大则复电容实部C′-f曲线低频段上升越明显,对应着界面极化附加电容越大。其中0.41+6.11%的样品不均匀系数最大,其C′-f曲线低频段上升最为显著。1.10%+5.08%、2.03%+3.91%及0.41+6.11%三者复电容实部C′-f曲线在低频部分构成一个“纺锤形”形闭环曲线,纺锤形曲线的最大直径处对应的频率与图12(c)曲线的交点频率一致。
图13(c)显示了平均含水量4%的C*-f曲线。与图13(a)、图13(b)中曲线规律类似,两组受潮不均匀的复电容虚部C″曲线与受潮均匀的复电容虚部C″曲线存在明显的交点。
图14显示了不同受潮模型的油纸套管的松弛时间常数与测试电压的曲线,通过曲线的形状可以判定油纸套管的受潮均匀性。5#套管模型内2层为不干燥纸层,含水量约为5%,外层为完全干燥绝缘纸,含水量约为0.5%。径向受潮不均匀度的增加,使得去极化电流差值的松弛时间常数整体减小,意味着浓度差较大的组合在热运动作用下更快地趋于稳态分布。由于测试温度相同,相对的受潮不均匀度增加,电极附近积聚的离子浓度更大,在去极化过程中,离子浓度差导致的内建电场也就越大,离子分布更容易达到稳态平衡。这与上述松弛时间常数关系式中所述规律一致。
结合以上实验结果和油纸套管受潮定位方法,能够对现场的油纸套管的径向受潮位置进行准确、快速的判定,为油纸套管设备现场检修、维护及诊断提供具有指导性的建议。
以上所述,仅为本申请的实施例而已,本申请的保护范围并不受这些具体实施例的限制,而是由本申请的权利要求书来确定。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的技术思想和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种基于极性反转频域介电响应的油纸套管受潮定位方法,其特征在于,其包括下述步骤:
1)对油纸套管进行基于极性反转频域介电响应的FDS测试,具体测试方式为采用两种接线方式的对比测试,其中,接线方式一为测试仪的高压端接油纸套管的末屏引线、测量端接油纸套管的导电杆,接线方式二为测试仪的高压端接套管模型的导电杆,测量端接套管模型的末屏引线;
2)根据步骤1)所得的FDS测试结果,绘制所述接线方式一与所述接线方式二的tanδ-f曲线,或者绘制所述接线方式一与所述接线方式二的tanδ差值-f曲线;
3)根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ-f曲线的差异或根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ差值-f曲线的形状,判定油纸套管受潮定位。
2.根据权利要求1所述的一种基于极性反转频域介电响应的油纸套管受潮定位方法,其特征在于,
根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ-f曲线的差异判定油纸套管受潮定位的具体操作方式为:如果接线方式一的tanδ-f曲线幅值大于接线方式二的tanδ-f曲线幅值,判定为靠近导电杆处受潮;如果接线方式二的tanδ-f曲线幅值大于接线方式一的tanδ-f曲线幅值,判定为靠近末屏处受潮;如果接线方式二的tanδ-f曲线与接线方式一的tanδ-f曲线基本重合,判定为油纸套管受潮均匀或对称受潮。
3.根据权利要求1所述的一种基于极性反转频域介电响应的油纸套管受潮定位方法,其特征在于,
根据步骤2)所得的所述接线方式一与所述接线方式二的tanδ差值-f曲线的形状判定油纸套管受潮定位的具体操作方式为:如果所述tanδ差值-f曲线的在低频段出现峰值,判定为靠近导电杆处受潮;如果所述tanδ差值-f曲线的在低频段出现谷值,判定为靠近末屏处受潮;如果所述tanδ差值-f曲线的在低频段未出现峰值和谷值,判定为油纸套管受潮均匀或对称受潮。
4.根据权利要求1所述的一种基于极性反转频域介电响应的油纸套管受潮定位方法,其特征在于,
