CN111865131A - 三相并网逆变器三矢量模型预测电流控制仿真实验方法 - Google Patents

三相并网逆变器三矢量模型预测电流控制仿真实验方法 Download PDF

Info

Publication number
CN111865131A
CN111865131A CN202010809692.XA CN202010809692A CN111865131A CN 111865131 A CN111865131 A CN 111865131A CN 202010809692 A CN202010809692 A CN 202010809692A CN 111865131 A CN111865131 A CN 111865131A
Authority
CN
China
Prior art keywords
vector
connected inverter
mpcc
strategy
phase grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010809692.XA
Other languages
English (en)
Inventor
任志玲
董云
毛奕栋
叶俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Technical University
Original Assignee
Liaoning Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Technical University filed Critical Liaoning Technical University
Priority to CN202010809692.XA priority Critical patent/CN111865131A/zh
Publication of CN111865131A publication Critical patent/CN111865131A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了三相并网逆变器三矢量模型预测电流控制仿真实验方法,属于仿真实验方法研究领域;本发明所提出三相并网逆变器三矢量模型预测电流控制仿真实验方法能够很好的验证,三相并网逆变器三矢量模型预测电流控制策略与传统三相并网逆变器单矢量模型预测电流控制策略相比,既起到了恒定开关频率的作用,降低了输出电流谐波含量,又减小了逆变器的开关损耗,是作为可再生能源发电的一种有效控制方式,具有广泛的工程应用前景。

Description

三相并网逆变器三矢量模型预测电流控制仿真实验方法
技术领域
本发明涉及仿真实验方法研究领域,尤其涉及三相并网逆变器三矢量模型预测电流控制仿真实验方法。
背景技术
近年来,随着化石能源日益紧缺和环境污染不断加重,太阳能和风能等可再生能源得到了迅速发展;三相并网逆变器作为可再生能源转化为电能的重要装置,其性能的好坏影响着发电系统的质量,因此,其控制方法得到了广泛的关注和研究;三相并网逆变器的传统控制方法有矢量控制和直接功率控制,随着数字处理技术的快速发展,模型预测控制作为一种新的控制方法被提出,模型预测控制技术易于增加约束并且对于非线性问题控制效果良好;它通过建立系统的离散预测模型,选择使代价函数最小的开关状态实现最优控制;因此,考虑三相并网逆变器的特点,模型预测控制愈发受到国内外学者的关注;广义模型预测控制和有限集模型预测控制是三相并网逆变器模型预测控制的两个组成部分。当由控制变量进行划分时,并网逆变器有限集模型预测控制可以分为模型预测电流控制(ModelPredictive Current Control,MPCC)和模型预测直接功率控制。
传统三相并网逆变器单矢量MPCC,就是在一个控制周期选择一个电压矢量使代价函数最小的开关状态进行输出,传统三相并网逆变器单矢量MPCC存在开关频率不固定以及输出电流谐波含量大的问题,进而便出现用于三相并网逆变器三矢量MPCC算法,相较传统的三相并网逆变器单矢量MPCC具有开关频率恒定,输出电流谐波含量低,逆变器开关损耗小等优点,为了更好的验证三相并网逆变器三矢量MPCC算法的优点,本发明提出了三相并网逆变器三矢量模型预测电流控制仿真实验方法。
发明内容
本发明的目的是验证三相并网逆变器三矢量MPCC与传统三相并网逆变器单矢量MPCC策略相比所具有的优点和进步而提出的三相并网逆变器三矢量模型预测电流控制仿真实验方法。
为了实现上述目的,本发明采用了如下技术方案:
三相并网逆变器三矢量模型预测电流控制仿真实验方法,包括以下步骤;
S1、设计对比实验,将传统三相并网逆变器单矢量MPCC策略设为对照组,将三相并网逆变器三矢量MPCC策略设为实验组;
S2、参照仿真参数表,采用S-function完成传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略控制算法的编写;
S3、对传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略进行稳态仿真实验,给定电流,观察电流的变化情况;
S4、对稳态仿真实验的数据进行整理和分析,得出传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略下的稳态仿真波形;
S5、进一步对传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略进行动态仿真实验,实验进行到0.065s时,将改变电流数值,观察电流的变化情况;
S6、对动态仿真实验的数据进行整理和分析,得出传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略下的动态仿真波形;
S7、综合研究对比S4和S6中所得的仿真波形图,对仿真结果进行分析,得出三相并网逆变器三矢量MPCC策略与传统三相并网逆变器单矢量MPCC策略相比的进步与优点。
优选的,所述S4中所提到的稳态仿真波形包括有传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的a相电网电压和逆变器输出三相电流、传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的逆变器输出a相电压、传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的逆变器输出a相电流和传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的逆变器输出a相电流频谱。
优选的,所述S 3中给定的电流为ic *=20sinθ、ic *=20sin(θ-2π/3)、ic *=20sin(θ+2π/3),所述S5中给定的电流为ic *=30sinθ、ic *=30sin(θ-2π/3)、ic *=30sin(θ+2π/3),其中θ为电网电压空间电角度,由锁相环得到
与现有技术相比,本发明提供了三相并网逆变器三矢量模型预测电流控制仿真实验方法,具备以下有益效果:
本发明所提出三相并网逆变器三矢量模型预测电流控制仿真实验方法能够很好的验证,三相并网逆变器三矢量模型预测电流控制策略与传统三相并网逆变器单矢量模型预测电流控制策略相比,既起到了恒定开关频率的作用,降低了输出电流谐波含量,又减小了逆变器的开关损耗,是作为可再生能源发电的一种有效控制方式,具有广泛的工程应用前景。
附图说明
图1为本发明提出的三相并网逆变器三矢量模型预测电流控制仿真实验方法的方法流程图;
图2为本发明提出的三相并网逆变器三矢量模型预测电流控制仿真实验方法的稳态仿真实验中a相电网电压和逆变器输出三相电流示意图;
图3为本发明提出的三相并网逆变器三矢量模型预测电流控制仿真实验方法的稳态仿真实验中逆变器输出a相电压示意图;
图4为本发明提出的三相并网逆变器三矢量模型预测电流控制仿真实验方法的稳态仿真实验中示意图;
图5为本发明提出的三相并网逆变器三矢量模型预测电流控制仿真实验方法的稳态仿真实验中示意图;
图6为本发明提出的三相并网逆变器三矢量模型预测电流控制仿真实验方法的动态仿真实验中动态仿真波形示意图;
图7为本发明提出的三相并网逆变器三矢量模型预测电流控制仿真实验方法的参考文献控制策略下的a相电流稳态仿真波形示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例1:
请参阅图1-6,三相并网逆变器三矢量模型预测电流控制仿真实验方法,包括以下步骤;
S1、设计对比实验,将传统三相并网逆变器单矢量MPCC策略设为对照组,将三相并网逆变器三矢量MPCC策略设为实验组;
S2、参照仿真参数表,采用S-function完成传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略控制算法的编写;
S3、对传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略进行稳态仿真实验,给定电流,观察电流的变化情况;
S4、对稳态仿真实验的数据进行整理和分析,得出传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略下的稳态仿真波形;
S5、进一步对传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略进行动态仿真实验,实验进行到0.065s时,将改变电流数值,观察电流的变化情况;
S6、对动态仿真实验的数据进行整理和分析,得出传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略下的动态仿真波形;
S7、综合研究对比S4和S6中所得的仿真波形图,对仿真结果进行分析,得出三相并网逆变器三矢量MPCC策略与传统三相并网逆变器单矢量MPCC策略相比的进步与优点。
S4中所提到的稳态仿真波形包括有传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的a相电网电压和逆变器输出三相电流、传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的逆变器输出a相电压、传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的逆变器输出a相电流和传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的逆变器输出a相电流频谱。
S3中给定的电流为ic *=20sinθ、ic *=20sin(θ-2π/3)、ic *=20sin(θ+2π/3),S5中给定的电流为ic *=30sinθ、ic *=30sin(θ-2π/3)、ic *=30sin(θ+2π/3),其中θ为电网电压空间电角度,由锁相环得到。
从图2的稳态仿真波形可以看出,在单矢量MPCC和三矢量MPCC下,逆变器输出a相电流与a相电网电压都能保持同相,并跟踪于参考电流,但三矢量MPCC使三相电流更加正弦化;从3中可以看出,单矢量MPCC由于没有脉宽调制器,在一个开关周期只选择一个最优电压矢量作为电压输出,开关状态的变化没有规律,有可能出现a相电压缺口;而三矢量MPCC脉冲采用DPWM0控制策略输出,三相并网逆变器a相桥臂的两个开关器件在一个电网周期(0.02s)有60°一直开通或关断,故出现a相电压60°缺口,这减小了逆变器的开关损耗,提高了逆变器的运行效率;从图4和图5中可以看出,三矢量MPCC下a相电流谐波含量要比单矢量MPCC明显减少,并且在电流谐波分布上,单矢量MPCC谐波分布广,低次谐波含量较高,这是由于开关频率不固定的结果,而三矢量MPCC具有恒定开关频率的作用,输出电流频谱集中于开关频率的整数倍(20kHz和40kHz),能有效减少低次谐波含量,有利于输出滤波器的设计;从由图6.的动态仿真波形可以得出,在0.065s将参考电流给定幅值由20A增加到30A时,单矢量MPCC和三矢量MPCC下逆变器输出电流都能小于1ms达到给定值;但三矢量MPCC比单矢量MPCC动态响应略慢,在通过大量仿真实验后可以发现慢了不到10%,这是因为三矢量MPCC动态响应过程不是在一个控制周期完成的,而单矢量MPCC只选择该控制周期的最优开关状态,使输出电压矢量产生更大的电流增量,因此动态响应过程更快,尽管这样,三矢量MPCC仍具有良好的动态性能。
实施例2:
请参阅图7,基于实施例1但有所不同之处在于,根据文献《A Fast and FixedSwitching Frequency Model Predictive Control With Delay Compensation forThree-Phase Inverters》中的所提及的控制策略能够实现固定开关频率的作用,但a相电流谐波含量比三矢量MPCC要高并且引起较大的低频谐波;因为文献《A Fast and FixedSwitching Frequency Model Predictive Control With Delay Compensation forThree-Phase Inverters》中控制策略利用三个电压矢量作用时间与它们的成本函数成反比的关系来确定每个电压矢量的作用时间,该种方法没有严格准确的理论支撑,这仅仅是一种近似处理方法,而本发明的控制策略是根据电流无差拍原则来确定各个矢量的作用时间,并对作用时间负值进行处理,这是一种最优化原则;而且相比较之下,本发明以三矢量同时作用电流跟踪误差最小方式进行跟踪,这种跟踪方式更准确,故而引起较大的低频谐波差别;综合以上仿真可以看出,三矢量MPCC相比于单矢量MPCC具有较低的电流谐波含量,并且实现了恒定开关频率,减小了并网逆变器的开关损耗,同时还具有良好的动态性能
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (3)

