CN111875561A - 用于特异性识别硒代半胱氨酸的萘衍生物双光子探针及其制备和应用 - Google Patents
用于特异性识别硒代半胱氨酸的萘衍生物双光子探针及其制备和应用 Download PDFInfo
- Publication number
- CN111875561A CN111875561A CN202010699056.6A CN202010699056A CN111875561A CN 111875561 A CN111875561 A CN 111875561A CN 202010699056 A CN202010699056 A CN 202010699056A CN 111875561 A CN111875561 A CN 111875561A
- Authority
- CN
- China
- Prior art keywords
- selenocysteine
- probe
- naphthalene derivative
- photon
- sec
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/64—Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
- C07D277/66—Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6452—Individual samples arranged in a regular 2D-array, e.g. multiwell plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1037—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6439—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明涉及小分子荧光探针的研究,具体涉及用于特异性识别硒代半胱氨酸的萘衍生物双光子探针及其制备和应用,合理设计和合成了一种新颖的基于萘衍生物的双光子荧光探针BNT,可用于活细胞中硒代半胱氨酸的检测与成像。本发明荧光反应十分迅速,在10min,荧光强度达到最大,且检出限低至10.6nm,并且具有灵敏度高、光照稳定性好、特异性强、pH稳定性、细胞毒性低等优点。将该探针用于活细胞,可成功地追踪活细胞和组织中内源性和外源性硒代半胱氨酸的动态分布情况。
Description
技术领域
本发明涉及小分子荧光探针的研究,具体涉及用于特异性识别硒代半胱氨酸的萘衍生物双光子探针及其制备和应用。
背景技术
硒代半胱氨酸(Sec)是人体中硒的主要存在形式,研究表明,在超营养水平时,Sec具有阻止肿瘤发生发展的作用,这种作用已经被大量的临床实验证实。Sec作为SePs的主要活性位点,已知硒蛋白(SePs)具有多种细胞功能,并已被确认与多种人类疾病有关。如炎症、心血管疾病、神经退行性疾病和癌症等。因此,为了更好的研究Sec在各种生理疾病中的功能,迫切需要开发一种精准快速的方法来监测生物体系中Sec的动态变化情况。
Sec作为一种分子指标,在生物体内含量低至纳摩尔甚至微摩尔级别,在生物体系中检测时,很容易受到高浓度的生物硫醇的干扰,比如GSH、Cys、Hcy,因为它们具有和Sec具有相似的化学性质,另外,现有检测Sec方法,如质谱法、气相色谱法、液相色谱法等方法,样品制备复杂、实验条件苛刻,仪器昂贵,操作繁琐,最主要的原因是无法对生物样品中Sec的功能提供生理上相关的见解。所以在生物系统中精确特异性识别Sec是一个巨大的挑战。
荧光分析法由于其可直接用于活细胞中监测分析物,而且灵敏度高、选择性好、响应时间短、高时空分辨成像、成本低廉等优势受到科研界的广泛认可,然而虽然荧光技术可直接在亚细胞和分子水平上对Sec进行实时传感,相较于直接用于检测生物硫醇的荧光探针相比,目前研究Sec的荧光探针仍然非常有限,通常都是紫外光或者可见光来激发,而且斯托克斯位移相对较小,在进行组织和细胞成像时易仍然存在着背景干扰强、信号可变性和成像深度浅等局限性,严重阻碍了其在活体样品中,特别是在深部组织中提供可靠的Sec定量成像分析,这些是我们在目前研究中急需解决的一个重要问题。
发明内容
本发明为解决现有技术中的上述问题,我们首先利用Sec的pKa=5.8;生物硫醇的pKa=8.5,Sec更有可能以去质子化形式,在生理pH=7.4条件下,Sec几乎完全作为硒化物(R-Se-),而大部分生物硫醇是非电离形式(R-SH),所以,Sec具有更强的亲核性特点。并利用具有较高的荧光量子产率、较大的双光子吸收截面、较好的光稳定性以及简单的合成和易于修改等优点的带羟基萘衍生物作为荧光探针的信号输出核心,最后,利用2,4-二硝基苯磺酸基团一方面具有强拉电子作用,促使荧光团发生荧光猝灭,另一方面在生理条件下(pH=7.4)具有较高的亲核性,Sec可特异性和磺氧基发生亲核取代反应,致使其脱落,恢复萘衍生物的电子供体-∏-电子受体结构,产生强烈荧光,从而实现对的Sec荧光检测。本发明是首次实现在生理条件下利用硒代半胱氨酸可以以去质子化形式和2,4-二硝基苯磺酰基发生亲核取代反应的化学反应原理,设计一种基于萘衍生物的双光子荧光探针直接用于活细胞内外源性和内源性的硒代半胱氨酸的检测的技术。
本发明的技术方案是,一种用于特异性识别硒代半胱氨酸的萘衍生物双光子探针,其中,采用具有电子供体-∏-电子受体的萘衍生物为双光子荧光团,以2,4-二硝基苯磺酰基为硒代半胱氨酸的特异性识别基团,该萘衍生物的双光子探针结构式如下:
本发明还提供所述用于特异性识别硒代半胱氨酸的萘衍生物双光子探针的制备方法,其包括如下步骤:
(1)称取6-羟基-2-萘甲醛溶解在乙醇溶液中,加入对甲苯磺酸一水化合物助溶;
(2)再将2-氨基苯硫酚溶解在乙醇溶液中,半小时内逐滴加入至反应装置,滴加完后,搅拌回流;
(3)终止反应,待溶液冷却至室温后,减压蒸发除去溶剂;
(4)用酒精溶液冲洗多余未反应的2-氨基苯硫酚,烘干后得到化合物1;
(5)将化合物1溶解在二氯甲烷中,加入三乙胺为催化剂,在氮气气氛下将混合物冷却到0℃;
(6)然后加入2,4-二硝基苯磺酰氯,反应完全后,取饱和食盐水冲洗混合物终止反应,然后干燥,旋转蒸发除去溶剂二氯甲烷即得。
更进一步地,所述用于特异性识别硒代半胱氨酸的萘衍生物双光子探针的制备方法,还包括如下步骤:
将步骤(6)所得产物再用硅胶柱层析纯化。
本发明还提供所述用于特异性识别硒代半胱氨酸的萘衍生物双光子探针的应用,即,将该萘衍生物双光子探针应用于细胞内外源性和内源性硒代半胱氨酸的检测。
该荧光探针由于2,4-二硝基苯磺酰基的强拉电子作用,基本是无荧光的,在pH=7.4时,Sec可特异性和磺氧基发生亲核取代反应,致使其脱落,恢复萘衍生物的电子供体-∏-电子受体结构,产生强烈荧光,从而实现对的Sec荧光检测。
本发明合理设计和合成了一种新颖的基于萘衍生物的双光子荧光探针BNT,可用于活细胞中硒代半胱氨酸的检测与成像。属于有机小分子探针合成领域,本探针以具有电子供体-∏-电子受体的萘衍生物为双光子荧光团,以2,4-二硝基苯磺酰基为硒代半胱氨酸的特异性识别基团,在pH=7.4时,硒代半胱氨酸会以硒基形式与探针BNT发生亲核取代反应,进攻2,4-二硝基苯磺酰基使其断裂产生羟基,ICT效应破坏,释放荧光团,Kem=510nm处荧光增强15倍,该反应十分迅速,在10min,荧光强度达到最大,且检出限低至10.6nm,另外该探针BNT具有灵敏度高、光照稳定性好、特异性强、pH稳定性、细胞毒性低等优点。将该探针用于活细胞,可成功地追踪活细胞和组织中内源性和外源性硒代半胱氨酸的动态分布情况。
附图说明
图1是本发明萘衍生物双光子探针BNT的结构式。
图2是本发明萘衍生物双光子探针BNT的合成路线图。
图3是本发明探针对硒代半胱氨酸选择性的荧光结果图。
图4是本发明探针与不同浓度的硒代半胱氨酸反应后的荧光强度变化曲线图。
图5是本发明探针与硒代半胱氨酸反应的荧光强度变化和时间的关系图。
图6是本发明探针与细胞内外源性硒代半胱氨酸荧光成像图。
图7是本发明探针与细胞内内源性硒代半胱氨酸荧光成像图。
具体实施方式
下面结合附图对本发明进行详细描述,本部分的描述仅是示范性和解释性,不应对本发明的保护范围有任何的限制作用。此外,本领域技术人员根据本文件的描述,可以对本文件中实施例中以及不同实施例中的特征进行相应组合。
实施例1用于特异性识别硒代半胱氨酸的萘衍生物双光子探针BNT的制备
探针化合物BNT(6-(2,4-二硝基苯基-磺酸酯基)-萘-2-基)苯并[d]噻唑)的结构式如下:
合成路线如下:
步骤:
(1)称取6-羟基-2-萘甲醛(1.70g,10mmol)和加入对甲苯磺酸一水化合物(1.90g,10mmol),再将2-氨基苯硫酚(1.9g,15mmol)溶解在40mL乙醇溶液中,在室温下搅拌回流12小时。过滤并用大量酒精溶液冲洗多余未反应的2-氨基苯硫酚,烘干后得到淡黄色固体。(2.67g,产率95.0%)。1H NMR(500MHz,DMSO-d6)δ(ppm)8.56(s,1H),8.15(d,J=7.9Hz,1H),8.13–8.04(m,1H),8.02(d,J=8.8Hz,1H),7.86(d,J=8.6Hz,1H),7.56(s,1H),7.49(s,1H),7.46(s,1H),7.22(s,1H),7.13(d,J=8.0Hz,1H),2.30(s,1H).13C NMR(126MHz,DMSO-d6)δ(ppm)δ168.21(s),157.65(s),154.17(s),136.65(s),131.21(s),128.58(s),127.84(s),127.59(s),127.08(s),125.98(s),124.66(s),123.08(s),122.76(s),120.28(s),109.41(s).MS(EI)m/z,277.0(M+).
(2)将淡黄色固体(280mg,1.00mmol)溶解在二氯甲烷中,加入少量三乙胺为催化剂,在氮气气氛下将混合物冷却到0℃。然后缓慢加入2,4-二硝基苯磺酰氯,反应一段时间后,取50mL饱和食盐水冲洗混合物终止反应,然后用无水硫酸钠干燥。旋转蒸发除去溶剂。所得残渣用硅胶柱层析纯化(硅胶;石油醚/乙酸乙酯=2:1作为洗脱剂)纯化,得到产物。旋干后得到深黄色固体,为化合物2,即双光子荧光探针BNT。(0.35g,产率67.5%)。其合成路线如图1所示。1H NMR(500MHz,DMSOd6)δ(ppm)9.15(s,1H),8.91(d,J=2.0Hz,7H),8.37(s,9H),8.30(d,J=8.3Hz,2H),8.20(s,2H),8.11(s,1H),7.92(s,1H),7.39(s,6H),7.38(s,5H),7.31(s,4H),7.01(s,5H),6.99(s,3H),6.87(s,4H),6.85(s,3H),6.68(s,6H).13C NMR(126MHz,DMSO d6)δ(ppm)151.29(s),146.18(s),144.97(s),144.52(s),137.53(s),133.16(s),128.56(s),127.92(s),121.79(s),117.35(s),115.85(s),108.35(s).
实施例2探针对硒代半胱氨酸的选择性检测
检测方法如下:
(1)取实施例1中制备的探针BNT溶于DMF中,得到1.0mM储备液;
(2)从中取10uL加入1mL的离心管中,每个离心管分别加入Sec,Cys,GSH,KCl,NaCl,CaCl2,ZnSO4,MgSO4,NaF,NaBr,KI,Na2CO3,NaNO3,Na2S2O3,NaClO,NaHS Na2SeO3等物质;
(3)反应10min钟后,分别测定荧光强度。反应体系均是PBS缓冲溶液(10mM pH=7.4),测定条件始终维持,激发波长为340nm,发射波长范围为400nm-600nm,激发光和发射光夹缝均为5.0nm。如图3所示,在10uM(1%DMF,V/V)探针中加入100uM Sec可以看到荧光信号显著增加,当在相同测定条件下,分别加入500uM的Cys,GSH,KCl,NaCl,CaCl2,ZnSO4,MgSO4,NaF,NaBr,KI,Na2CO3,NaNO3,Na2S2O3,NaClO,NaHS Na2SeO3探针的荧光信号基本没有改变,虽然即使Cys,GSH,NaHS,Na2SeO3对探针BNT的荧光信号有微弱的影响,但是其测量浓度是Sec的十倍当量,所以,相对于探针对Sec的荧光响应强度而言,其影响是可以忽略的。以上结果表明了在生物系统中探针BNT对Sec具有良好的选择性和抗干扰能力,这对于在活体系统中的Sec检测是非常理想的。
实施例3探针BNT对Sec的光谱响应
(1)从中取10uL(1.0mM)探针加入1mL的离心管中分别加入不同体积的Sec标准溶液(1.0mM)。
(2)用PBS缓冲体系(10mM,pH 7.4)定容,反应温度为37℃,反应15min后,进行荧光检测,反应体系均是PBS缓冲溶液(10mM pH=7.4),测定定条件始终维持,激发波长为340nm,发射波长范围为400nm-600nm,激发光和发射光夹缝均为5.0nm。结果如图4,在只有探针的溶液中,其荧光值非常的低,而随着Sec浓度(0-200μm)的增加em=510nm处的荧光强度不断增强,当Sec浓度达到200μm时,探针NTN的荧光强度是空白值的18.9倍。相较于已有的可直接用于活体检测Sec的有机小分子探针而言,已是一个满意的结果,当Sec浓度在(0-10μm)范围内,探针BNT对Sec的响应成良好的线性关系,利用公式检出限=3δ/slope计算,探针BNT对Sec的检出限低至10.6nm。
实施例4探针与Sec反应荧光强度变化与时间的关系
(1)从中取10uL(1.0mM)探针加入1mL的离心管中加入Sec 100uL(1.0mM)溶液。
(2)PBS缓冲体系(10mM,pH=7.4)定容,反应温度为37℃,反应15min后,进行荧光检测。探究探针与Sec反应荧光强度变化与时间的关系曲线。结果如图5,在未加Sec时,10uM(1%DMF,V/V)探针BNT的荧光强度是非常低的,在20min内且基本不受时间的影响,说明了探针BNT的荧光稳定性很完美,但加入100uM Sec后,体系中荧光强度随着反应时间的延长,前期快速增强,在10min内达到饱和,表明探针BNT对Sec的响应较为迅速灵敏。测定条件始终维持,激发波长为340nm,发射波长范围为400nm-600nm,激发光和发射光夹缝均为5.0nm。
实施例5探针对Sec检测的反应机理验证
为了验证探针1与Sec反应是基于Sec可特异性和磺氧基发生亲核取代反应,致使其脱落,恢复萘衍生物的电子供体-∏-电子受体结构,产生强烈荧光的原理,通过采用TLC和HPLC方法分析了探针BNT和Sec的反应体系,通过观察保留因子(Rf)值来验证反应机理。同时,通过HPLC将探针BNT和Sec的反应溶液进行了分析,通过观察保留时间和峰面积变化情况来验证反应机理。
实施例6细胞毒性的检测
将HeLa细胞接种到96孔板中,密度为每孔1×105个HeLa细胞,细胞放置于5%CO2孵化器中保持在37℃孵育,使其贴壁生长24小时,用不同浓度的探针孵育48小时。在孵育时间后,在PBS磷酸盐缓冲溶液中加入5mg/mL的MTT染料20μL加入每孔中,在37℃时再孵育4h。然后,去除残留的MTT溶液,在每孔中加入150uL的DMF,放置于摇床上低速振荡10min中后,待晶体完全溶解后。摇片10min,用酶标仪在490nm处测定吸光度。每个样本一式五份,整个实验重复五次。细胞存活率(%)=实验组有效吸光度/对照组有效吸光度×100%。
实施例7Hela细胞中外源性硒代半胱氨酸的测定
(1)HeLa细胞在含有10%(v/v)青霉素-链霉素双抗的DMEM培养基中,细胞置于5%CO2孵化器中保持在37℃孵育,使其贴壁生长24小时,然后播种在35mm的24孔共聚焦培养皿中加入约2×104个细胞。
(2)对照组中将活细胞与10uM的探针BNT1(DMF/H2O=1:99,v/v)在37℃下共同孵育1小时、2小时和6小时,并用DPBS洗涤3次,然后进行双光子荧光成像实验,其激发光波长固定为720nm,收集470-530nm波段的荧光信号。
(3)实验组中分别将细胞经最终浓度为5uM和10uM(Sec)2预处理1小时、2小时和6小时,,用DBPS洗涤3次,去除剩余的(Sec)2后,然后在37℃下加入10uM的探针BNT(DMF/H2O=1:99,v/v)分别孵育20min,然后进行双光子荧光成像实验,其激发光波长固定为720nm,收集470-530nm波段的荧光信号。如图6可知,只有探针(10μM)孵育的HeLa细胞在1h、2h、6h孵育后表现出非常弱的荧光发射,但HeLa细胞先用浓度为5uM和10uM(Sec)2预处理1小时、2小时和6小时,去除多余的(Sec)2后,再与探针共同孵育20min后,可以观察到明亮和强烈的绿色荧光,绿色荧光强度随着时间的延长基本不发生改变,证明了探针的稳定性,而且10uM(Sec)2预处理的细胞中荧光强度高与5uM(Sec)2预处理的细胞中荧光强度,证明了探针BNT具有检测活细胞内不同浓度的外源性硒代半胱氨酸潜力。
实施例8Hela细胞中内源性硒代半胱氨酸的测定
(1)对照组中将活细胞与10uM的探针BNT(DMF/H2O=1:99,v/v)在37℃下共同孵育1小时、2小时和6小时,并用DPBS洗涤3次,然后进行双光子荧光成像实验,其激发光波长固定为720nm,收集470-530nm波段的荧光信号。
(2)实验组中分别将细胞经最终浓度为2uM和5uM Na2SeO3分别预处理1小时、2小时、6小时,用DBPS洗涤3次,去除剩余的Na2SeO3后,然后在37℃下与10uM探针BNT一起孵育20分钟,然后进行双光子荧光成像实验,其激发光波长固定为720nm,收集470-530nm波段的荧光信号。如图7可知,细胞和探针单独孵育1小时、2小时、6小时,探针的荧光强度基本不变,但是,当细胞先用2uM和5uM Na2SeO3分别预处理1小时、2小时、6小时孵育后,再与10uM探针BNT一起孵育20分钟后,可以看到细胞的双光子荧光明显增强,而且5uM Na2SeO3处理的荧光强度高于2uM Na2SeO3的荧光强度从选择性实验可知探针对Na2SeO3没有应该响应,所以荧光增强的主要原因是Na2SeO3在细胞内代谢生成Sec,证明了该探针BNT可以用于检测活细胞内不同浓度的硒代半胱氨酸。
该探针可用于活细胞中外源性和内源性硒代半胱氨酸的传感检测。通过荧光法测定了探针对硒代半胱氨酸的选择性和检出限,通过液相色谱法和薄层色谱法验证了传感机制。以MTT比色法检测细胞毒性,探针通过荧光成像原位动态分析考察了活细胞中内源性和外源性的硒代半胱氨酸的动态分布。
该双光子探针具有合成简单,灵敏度高,特异性强,不受生物分子的影响,pH稳定性,检出限低至10.6nm,响应时间仅需10min,而且较宽的线性范围,生物相容性好、毒性低,以及较好的组织穿透能力和染色能力。
本发明设计、合成了基于萘衍生物的双光子荧光探针BNT对硒代半胱氨酸进行检测与成像研究,具有较高的荧光量子产率、较大的双光子吸收截面、较好的光稳定性以及简单的合成和易于修改等优点。