步骤1)所述FDS测试的电场强度为7V/mm以上,优选的,电场强度为15Vmm、30V/mm、45V/mm、60V/mm、75V/mm、90V/mm、105V/mm、130V/mm、145V/mm、160V/mm。
5.根据权利要求1所述的一种基于极性反转频域介电响应的油纸套管受潮定位方法,其特征在于,
步骤1)所述FDS测试的测试温度为30℃以上,优选的测试温度为40℃、50℃、60℃。
6.根据权利要求1所述的一种基于极性反转频域介电响应的油纸套管受潮定位方法,其特征在于,在所述步骤1)之前还包括:
步骤0),评估所述油纸套管受潮不均匀性,根据所述油纸套管的tanδ-f测试曲线特性、所述油纸套管的复电容C*-f曲线特性或松弛时间常数-测试电压曲线特性确定所述油纸套管受潮是否为不均匀的。
7.根据权利要求6所述的一种基于极性反转频域介电响应的油纸套管受潮定位方法,其特征在于,
根据所述油纸套管的tanδ-f测试曲线特性评估油纸套管受潮不均匀性的具体步骤为:
011)建立所述油纸套管不同受潮程度的tanδ-f标准曲线;
012)对所述油纸套管进行FDS测试;
013)对油纸套管受潮不均匀性进行判定,针对步骤012)所述FDS测试结果,绘制tanδ-f测试曲线,并与步骤011)中所述的tanδ-f标准曲线比较,如果所述tanδ-f测试曲线与所述tanδ-f标准曲线在中低频段有交点,则判定油纸套管受潮不均匀,否则,油纸套管受潮均匀。
8.根据权利要求6所述的一种基于极性反转频域介电响应的油纸套管受潮定位方法,其特征在于,
根据所述油纸套管的复电容C*-f曲线特性评估油纸套管受潮不均匀性的具体步骤为:
021)建立所述油纸套管不同受潮程度的复电容C*-f标准曲线;
022)对所述油纸套管进行FDS测试;
023)对油纸套管受潮不均匀性进行判定,针对步骤022)所述FDS测试结果,绘制复电容C*-f测试曲线,并与步骤021)中所述的复电容C*-f标准曲线比较,如果所述复电容C′-f测试曲线与所述复电容C′-f标准曲线在低频段上翘且所述复电容C″-f测试曲线与所述复电容C″-f标准曲线在低频段有交点,则判定油纸套管受潮不均匀,否则,油纸套管受潮均匀。
9.根据权利要求6所述的一种基于极性反转频域介电响应的油纸套管受潮定位方法,其特征在于,
根据所述油纸套管的松弛时间常数-测试电压曲线特性评估油纸套管受潮不均匀性的具体步骤为:
031)在不同测试电压下,测试所述油纸套管的所述接线方式一与所述接线方式二的所述去极化电流差值,借助Debye模型提取出不同测试电压下的松弛时间常数;
032)绘制步骤031)所述松弛时间常数与电压的曲线;
033)根据步骤032)所述松弛时间常数-电压曲线的形状判定油纸套管受潮不均匀性,如果所述松弛时间常数-电压曲线在高测试电压段出现峰值,判定油纸套管受潮不均匀,否则油纸套管受潮均匀或对称受潮。
10.根据权利要求6所述的一种基于极性反转频域介电响应的油纸套管受潮定位方法,其特征在于,
所述松弛时间常数的表达式如下:
Figure FDA0002510972910000041
其中,kb——玻尔兹曼常数,1.380649×10-23;T——绝对温度/K;εr——液体相对介电常数;n±——正负离子的浓度;μ±——正负离子的迁移率。
CN202010461056.2A 2020-05-27 2020-05-27 一种基于极性反转频域介电响应的油纸套管受潮定位方法 Active CN111880049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010461056.2A CN111880049B (zh) 2020-05-27 2020-05-27 一种基于极性反转频域介电响应的油纸套管受潮定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010461056.2A CN111880049B (zh) 2020-05-27 2020-05-27 一种基于极性反转频域介电响应的油纸套管受潮定位方法