1.三相并网逆变器三矢量模型预测电流控制仿真实验方法,其特征在于:包括以下步骤;
S1、设计对比实验,将传统三相并网逆变器单矢量MPCC策略设为对照组,将三相并网逆变器三矢量MPCC策略设为实验组;
S2、参照仿真参数表,采用S-function完成传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略控制算法的编写;
S3、对传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略进行稳态仿真实验,给定电流,观察电流的变化情况;
S4、对稳态仿真实验的数据进行整理和分析,得出传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略下的稳态仿真波形;
S5、进一步对传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略进行动态仿真实验,实验进行到0.065s时,将改变电流数值,观察电流的变化情况;
S6、对动态仿真实验的数据进行整理和分析,得出传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略下的动态仿真波形;
S7、综合研究对比S4和S6中所得的仿真波形图,对仿真结果进行分析,得出三相并网逆变器三矢量MPCC策略与传统三相并网逆变器单矢量MPCC策略相比的进步与优点。
2.根据权利要求1所述三相并网逆变器三矢量模型预测电流控制仿真实验方法,其特征在于:所述S4中所提到的稳态仿真波形包括有传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的a相电网电压和逆变器输出三相电流、传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的逆变器输出a相电压、传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的逆变器输出a相电流和传统三相并网逆变器单矢量MPCC策略和三相并网逆变器三矢量MPCC策略的逆变器输出a相电流频谱。
3.根据权利要求1所述三相并网逆变器三矢量模型预测电流控制仿真实验方法,其特征在于:所述S3中给定的电流为ic *=20sinθ、ic *=20sin(θ-2π/3)、ic *=20sin(θ+2π/3),所述S5中给定的电流为ic *=30sinθ、ic *=30sin(θ-2π/3)、ic *=30sin(θ+2π/3),其中θ为电网电压空间电角度,由锁相环得到。
CN202010809692.XA 2020-08-13 2020-08-13 三相并网逆变器三矢量模型预测电流控制仿真实验方法 Pending CN111865131A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010809692.XA CN111865131A (zh) 2020-08-13 2020-08-13 三相并网逆变器三矢量模型预测电流控制仿真实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010809692.XA CN111865131A (zh) 2020-08-13 2020-08-13 三相并网逆变器三矢量模型预测电流控制仿真实验方法

Publications (1)

Publication Number Publication Date
CN111865131A true CN111865131A (zh) 2020-10-30

Family

ID=72972075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010809692.XA Pending CN111865131A (zh) 2020-08-13 2020-08-13 三相并网逆变器三矢量模型预测电流控制仿真实验方法

Country Status (1)

Country Link
CN (1) CN111865131A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094920A (zh) * 2013-01-06 2013-05-08 宁夏电力公司电力科学研究院 一种直驱式风电机组风电场等值方法
CN105375514A (zh) * 2015-11-10 2016-03-02 苏州大学张家港工业技术研究院 一种有限开关状态预测计算方法及系统
CN108899907A (zh) * 2018-07-11 2018-11-27 太原科技大学 基于重复滑模控制的lclcl型有源电力滤波器控制方法
CN111525859A (zh) * 2020-05-19 2020-08-11 江苏海洋大学 一种ow-pmsm系统的有限开关序列模型预测电流控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094920A (zh) * 2013-01-06 2013-05-08 宁夏电力公司电力科学研究院 一种直驱式风电机组风电场等值方法
CN105375514A (zh) * 2015-11-10 2016-03-02 苏州大学张家港工业技术研究院 一种有限开关状态预测计算方法及系统
CN108899907A (zh) * 2018-07-11 2018-11-27 太原科技大学 基于重复滑模控制的lclcl型有源电力滤波器控制方法
CN111525859A (zh) * 2020-05-19 2020-08-11 江苏海洋大学 一种ow-pmsm系统的有限开关序列模型预测电流控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汤旻安 等: ""基于三矢量的储能型准Z源光伏逆变器模型预测电流控制"", 《储能科学与技术》, vol. 9, no. 4, pages 1159 - 1166 *

Similar Documents

Publication Publication Date Title
Rodriguez et al. State of the art of finite control set model predictive control in power electronics
Hu et al. Multi-objective model-predictive control for high-power converters
Rivera et al. Multilevel direct power control—A generalized approach for grid-tied multilevel converter applications
CN103529900B (zh) 一种mppt计算策略及控制方法以及光伏阵列发电系统
CN102709941B (zh) 一种准-z源级联多电平单相光伏并网发电系统的控制方法
CN103647470B (zh) 一种基于重复控制的三相npc光伏并网逆变器
CN110311404A (zh) 一种单相并网光伏逆变器的电流预测控制方法
Liu et al. Zero vector regulation-based closed-loop power distribution strategy for dual-DC-port DC-AC converter-connected PV-battery hybrid systems
CN113991715A (zh) 非理想电网下中压直挂不对称混合储能系统控制方法
Husev et al. MPPT and GMPPT implementation for buck-boost mode control of quasi-Z-source inverter
Chen et al. A new Improvement Strategy based on hysteresis space vector control of Grid-connected inverter
Tang et al. Model predictive direct power control of energy storage quasi-Z-source grid-connected inverter
CN111865131A (zh) 三相并网逆变器三矢量模型预测电流控制仿真实验方法
Isen Modelling and simulation of hysteresis current controlled single-phase grid-connected inverter
Han et al. Simplified finite set model predictive control strategy of grid-connected cascade H-bridge converter
Zhou et al. Research on the control of three-level photovoltaic grid-connected inverter based on NPC
Junping et al. Research on deadbeat control of a three-level grid-connected inverter based on αβ transform
Ji et al. Improved Three-Vector-Based Model Predictive Current Control for Energy Storage Converter
Liu et al. Finite control set model predictive control strategy of grid simulator for the test of renewable energy system and motor driver
Huo et al. A new method for the photovoltaic grid-connected inverter control
CN114256874B (zh) 一种t型逆变器快速有限集模型预测控制方法
CN116505789B (zh) 基于fopr-doc控制器的光伏并网逆变器控制方法
Huang et al. A novel direct power control strategy of double hysteresis and multiple switching tables for rectifiers
Jin et al. Research on Double Closed-Loop Control System of NPC Cascaded H-Bridge Photovoltaic Inverter
Yongjun et al. Grid-connected current control of micro inverter based on ANN inverse model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination