CN111859564A - A design method of hydraulic buffer structure under heavy load impact - Google Patents
A design method of hydraulic buffer structure under heavy load impact Download PDFInfo
- Publication number
- CN111859564A CN111859564A CN202010668512.0A CN202010668512A CN111859564A CN 111859564 A CN111859564 A CN 111859564A CN 202010668512 A CN202010668512 A CN 202010668512A CN 111859564 A CN111859564 A CN 111859564A
- Authority
- CN
- China
- Prior art keywords
- hydraulic
- control rod
- hydraulic resistance
- resistance curve
- buffer structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000872 buffer Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000013178 mathematical model Methods 0.000 claims abstract description 12
- 238000005457 optimization Methods 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims description 14
- 230000003068 static effect Effects 0.000 claims description 9
- 230000002068 genetic effect Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 2
- 238000013016 damping Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 8
- 239000006173 Good's buffer Substances 0.000 abstract description 2
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 230000003139 buffering effect Effects 0.000 description 10
- 230000002411 adverse Effects 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 2
- 238000012938 design process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Genetics & Genomics (AREA)
- Computational Linguistics (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Physiology (AREA)
- Computer Hardware Design (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Mathematical Analysis (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Vibration Dampers (AREA)
Abstract
Description
技术领域technical field
本发明属于液压缓冲结构设计领域,特别是一种重载荷冲击下液压缓冲结构设计方法。The invention belongs to the field of hydraulic buffer structure design, in particular to a hydraulic buffer structure design method under heavy load impact.
背景技术Background technique
工程中液压缓冲结构在汽车、高铁、航空航天、起重运输、高速试验回收等领域被广泛应用。在工程实际工作过程中经常存在冲击碰撞等情况,如果不加缓冲,将导致工作过程不平稳且机构易损坏。引入缓冲结构,能够防止工作过程中的硬性碰撞。特别对于重载荷冲击这样的特殊工况,需要设计液压缓冲结构。否则非但不能起到期望的缓冲效果,液压缓冲装置产生的液压阻力还会对缓冲装置本身产生冲击等不良影响。因此,合理设计液压缓冲结构,对工程中缓冲具有重要意义。In engineering, the hydraulic buffer structure is widely used in the fields of automobile, high-speed rail, aerospace, lifting and transportation, high-speed test recovery and so on. In the actual working process of the project, there are often shocks and collisions. If no buffer is added, the working process will be unstable and the mechanism will be easily damaged. The introduction of a buffer structure can prevent hard collisions during work. Especially for special working conditions such as heavy load impact, hydraulic buffer structure needs to be designed. Otherwise, not only the expected buffering effect cannot be achieved, but the hydraulic resistance generated by the hydraulic buffering device will also have adverse effects on the buffering device itself, such as impact. Therefore, the rational design of the hydraulic buffer structure is of great significance to the buffering in the project.
目前的液压缓冲结构如图1所示,通过设计其中的控制杆外轮廓形状达到控制液压阻力变化规律的目的。目前广泛采用的控制杆外轮廓是分段线性形状,各段之间连接不光滑。在重载荷冲击下,液体高速流经控制杆不光滑部位时,会对控制杆产生冲击等不利影响,长期使用不仅缓冲失效,还将导致液压缓冲装置损坏失效。The current hydraulic buffer structure is shown in Figure 1, and the purpose of controlling the changing law of hydraulic resistance is achieved by designing the outer contour shape of the control rod. The outer contour of the control rod that is widely used at present is a segmented linear shape, and the connection between the segments is not smooth. Under the impact of heavy load, when the liquid flows through the uneven part of the control rod at high speed, it will have adverse effects such as impact on the control rod. Long-term use will not only cause the buffer failure, but also lead to damage to the hydraulic buffer device.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种重载荷冲击下液压缓冲结构设计方法,通过设计控制杆外形,达到控制缓冲过程中液压阻力变化规律的目的。The purpose of the present invention is to provide a method for designing a hydraulic buffer structure under heavy load impact, which can achieve the purpose of controlling the variation law of hydraulic resistance during the buffering process by designing the shape of the control rod.
实现本发明目的的技术解决方案为:The technical solution that realizes the object of the present invention is:
一种重载荷冲击下液压缓冲结构设计方法,包括以下步骤:A hydraulic buffer structure design method under heavy load impact, comprising the following steps:
步骤1、将控制杆分段,确定待设计变量;Step 1. Segment the control rod to determine the variables to be designed;
步骤2、求解控制杆中间截面直径导数;
步骤3、得到控制杆外轮廓形状函数;
步骤4、计算液压阻力曲线;
步骤5、根据期望得到的液压阻力曲线和设计得到的液压阻力曲线计算液压阻力曲线丰满度;
步骤6、计算液压阻力曲线光滑度;Step 6. Calculate the smoothness of the hydraulic resistance curve;
步骤7、建立液压缓冲结构设计的数学模型;Step 7. Establish a mathematical model for hydraulic buffer structure design;
步骤8、通过优化算法求解步骤7得到的数学模型,得到设计参数变量值。Step 8: Solve the mathematical model obtained in Step 7 through an optimization algorithm to obtain the design parameter variable values.
本发明与现有技术相比,其显著优点是:Compared with the prior art, the present invention has the following significant advantages:
(1)通过设计控制杆外轮廓曲线形状,使得缓冲过程中液压阻力做功与期望做功保持一致,同时减轻液压阻力变化过程中出现的突变、间断、振荡等不利影响,在重载荷冲击下起到良好的缓冲效果;(1) By designing the outer contour curve shape of the control rod, the hydraulic resistance work during the buffering process is consistent with the expected work, and at the same time, the adverse effects such as sudden changes, discontinuities, and oscillations in the hydraulic resistance change process are alleviated. good buffering effect;
(2)控制杆轮廓曲线为分段三次样条形状,各段之间光滑连接,保证了液体流动过程中不会对控制杆产生冲击等不利影响,提高了液压缓冲装置的使用寿命。(2) The contour curve of the control rod is in the shape of a segmented cubic spline, and the segments are smoothly connected, which ensures that the control rod will not have adverse effects such as impact during the liquid flow process, and improves the service life of the hydraulic buffer device.
附图说明Description of drawings
图1为本发明设计方法的流程图。Fig. 1 is the flow chart of the design method of the present invention.
图2为液压缓冲结构简图。Figure 2 is a schematic diagram of the hydraulic buffer structure.
图3为液压阻力曲线。Figure 3 shows the hydraulic resistance curve.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的介绍。The present invention will be further introduced below in conjunction with the accompanying drawings.
结合图2,基于典型的液压缓冲装置,该液压缓冲装置包括:静止腔3、设置在静止腔3内的运动腔4、设在运动腔4内的控制杆5;所述控制杆5后端设置有两个第一流液孔1,前端设有两个第二流液孔2;缓冲过程中运动腔沿图2中x轴方向运动,静止腔和控制杆保持静止。流体分别经过第一流液孔1和第二流液孔2流入运动腔左侧和静止腔右侧,此过程产生液压阻力。2, based on a typical hydraulic buffer device, the hydraulic buffer device includes: a
本发明的重载荷冲击下液压缓冲结构设计方法,通过设计控制杆外形,达到控制缓冲过程中液压阻力变化规律的目的;结合图1,具体设计过程包含以下步骤:The design method of the hydraulic buffer structure under heavy load impact of the present invention achieves the purpose of controlling the variation law of hydraulic resistance during the buffering process by designing the shape of the control rod; with reference to Figure 1, the specific design process includes the following steps:
步骤1、将控制杆分段,确定待设计变量:Step 1. Divide the control rod into sections and determine the variables to be designed:
以控制杆轴线为x轴建立坐标系如图2所示,设控制杆总长L。在控制杆上取n+1点将控制杆划分为n段,第i+1点的位置坐标为xi(0≤xi≤L,i=0,1,2,…,n),将每段轮廓设计成三次样条曲线形式。在控制杆上位置xi处,控制杆截面直径为yi,控制杆截面直径导数为mi。其中:y0,y1,…yn,m0,mn为待设计参数,共n+3个。The coordinate system is established with the axis of the control rod as the x-axis, as shown in Figure 2, and the total length L of the control rod is set. Take n+1 points on the control rod to divide the control rod into n segments, the position coordinate of the i+1th point is x i (0≤x i ≤L, i=0,1,2,...,n), Each contour is designed in the form of a cubic spline. At the position xi on the control rod, the diameter of the control rod section is yi , and the derivative of the diameter of the control rod section is mi . Among them: y 0 , y 1 ,…y n , m 0 , m n are the parameters to be designed, a total of n+3.
步骤2、求解控制杆中间截面直径导数:
控制杆中间截面直径导数m1,m2,…mn-1,通过求解以下矩阵方程得到:The diameter derivatives m 1 ,m 2 ,…m n-1 of the middle section of the control rod are obtained by solving the following matrix equations:
上式中:表示后长度比,表示前长度比,表示组合差商,hi=xi-xi-1表示控制杆第i段长度,(i=1,2,…,n-1)。In the above formula: represents the rear length ratio, represents the front length ratio, Represents the combined difference quotient, hi =x i -x i-1 represents the length of the i -th segment of the control rod, (i=1,2,...,n-1).
步骤3、得到控制杆外轮廓形状函数:
控制杆直径函数表示为:The control rod diameter function is expressed as:
其中,x表示控制杆上任一点坐标位置,每一段三次样条函数的形式为:Among them, x represents the coordinate position of any point on the control rod, and the form of each cubic spline function is:
步骤4、计算液压阻力曲线:
图2中:静止腔的内径为DT,运动腔的外径为dT,A0表示活塞工作面积(静止腔的内径截面积减去运动腔的外径截面积);运动腔内径为dj,运动腔内径截面积为Aj;运动腔右侧环直径为dp,运动腔右侧环截面积为Ap;控制杆任意截面直径为y(x),控制杆任意截面的截面积为Ax;液体密度为ρ;缓冲过程中,静止腔中液体流经图2中2号孔的液压阻力系数为K2,经过的最小截面积为A1;液体流经图2中1号孔的液压阻力系数为K1。根据上述参数计算液压阻力f:In Figure 2: the inner diameter of the static cavity is D T , the outer diameter of the moving cavity is d T , and A 0 represents the working area of the piston (the inner diameter cross-sectional area of the static cavity minus the outer diameter cross-sectional area of the moving cavity); the inner diameter of the moving cavity is d j , the inner diameter cross-sectional area of the motion chamber is A j ; the diameter of the right ring of the motion chamber is d p , and the cross-sectional area of the right ring of the motion chamber is Ap ; the diameter of any cross-section of the control rod is y(x), and the cross-sectional area of any cross-section of the control rod is A x ; the liquid density is ρ; during the buffering process, the hydraulic resistance coefficient of the liquid in the static cavity flowing through the No. 2 hole in Figure 2 is K 2 , and the minimum cross-sectional area it passes through is A 1 ; The liquid flows through No. 1 in Figure 2 The hydraulic resistance coefficient of the hole is K 1 . Calculate the hydraulic resistance f according to the above parameters:
式中:t表示运动腔运动时间;表示运动腔运动速度。根据运动关系:x=x(t),最终可把液压阻力表示为随时间变化的函数:In the formula: t represents the movement time of the movement cavity; Indicates the motion speed of the motion chamber. According to the motion relationship: x=x(t), the hydraulic resistance can finally be expressed as a function of time:
称液压阻力随时间变化曲线为液压阻力曲线。The curve of hydraulic resistance changing with time is called hydraulic resistance curve.