Publications (2)

Publication Number Publication Date
CN111880049A true CN111880049A (zh) 2020-11-03
CN111880049B CN111880049B (zh) 2021-09-10

Family

ID=73154183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010461056.2A Active CN111880049B (zh) 2020-05-27 2020-05-27 一种基于极性反转频域介电响应的油纸套管受潮定位方法

Country Status (1)

Country Link
CN (1) CN111880049B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505112A (zh) * 2020-12-08 2021-03-16 海南电网有限责任公司电力科学研究院 一种基于fds的变压器局部受潮特征提取方法
CN112834872A (zh) * 2020-12-22 2021-05-25 深圳供电局有限公司 变压器套管末屏局部受潮评估方法、装置和计算机设备
CN115184538A (zh) * 2021-06-29 2022-10-14 国网山东省电力公司济宁供电公司 一种油纸绝缘套管水分含量的评估方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203025310U (zh) * 2012-12-20 2013-06-26 国网电力科学研究院武汉南瑞有限责任公司 一种基于频域介电谱的高压套管绝缘检测装置
CN204205076U (zh) * 2014-09-26 2015-03-11 国家电网公司 一种主变高压套管末屏用于在线监测的接地装置
CN105182201A (zh) * 2015-09-28 2015-12-23 广东电网有限责任公司电力科学研究院 基于低电压及多参数的发电机定子线棒绝缘状态测评方法
WO2017091966A1 (en) * 2015-12-01 2017-06-08 General Electric Technology Gmbh An intelligent assessment method of main insulation condition of transformer oil paper insulation
CN107632241A (zh) * 2017-09-08 2018-01-26 中国电力科学研究院 一种测试油纸绝缘局部放电特性的装置和方法
CN108009313A (zh) * 2017-11-03 2018-05-08 大唐东北电力试验研究所有限公司 基于matlab确定极性反转下油纸绝缘中的电场分布的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203025310U (zh) * 2012-12-20 2013-06-26 国网电力科学研究院武汉南瑞有限责任公司 一种基于频域介电谱的高压套管绝缘检测装置
CN204205076U (zh) * 2014-09-26 2015-03-11 国家电网公司 一种主变高压套管末屏用于在线监测的接地装置
CN105182201A (zh) * 2015-09-28 2015-12-23 广东电网有限责任公司电力科学研究院 基于低电压及多参数的发电机定子线棒绝缘状态测评方法
WO2017091966A1 (en) * 2015-12-01 2017-06-08 General Electric Technology Gmbh An intelligent assessment method of main insulation condition of transformer oil paper insulation
CN107632241A (zh) * 2017-09-08 2018-01-26 中国电力科学研究院 一种测试油纸绝缘局部放电特性的装置和方法
CN108009313A (zh) * 2017-11-03 2018-05-08 大唐东北电力试验研究所有限公司 基于matlab确定极性反转下油纸绝缘中的电场分布的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T. K. SAHA 等: "Investigation of Polarization and Depolarization Current Measurements for the Assessment of Oil-paper Insulation of Aged Transformers", 《IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION》 *
孔灿 等: "110kV变压器油纸绝缘套管不均匀绝缘受潮劣化分析", 《智慧电力》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505112A (zh) * 2020-12-08 2021-03-16 海南电网有限责任公司电力科学研究院 一种基于fds的变压器局部受潮特征提取方法
CN112834872A (zh) * 2020-12-22 2021-05-25 深圳供电局有限公司 变压器套管末屏局部受潮评估方法、装置和计算机设备
CN115184538A (zh) * 2021-06-29 2022-10-14 国网山东省电力公司济宁供电公司 一种油纸绝缘套管水分含量的评估方法及设备
CN115184538B (zh) * 2021-06-29 2024-04-26 国网山东省电力公司济宁供电公司 一种油纸绝缘套管水分含量的评估方法及设备

Also Published As

Publication number Publication date
CN111880049B (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
CN111880049B (zh) 一种基于极性反转频域介电响应的油纸套管受潮定位方法
Gao et al. Condition diagnosis of transformer oil-paper insulation using dielectric response fingerprint characteristics
CN110726880A (zh) 基于频域和时域的电容式套管绝缘系统老化状态评估方法
CN107860894B (zh) 一种基于频域复介电常数初始斜率的变压器绝缘油中糠醛含量预测方法
CN112782537A (zh) 一种基于高压频域介电谱的变压器套管受潮状态评价方法
CN111880050B (zh) 一种基于极性反转时域介电响应的油纸套管受潮定位方法
Flora et al. Factors affecting polarization and depolarization current measurements on insulation of transformers
CN205353292U (zh) 一种多元结构高压套管性能考核检测平台
CN112505515A (zh) 一种低温条件下变压器绝缘特性测试方法
CN111208397A (zh) 电力设备高电压时/频域介电响应特性测量系统及方法
Li et al. Analysis of creeping discharges on oil-impregnated pressboard under combined AC and DC voltages
Fan et al. Moisture evaluation of oil-immersed insulation in bushing based on frequency domain spectroscopy and grey relational analysis
CN112051311A (zh) 一种电力变压器套管受潮缺陷模拟方法及装置
CN116859189A (zh) 一种套管含水量与频域介电谱特征关联性判断方法
Arief et al. Degradation of polymeric power cable due to water treeing under AC and DC stress
CN108593714B (zh) 一种基于变压器内置油纸绝缘试样介电响应特性的变压器内水分测量系统
Abderrazzaq et al. The effect of high frequency, high voltage supply on the growth of electrical trees on cross linked polyethlyne insulation of power cables
Zhiming et al. Research on the wetting mechanism of oil-paper insulated bushings and the application of FDS method
Gutten et al. Measurement of parameters for transformer insulating system oil-paper by frequency method
CN115184538B (zh) 一种油纸绝缘套管水分含量的评估方法及设备
Hu et al. Research on Diagnosis of Damp State of Smart Transformer Dry Type Bushing (iSPEC2021)
Jian et al. Defect identification method of oil-impregnated paper bushing based on polarization/depolarization current under high voltage
Terase et al. A new AC current testing method for non-destructive insulation tests
CN109342893A (zh) 变压器油纸复合绝缘极化特性试验系统及方法
Zhang et al. Time Domain Dielectric Response Characteristics of Oil-Immersed Paper Bushings Under Radial Nonuniform Moisture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant