CN111875599A - 一种罗丹宁乙酸为受体的y型共敏剂及其制备方法 - Google Patents

一种罗丹宁乙酸为受体的y型共敏剂及其制备方法 Download PDF

Info

Publication number
CN111875599A
CN111875599A CN202010807586.8A CN202010807586A CN111875599A CN 111875599 A CN111875599 A CN 111875599A CN 202010807586 A CN202010807586 A CN 202010807586A CN 111875599 A CN111875599 A CN 111875599A
Authority
CN
China
Prior art keywords
formula
sensitizer
acetic acid
type
receptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010807586.8A
Other languages
English (en)
Inventor
靳玲侠
赵蔡斌
卢久富
高艳红
李琛
季晓晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Technology
Original Assignee
Shaanxi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Technology filed Critical Shaanxi University of Technology
Priority to CN202010807586.8A priority Critical patent/CN111875599A/zh
Publication of CN111875599A publication Critical patent/CN111875599A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种罗丹宁乙酸为受体的Y型共敏剂及其制备方法,该共敏剂的结构式如下:
Figure DDA0002629719070000011
式中R代表C1~C10烷基或苯基。该共敏剂制备方法简单,在紫外区摩尔消光系数高,可提高钌染料敏化太阳能电池在紫外区的吸收,进而提高钌染料敏化太阳能电池的短路电流密度和光电转换效率。

Description

一种罗丹宁乙酸为受体的Y型共敏剂及其制备方法
技术领域
本发明属于有机染料技术领域,具体涉及一种用于增强钌染料敏化太阳能电池紫外吸收的Y型共敏剂,以及该共敏剂的制备方法。
背景技术
随着人类对能源需求的不断增加以及石化燃料使用所引起的温室效应等环境问题的出现,开发可再生新能源受到了各国政府的高度重视。染料敏化太阳能电池由于具有制造工艺简单、光电转换效率高、成本低等特点,是当前实验室基础研究以及工业应用开发的一个重点。
在染料敏化太阳能电池的组成部件中,光敏染料担负着捕获光电子以及向TiO2导带注入电子等重要作用,因此光敏染料直接影响着最终的光电转换效率。在过去的二十多年里已经发展了多种光敏染料,比如钌-络合物、卟啉化合物和纯有机染料。一个理想的光敏染料分子应该能够吸收尽可能多的光电子从而实现全光谱吸收。但是全光谱响应的光敏染料设计的是一项非常困难的工作,另外,通过降低染料分子的HOMO能级来拓宽其在近红外区的吸收会导致电子注入变得困难,从而降低光电转换效率。另一方面,相对于复杂的全光谱光敏染料分子设计和合成,使用两种或多种吸收光谱互补的光敏染料共敏是另一种实现染料敏化太阳能电池全光谱吸收的快速有效的方法。
钌-络合物和有机染料是两类最常用的光敏染料,钌-络合物的吸收谱带范围宽,可以覆盖整个可见光区,甚至延伸到近红外区,但是它们通常在紫外区的吸收比较弱。而有机染料的吸收谱带通常比较窄,通常在紫外区有强烈的吸收,可用于增强钌染料敏化太阳能电池的紫外吸收,从而提高钌染料敏化太阳能电池的短路电流密度和光电转换效率。
发明内容
本发明所要解决的技术问题在于克服上述钌染料敏化太阳能电池在紫外区的吸收弱的缺点,提供一种在紫外区有强吸收的罗丹宁乙酸为受体的Y型共敏剂,并为该共敏剂提供一种操作简单、收率高的制备方法。
解决上述技术问题所采用的罗丹宁乙酸为受体的Y型共敏剂的结构式如下:
Figure BDA0002629719060000021
式中,R代表C1~C10烷基或苯基。
上述罗丹宁乙酸为受体的Y型共敏剂的制备方法如下:
1、制备式1化合物
以水与甲苯的体积比为1:5~20的混合液为溶剂,将3,5-二溴苯甲醛与2-噻吩硼酸、碳酸氢钠、四(三苯基磷)钯在氮气保护下80~100℃反应8~12小时,分离纯化产物,得到式1化合物,其化学反应方程式如下:
Figure BDA0002629719060000022
2、制备式2化合物
以氯仿为溶剂,将式1化合物与液溴在60~80℃下回流反应3~5小时,分离纯化产物,得到式2化合物,其化学反应方程式如下:
Figure BDA0002629719060000023
3、制备式4化合物
以水与甲苯的体积比为1:5~20的混合液为溶剂,将式2化合物与N-取代咔唑硼酸、碳酸氢钠、四(三苯基磷)钯在氮气保护下80~100℃反应8~12小时,分离纯化产物,得到式4化合物,其化学反应方程式如下:
Figure BDA0002629719060000031
4、制备罗丹宁乙酸为受体的Y型共敏剂
以冰乙酸为溶剂,将式4化合物、罗丹宁乙酸、乙酸铵在100~120℃下反应4~6小时,分离纯化产物,得到罗丹宁乙酸为受体的Y型共敏剂,其化学反应方程式如下:
Figure BDA0002629719060000032
上述步骤1中,优选3,5-二溴苯甲醛与2-噻吩硼酸、碳酸氢钠、四(三苯基磷)钯的摩尔比为1:2~2.4:2~2.4:0.04~0.06。
上述步骤2中,优选式1化合物与液溴的摩尔比为1:1~1.2。
上述步骤3中,优选式2化合物与N-取代咔唑硼酸、碳酸氢钠、四(三苯基磷)钯的摩尔比为1:2~2.4:2~2.4:0.04~0.06。
上述步骤4中,优选式4化合物、罗丹宁乙酸、乙酸铵的摩尔比为1:1~1.3:1.5~2.5。
本发明罗丹宁乙酸为受体的Y型共敏剂制备方法简单,在紫外区吸收强,可增强钌染料敏化太阳能电池在紫外区的吸收,并且能提高钌染料敏化太阳能电池的短路电流密度和光电转换效率。
具体实施方式
下面结合实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、制备式1化合物
在氮气保护下,向三口圆底烧瓶中加入40mL甲苯和4mL水,再加入2.61g(10mmol)3,5-二溴苯甲醛、3.07g(24mmol)2-噻吩硼酸、2.02g(24mmol)碳酸氢钠、0.69g(0.60mmol)四(三苯基磷)钯,在100℃下反应12小时,降至室温,向烧瓶中加入40mL氯仿和40mL蒸馏水,分液,水相用氯仿萃取两次,合并有机相,用无水硫酸镁干燥,蒸除溶剂,剩余物用柱层析纯化(洗脱剂为石油醚与乙酸乙酯体积比为8:1的混合液),蒸除洗脱剂,得到式1化合物1.89g,收率70%。其化学反应方程式如下:
Figure BDA0002629719060000041
2、制备式2化合物
向单口烧瓶中加入30mL氯仿,再加入1.35g(5mmol)式1化合物、0.96g(6mmol)液溴,在70℃下回流反应4小时,降至室温,再加入30mL饱和碳酸氢钠水溶液,分液,有机相用蒸馏水洗至中性,用无水硫酸镁干燥,蒸除溶剂,剩余物用柱层析纯化(洗脱剂为石油醚),得到式2化合物1.28g,收率60%。其化学反应方程式如下:
Figure BDA0002629719060000042
3、制备式4-1化合物
在氮气保护下,向三口圆底烧瓶中加入10mL甲苯和1mL水,再加入0.85g(2mmol)式2-1化合物、1.38g(4.8mmol)式3-1所示N-苯基咔唑硼酸、0.40g(4.8mmol)碳酸氢钠、0.14g(0.12mmol)四(三苯基磷)钯,在100℃下反应12小时,降至室温,向烧瓶中加入20mL氯仿和20mL蒸馏水,分液,水相用氯仿萃取两次,合并有机相,用无水硫酸镁干燥,蒸除溶剂,剩余物用柱层析纯化(洗脱剂为石油醚与乙酸乙酯体积比为5:1的混合液),蒸除洗脱剂,得到式4-1化合物1.08g,收率72%。其化学反应方程式如下:
Figure BDA0002629719060000051
5、制备罗丹宁乙酸为受体的Y型共敏剂
向三口圆底烧瓶中加入10mL冰乙酸,再加入0.75g(1mmol)式4-1化合物、0.25g(1.3mmol)罗丹宁乙酸、0.19g(2.5mmol)乙酸铵,在110℃下反应4小时,降至室温,向烧瓶中加入20mL氯仿和20mL蒸馏水,分液,水相用氯仿萃取两次,合并有机相,用无水硫酸镁干燥,蒸除溶剂,剩余物用柱层析纯化(洗脱剂为石油醚与乙酸乙酯体积比为3:1的混合液,另加混合液体积1%的乙酸,另加混合液体积1%的乙酸),蒸除洗脱剂,得到0.54g产物,即罗丹宁乙酸为受体的Y型共敏剂,收率58%。其化学反应方程式如下:
Figure BDA0002629719060000061
所得罗丹宁乙酸为受体的Y型共敏剂的结构表征数据为:1H NMR(400MHz,CDCl3):δ8.61(d,J=1.4Hz,2H),8.35(s,1H),8.33(d,J=7.7Hz,2H),8.09(d,J=1.7Hz,2H),7.98(s,1H),7.83(dd,J=8.5,1.8Hz,2H),7.77(d,J=7.7Hz,2H),7.72–7.69(m,4H),7.64–7.62(m,8H),7.56–7.53(m,2H),7.48–7.46(m,2H),7.41(dd,J=17.7,8.3Hz,4H),7.31(t,J=7.3Hz,2H),4.71(s,2H)ppm.
实施例2
在实施例1的步骤3中,所用的N-苯基咔唑硼酸用等摩尔的N-甲基咔唑硼酸替换,其它步骤与实施例1相同,制备成结构式如下的罗丹宁乙酸为受体的Y型共敏剂。
Figure BDA0002629719060000062
实施例3
在实施例1的步骤3中,所用的N-苯基咔唑硼酸用等摩尔的N-癸基咔唑硼酸替换,其它步骤与实施例1相同,制备成结构式如下的罗丹宁乙酸为受体的Y型共敏剂。
Figure BDA0002629719060000071
为了证明本发明的有益效果,发明人将实施例1~3制备的共敏剂分别溶于二氯甲烷中,配成10-5mol/L共敏剂的二氯甲烷溶液,采用UV-Vis光谱仪(Hitachi U-3900/3900H)测得共敏剂的紫外吸收光谱,其最大吸收波长范围为380~420nm,摩尔消光系数范围为60000~70000M-1cm-1
另外,发明人将实施例1~3制备的共敏剂用于制备染料敏化太阳能电池,具体制备方法如下:
将TiO2工作电极分别浸入:(a)0.3mmol/L Z907的乙醇溶液;(b)含0.3mmol/LZ907和0.2mmol/L共敏剂的乙醇溶液中,室温下敏化24h。在FTO导电玻璃片上用丝网印刷涂铂浆料,并于400℃下烧结15min,制得对电极。密封层(25μm,Surlyn1702)置于两电极中间将染料敏化过的TiO2工作电极和对电极组装成封装的DSSCs电池,采用真空-倒吸法将电解质溶液通过对电极上的小孔灌注到电池中,电解质溶液的组成为:含0.6mol/L碘化1-丁基-3-甲基咪唑(BMII)、0.1mol/L LiI、0.03mol/L I2、0.5mol/L 4-叔丁基吡啶和0.1mol/L硫腈胍酸的乙腈溶液。最后,灌注孔用盖玻片和密封层密封,制备成染料敏化太阳能电池。
将制备的染料敏化太阳能电池的工作电极和对电极引出导线分别接到电池性能测试装置上,电池的光电流密度-电压(J-V)特性曲线在AM 1.5G模拟太阳光强下测得,模拟器为300W氙灯(94022A,Newport Co.,美国),入射光强用标准硅太阳能电池校准到100mW/cm2,电流密度-电压特性曲线数据用电脑控制的数据源表(Keithley 2400)采集,电池的工作面积为0.25cm2。测试结果见表1。
表1共敏太阳能电池的光电性能效果对比
Figure BDA0002629719060000081
由表1可见,采用Z907制备的染料敏化太阳能电池的光电转化效率为6.55%、短路电流为15.4.0mA/cm2、开路电压为646mV、填充因子为0.66,采用实施例1的共敏剂与Z907共敏所制备的染料敏化太阳能电池的光电转化效率提高到7.31%、短路电流提高到16.5mA/cm2、开路电压提高到670mV、填充因子为0.66;采用实施例2的共敏剂与Z907共敏所制备电池的光电转化效率提高到7.40%、短路电流提高到16.7mA/cm2、开路电压提高到672mV、填充因子为0.66;采用实施例3的共敏剂与Z907共敏所制备电池的光电转化效率提高到7.35%、短路电流提高到16.5mA/cm2、开路电压提高到675mV、填充因子为0.66。对比测试结果表明,采用本发明的罗丹宁乙酸为受体的Y型共敏剂能提高提高钌染料敏化太阳能电池在紫外区的吸收,进而提高钌染料敏化太阳能电池的短路电流密度和光电转换效率。

Claims (6)

1.一种罗丹宁乙酸为受体的Y型共敏剂,其特征在于该共敏剂的结构式如下所示:
Figure FDA0002629719050000011
式中,R代表C1~C10烷基或苯基。
2.一种权利要求1所述的罗丹宁乙酸为受体的Y型共敏剂的制备方法,其特征在于它由下述步骤组成:
(1)制备式1化合物
以水与甲苯的体积比为1:5~20的混合液为溶剂,将3,5-二溴苯甲醛与2-噻吩硼酸、碳酸氢钠、四(三苯基磷)钯在氮气保护下80~100℃反应8~12小时,分离纯化产物,得到式1化合物;
Figure FDA0002629719050000012
(2)制备式2化合物
以氯仿为溶剂,将式1化合物与液溴在60~80℃下回流反应3~5小时,分离纯化产物,得到式2化合物;
Figure FDA0002629719050000021
(3)制备式4化合物
以水与甲苯的体积比为1:5~20的混合液为溶剂,将式2化合物与式3所示N-取代咔唑硼酸、碳酸氢钠、四(三苯基磷)钯在氮气保护下80~100℃反应8~12小时,分离纯化产物,得到式4化合物;
Figure FDA0002629719050000022
(4)制备罗丹宁乙酸为受体的Y型共敏剂
以冰乙酸为溶剂,将式4化合物、罗丹宁乙酸、乙酸铵在100~120℃下反应4~6小时,分离纯化产物,得到罗丹宁乙酸为受体的Y型共敏剂。
3.根据权利要求2所述的罗丹宁乙酸为受体的Y型共敏剂的制备方法,其特征在于:步骤(1)中,所述3,5-二溴苯甲醛与2-噻吩硼酸、碳酸氢钠、四(三苯基磷)钯的摩尔比为1:2~2.4:2~2.4:0.04~0.06。
4.根据权利要求2所述的罗丹宁乙酸为受体的Y型共敏剂的制备方法,其特征在于:步骤(2)中,所述式1化合物与液溴的摩尔比为1:1~1.2。
5.根据权利要求2所述的罗丹宁乙酸为受体的Y型共敏剂的制备方法,其特征在于:步骤(3)中,所述式2化合物与N-取代咔唑硼酸、碳酸氢钠、四(三苯基磷)钯的摩尔比为1:2~2.4:2~2.4:0.04~0.06。
6.根据权利要求2所述的罗丹宁乙酸为受体的Y型共敏剂的制备方法,其特征在于:步骤(4)中,所述式4化合物、罗丹宁乙酸、乙酸铵的摩尔比为1:1~1.3:1.5~2.5。
CN202010807586.8A 2020-08-12 2020-08-12 一种罗丹宁乙酸为受体的y型共敏剂及其制备方法 Pending CN111875599A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010807586.8A CN111875599A (zh) 2020-08-12 2020-08-12 一种罗丹宁乙酸为受体的y型共敏剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010807586.8A CN111875599A (zh) 2020-08-12 2020-08-12 一种罗丹宁乙酸为受体的y型共敏剂及其制备方法

Publications (1)

Publication Number Publication Date
CN111875599A true CN111875599A (zh) 2020-11-03

Family

ID=73204162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010807586.8A Pending CN111875599A (zh) 2020-08-12 2020-08-12 一种罗丹宁乙酸为受体的y型共敏剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111875599A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080103680A (ko) * 2007-05-25 2008-11-28 고려대학교 산학협력단 신규한 엔-아릴카바졸 잔기-함유 유기염료 및 이의제조방법
CN102093740A (zh) * 2011-01-21 2011-06-15 电子科技大学 一种用于染料敏化太阳能电池的有机染料及其制备方法
CN110922392A (zh) * 2019-12-03 2020-03-27 西安近代化学研究所 一种苯基为末端桥链的咔唑共敏剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080103680A (ko) * 2007-05-25 2008-11-28 고려대학교 산학협력단 신규한 엔-아릴카바졸 잔기-함유 유기염료 및 이의제조방법
CN102093740A (zh) * 2011-01-21 2011-06-15 电子科技大学 一种用于染料敏化太阳能电池的有机染料及其制备方法
CN110922392A (zh) * 2019-12-03 2020-03-27 西安近代化学研究所 一种苯基为末端桥链的咔唑共敏剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISLAM M. ABDELLAH ET AL.: ""Molecular engineering and investigation of new efficient photosensitizers/co-sensitizers based on bulky donor enriched with EDOT for DSSCs"" *
YANJUN HE ET AL.: ""Synthesis and Luminescence Properties of Dithieno[3,2-a:2’,3’-c]Phenazine Derivatives with Electron-Donating π-Conjugated Side-Arms at the 2,5- and 8,11-Positions"" *

Similar Documents

Publication Publication Date Title
Srinivas et al. D-π-A organic dyes with carbazole as donor for dye-sensitized solar cells
Tang et al. Starburst triphenylamine-based cyanine dye for efficient quasi-solid-state dye-sensitized solar cells
Sirohi et al. Novel di-anchoring dye for DSSC by bridging of two mono anchoring dye molecules: a conformational approach to reduce aggregation
Sandroni et al. First application of the HETPHEN concept to new heteroleptic bis (diimine) copper (I) complexes as sensitizers in dye sensitized solar cells
Warnan et al. A compact diketopyrrolopyrrole dye as efficient sensitizer in titanium dioxide dye-sensitized solar cells
Wang et al. Enhanced performance of dye-sensitized solar cells based on a dual anchored diphenylpyranylidene dye and N719 co-sensitization
Pan et al. Cocktail co-sensitization of porphyrin dyes with additional donors and acceptors for developing efficient dye-sensitized solar cells
Song et al. Porphyrin sensitizers containing an auxiliary benzotriazole acceptor for dye-sensitized solar cells: Effects of steric hindrance and cosensitization
Song et al. Branched and linear alkoxy chains-wrapped push-pull porphyrins for developing efficient dye-sensitized solar cells
Babu et al. From Molecular Design to Co-sensitization; High performance indole based photosensitizers for dye-sensitized solar cells
El-Shishtawy et al. Influence of redox electrolyte on the device performance of phenothiazine based dye sensitized solar cells
Wood et al. Novel triphenylamine-modified ruthenium (II) terpyridine complexes for nickel oxide-based cathodic dye-sensitized solar cells
Shi et al. New efficient dyes containing tert-butyl in donor for dye-sensitized solar cells
Lu et al. Studies on DA-π-A structured porphyrin sensitizers with different additional electron-withdrawing unit
Stengel et al. Click‐Functionalized Ru (II) Complexes for Dye‐Sensitized Solar Cells
Liang et al. New organic photosensitizers incorporating carbazole and dimethylarylamine moieties for dye-sensitized solar cells
Chiu et al. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC
Wu et al. Novel 4, 4′-bis (alkylphenyl/alkyloxyphenyl)-2, 2′-bithiophene bridged cyclic thiourea functionalized triphenylamine sensitizers for efficient dye-sensitized solar cells
Chen et al. Axial-symmetric conjugated group promoting intramolecular charge transfer performances of triphenylamine sensitizers for dye-sensitized solar cells
CN109796432A (zh) 一种烷基联噻吩-3-氟苯桥联三苯胺共敏剂及其制备方法
Chandrasekharam et al. High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells
Lyu et al. Three-component one-pot reaction for molecular engineering of novel cost-effective highly rigid quinoxaline-based photosensitizers for highly efficient DSSCs application: Remarkable photovoltage
CN104163785B (zh) 一系列含吲哚啉衍生物结构的不对称方酸菁小分子及其应用
Xiao et al. Effect of substitution position on photoelectronic properties of indolo [3, 2-b] carbazole-based metal-free organic dyes
Chen et al. Modified Hagfeldt donor for organic dyes that are compatible with copper electrolytes in efficient dye-sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201103