步骤5、根据期望得到的液压阻力曲线和设计得到的液压阻力曲线计算液压阻力曲线丰满度:
设期望得到的液压阻力曲线F0和设计得到的液压阻力曲线F1,如图3所示,计算液压阻力曲线丰满度: Assuming the expected hydraulic resistance curve F 0 and the designed hydraulic resistance curve F 1 , as shown in Figure 3, calculate the fullness of the hydraulic resistance curve:
步骤6、计算液压阻力曲线光滑度:Step 6. Calculate the smoothness of the hydraulic resistance curve:
选取控制杆各段连接处所对应的液压阻力曲线上的点,计算液压阻力曲线光滑度: Select the points on the hydraulic resistance curve corresponding to the connection of each segment of the control rod, and calculate the smoothness of the hydraulic resistance curve:
步骤7、建立液压缓冲结构设计的数学模型:Step 7. Establish the mathematical model of hydraulic buffer structure design:
基于步骤1—步骤6,得到液压缓冲结构设计的数学模型:Based on step 1-step 6, the mathematical model of hydraulic buffer structure design is obtained:
其中:“min”表示求最小值,“model”表示模型,“s.t.”表示约束条件,eps为给定阈值,“Var”表示待求变量,V表示待设计参数向量。Among them: "min" indicates the minimum value, "model" indicates the model, "s.t." indicates the constraints, eps indicates the given threshold, "Var" indicates the variable to be sought, and V indicates the parameter vector to be designed.
步骤8、通过优化算法求解步骤7得到的数学模型,得到设计参数变量值:Step 8. Solve the mathematical model obtained in step 7 through the optimization algorithm, and obtain the design parameter variable value:
本发明采用遗传算法结合序列二次规划的方法求解液压缓冲结构设计数学模型,以此来满足全局搜索和局部精细求解的目的。先通过遗传算法进行求解,并将计算得到的结果作为初始值,利用序列二次规划方法计算获得最终解。The invention adopts the method of genetic algorithm combined with sequence quadratic programming to solve the mathematical model of hydraulic buffer structure design, so as to satisfy the purpose of global search and local fine solution. First, the genetic algorithm is used to solve the problem, and the calculated result is used as the initial value, and the final solution is obtained by using the sequential quadratic programming method.
通过以上步骤设计出来的控制杆轮廓曲线为分段三次样条形状,各段之间光滑连接保证了液体流动过程中不会对控制杆产生冲击等不利影响,减轻液压阻力变化过程中出现的突变、间断、振荡等不利影响。能够提高液压缓冲装置的使用寿命,同时重载荷冲击下能起到良好的缓冲效果。The contour curve of the control rod designed through the above steps is in the shape of a piecewise cubic spline, and the smooth connection between the segments ensures that the control rod will not have adverse effects such as impact on the control rod during the liquid flow process, and reduces the sudden change in the hydraulic resistance change process. , discontinuity, oscillation and other adverse effects. It can improve the service life of the hydraulic buffer device, and at the same time, it can play a good buffer effect under heavy load impact.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010668512.0A CN111859564B (en) | 2020-07-13 | 2020-07-13 | Design method of hydraulic buffer structure under heavy load impact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010668512.0A CN111859564B (en) | 2020-07-13 | 2020-07-13 | Design method of hydraulic buffer structure under heavy load impact |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111859564A true CN111859564A (en) | 2020-10-30 |
CN111859564B CN111859564B (en) | 2022-10-21 |
Family
ID=72984075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010668512.0A Active CN111859564B (en) | 2020-07-13 | 2020-07-13 | Design method of hydraulic buffer structure under heavy load impact |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111859564B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115401948A (en) * | 2022-11-02 | 2022-11-29 | 合肥合锻智能制造股份有限公司 | Stability design and control method for quick-falling motion curve of large hydraulic forming equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102108989A (en) * | 2010-07-23 | 2011-06-29 | 三一重工股份有限公司 | Hydrocylinder and related devices thereof, hydraulic buffer system, excavating machine and concrete pump truck |