另外值得说明的是,本专利中设计合成的基于萘衍生物的双光子荧光探针BNT针对目标物硒代半胱氨酸具有更好的选择性和灵敏度。在现有探针设计过程中,曾有人合成了以咔唑和三苯胺作为探针母体,构建了基于醛基的双光子荧光探针。该系列探针利用探针中醛基和半胱氨酸和高半胱氨酸中巯基作用,发生成环反应形成稳定的五元杂环化合物,反应完成后吸电子基团醛基在识别半胱氨酸过程中转变为推电子基团,而抑制了探针的分子内电荷转移(ICT),并导致体系荧光强度发生变化,在选择性实验中仍对部分人体内生物分子产生了较高的响应,尤其在检测物浓度较低的情况下,对于探针的特异性识别造成干扰。而本专利设计合成的BNT中2,4-二硝基苯磺酸基团的电子缺陷会致使荧光团的荧光发生猝灭,硒代半胱氨酸与其他生物硫醇的pKa值的差异使得探针BNT更容易与硒代半胱氨酸进行反应,从而实现其优越的选择性。实验结果来看,探针BNT的检测限低至10.6nM,更适合人体内的超灵敏检测。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (4)
2.权利要求1所述用于特异性识别硒代半胱氨酸的萘衍生物双光子探针的制备方法,其特征是,包括如下步骤:
(1)称取6-羟基-2-萘甲醛溶解在乙醇溶液中,加入对甲苯磺酸一水化合物助溶;
(2)再将2-氨基苯硫酚溶解在乙醇溶液中,半小时内逐滴加入至反应装置,滴加完后,搅拌回流;
(3)终止反应,待溶液冷却至室温后,减压蒸发除去溶剂;
(4)用酒精溶液冲洗多余未反应的2-氨基苯硫酚,烘干后得到化合物1;
(5)将化合物1溶解在二氯甲烷中,加入三乙胺为催化剂,在氮气气氛下将混合物冷却到0℃;
(6)然后加入2,4-二硝基苯磺酰氯,反应完全后,取饱和食盐水冲洗混合物终止反应,然后干燥,旋转蒸发除去溶剂二氯甲烷即得。
3.根据权利要求2所述用于特异性识别硒代半胱氨酸的萘衍生物双光子探针的制备方法,其特征是,还包括如下步骤:
将步骤(6)所得产物再用硅胶柱层析纯化。
4.根据权利要求1所述用于特异性识别硒代半胱氨酸的萘衍生物双光子探针的应用,其特征是,将该萘衍生物双光子探针应用于细胞内外源性和内源性硒代半胱氨酸的检测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010699056.6A CN111875561A (zh) | 2020-07-20 | 2020-07-20 | 用于特异性识别硒代半胱氨酸的萘衍生物双光子探针及其制备和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010699056.6A CN111875561A (zh) | 2020-07-20 | 2020-07-20 | 用于特异性识别硒代半胱氨酸的萘衍生物双光子探针及其制备和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111875561A true CN111875561A (zh) | 2020-11-03 |
Family
ID=73154962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010699056.6A Pending CN111875561A (zh) | 2020-07-20 | 2020-07-20 | 用于特异性识别硒代半胱氨酸的萘衍生物双光子探针及其制备和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111875561A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113278001A (zh) * | 2021-06-21 | 2021-08-20 | 中南大学 | 一种近红外硒代半胱氨酸荧光探针及其制备方法与应用 |
CN115260120A (zh) * | 2022-04-26 | 2022-11-01 | 安徽工程大学 | 一种用于联氨特异性检测的esipt荧光化合物及其制备方法和应用 |
CN115466230A (zh) * | 2022-08-12 | 2022-12-13 | 兰州大学 | 一种硒半胱氨酸响应的荧光探针的制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105086995A (zh) * | 2015-05-21 | 2015-11-25 | 湖南城市学院 | 一种基于保护与脱保护机理的h2s探针的制备及应用 |
CN105419788A (zh) * | 2015-12-25 | 2016-03-23 | 济南大学 | 一种识别硫化氢的小分子荧光探针及其制备方法和应用 |
CN106977450A (zh) * | 2017-04-28 | 2017-07-25 | 山西大学 | 一种萘基双光子荧光探针及其制备方法和应用 |
CN108727372A (zh) * | 2018-06-20 | 2018-11-02 | 华中师范大学 | 一种快速识别谷胱甘肽的荧光探针及其制备方法 |
CN109293653A (zh) * | 2018-11-07 | 2019-02-01 | 徐州医科大学 | 一种检测生物体内硒半胱氨酸的生物发光探针及其制备方法和应用 |
CN110437199A (zh) * | 2019-06-12 | 2019-11-12 | 徐州医科大学 | 一种硒半胱氨酸近红外荧光探针及其制备方法和应用 |
-
2020
- 2020-07-20 CN CN202010699056.6A patent/CN111875561A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105086995A (zh) * | 2015-05-21 | 2015-11-25 | 湖南城市学院 | 一种基于保护与脱保护机理的h2s探针的制备及应用 |
CN105419788A (zh) * | 2015-12-25 | 2016-03-23 | 济南大学 | 一种识别硫化氢的小分子荧光探针及其制备方法和应用 |
CN106977450A (zh) * | 2017-04-28 | 2017-07-25 | 山西大学 | 一种萘基双光子荧光探针及其制备方法和应用 |
CN108727372A (zh) * | 2018-06-20 | 2018-11-02 | 华中师范大学 | 一种快速识别谷胱甘肽的荧光探针及其制备方法 |
CN109293653A (zh) * | 2018-11-07 | 2019-02-01 | 徐州医科大学 | 一种检测生物体内硒半胱氨酸的生物发光探针及其制备方法和应用 |
CN110437199A (zh) * | 2019-06-12 | 2019-11-12 | 徐州医科大学 | 一种硒半胱氨酸近红外荧光探针及其制备方法和应用 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113278001A (zh) * | 2021-06-21 | 2021-08-20 | 中南大学 | 一种近红外硒代半胱氨酸荧光探针及其制备方法与应用 |
CN113278001B (zh) * | 2021-06-21 | 2024-04-05 | 中南大学 | 一种近红外硒代半胱氨酸荧光探针及其制备方法与应用 |
CN115260120A (zh) * | 2022-04-26 | 2022-11-01 | 安徽工程大学 | 一种用于联氨特异性检测的esipt荧光化合物及其制备方法和应用 |
CN115260120B (zh) * | 2022-04-26 | 2023-06-02 | 安徽工程大学 | 一种用于联氨特异性检测的esipt荧光化合物及其制备方法和应用 |
CN115466230A (zh) * | 2022-08-12 | 2022-12-13 | 兰州大学 | 一种硒半胱氨酸响应的荧光探针的制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | A novel DCM-NBD conjugate fluorescent probe for discrimination of Cys/Hcy from GSH and its bioimaging applications in living cells and animals | |
Ye et al. | A dual-channel responsive near-infrared fluorescent probe for multicolour imaging of cysteine in living cells | |
Muthusamy et al. | A novel lysosome targeted fluorophore for H2S sensing: Enhancing the quantitative detection with successive reaction sites | |
CN111875561A (zh) | 用于特异性识别硒代半胱氨酸的萘衍生物双光子探针及其制备和应用 | |
Xiao et al. | Substitution of oxygen with silicon: A big step forward for fluorescent dyes in life science | |
Zhu et al. | A novel fluorescent turn-on probe for highly selective detection of nitroreductase in tumor cells | |
Hou et al. | Sensitive detection and imaging of endogenous peroxynitrite using a benzo [d] thiazole derived cyanine probe | |
Chung et al. | Two-photon imaging of hydrogen polysulfides in living cells and hippocampal tissues | |
More et al. | Molecular design of fluorescent pH sensors based on reduced rhodol by structure-pKa relationship for imaging of lysosome | |
KR101651364B1 (ko) | 리소좀 내 atp 선택성 이광자 형광 감지체 | |
US20200354388A1 (en) | Real-Time Fluorescence Imaging Sensor for Measuring Glutathione in Organelle and Preparation Method Therefor | |
Dai et al. | A novel fluorescent probe with large Stokes shift for two-photon imaging of biothiols in living cells, liver tissues and tumor tissues | |
Zhu et al. | Near-infrared cyanine-based sensor for Fe 3+ with high sensitivity: its intracellular imaging application in colorectal cancer cells | |
CN113999219A (zh) | 一种双位点荧光探针及其合成方法和应用 | |
Zhu et al. | An ICT-PET dual-controlled strategy for improving molecular probe sensitivity: Application to photoactivatable fluorescence imaging and H2S detection | |
KR101584606B1 (ko) | 이광자 형광 프로브, 이의 제조방법 및 이를 이용한 pH 이미지화 방법 | |
Tian et al. | Ratiometric fluorescence imaging for sodium selenite in living cells | |
Zhu et al. | A Mitochondrial-targeted curcumin-based fluorescent probe for real-time tracking endogenous hydrogen peroxide in living cells | |
CN110305100A (zh) | 一种近红外聚硫化氢荧光探针及其制备方法和应用 | |
Yang et al. | A fluorescent probe for ultrarapid H2O2 detection during reagent-stimulated oxidative stress in cells and zebrafish | |
CN110655510B (zh) | 一种靶向脂滴的亚硫酸盐比率荧光探针及其应用 | |
CN110669503B (zh) | 一种一氧化碳近红外荧光探针的制备和应用 | |
CN116375692A (zh) | 一种用于检测半胱氨酸的近红外荧光分子探针及其制备方法和试剂盒 | |
KR101101304B1 (ko) | 이광자 트레이서, 이의 제조방법 및 이를 이용한 항암제 스크리닝 방법 | |
CN116535398A (zh) | 内质网靶向聚集诱导发光的离子型探针及制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20201103 |
|
WD01 | Invention patent application deemed withdrawn after publication |