US20130255245A1 (en) * | 2010-07-23 | 2013-10-03 | Sany Heavy Industry Co., Ltd. | Hydraulic oil cylinder, hydraulic cushion system, excavator and concrete pump truck |
CN104236893A (en) * | 2014-10-09 | 2014-12-24 | 河海大学常州校区 | Performance parameter test system and performance parameter test method of hydraulic damper |
CN105930622A (en) * | 2016-06-01 | 2016-09-07 | 中国西电电气股份有限公司 | Method for determining motion state of spring operating mechanism of circuit breaker |
-
2020
- 2020-07-13 CN CN202010668512.0A patent/CN111859564B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102108989A (en) * | 2010-07-23 | 2011-06-29 | 三一重工股份有限公司 | Hydrocylinder and related devices thereof, hydraulic buffer system, excavating machine and concrete pump truck |
US20130255245A1 (en) * | 2010-07-23 | 2013-10-03 | Sany Heavy Industry Co., Ltd. | Hydraulic oil cylinder, hydraulic cushion system, excavator and concrete pump truck |
CN104236893A (en) * | 2014-10-09 | 2014-12-24 | 河海大学常州校区 | Performance parameter test system and performance parameter test method of hydraulic damper |
CN105930622A (en) * | 2016-06-01 | 2016-09-07 | 中国西电电气股份有限公司 | Method for determining motion state of spring operating mechanism of circuit breaker |
Non-Patent Citations (3)
Title |
---|
HE AN 等: "Research on modeling and simulation of a hydraulic cylinder with special buffer structure", 《2015 INTERNATIONAL CONFERENCE ON FLUID POWER AND MECHATRONICS (FPM)》 * |
严东兵: "压力反馈式液压锤冲击器性能与结构分析", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑(月刊)》 * |
章寰: "冲压液压机冲裁缓冲设计与性能优化仿真技术及其应用研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑(月刊)》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115401948A (en) * | 2022-11-02 | 2022-11-29 | 合肥合锻智能制造股份有限公司 | Stability design and control method for quick-falling motion curve of large hydraulic forming equipment |
Also Published As
Publication number | Publication date |
---|---|
CN111859564B (en) | 2022-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107884290B (en) | A Life Prediction Method for Fretting Fatigue Crack Growth Considering the Effect of Wear | |
CN104317198B (en) | Nonlinear Robust Position Control Method for Electro-hydraulic Servo System with Time-Varying Output Constraints | |
CN109725644B (en) | Linear optimization control method for hypersonic aircraft | |
CN111859564B (en) | Design method of hydraulic buffer structure under heavy load impact | |
CN112590484B (en) | Electric control air suspension vehicle body height adjusting method based on model prediction control | |
CN108568817A (en) | A kind of Delta robot trajectories connection control method based on Bezier | |
CN110145501B (en) | Method for controlling position and posture of lifting container of double-rope winding type ultra-deep vertical shaft lifting system | |
CN109884894B (en) | Neural Network Integral Sliding Mode Control Method for Electro-hydraulic Power Steering System | |
CN108958173A (en) | S curve deceleration planning method under any velocity of displacement based on trapezoidal solution | |
CN112307567B (en) | Natural laminar flow airfoil profile shape design method based on cross flow pressure gradient distribution | |
JP3640754B2 (en) | Numerical control apparatus and numerical control method | |
CN113431816B (en) | Control method of asymmetric negative superposition proportional valve control asymmetric cylinder system | |
CN109281894B (en) | A Micro-Volume Remote Control Nonlinear Compensation Method for Hydrostatic Actuators | |
CN111576350B (en) | Automatic optimization method for arch dam body shape | |
CN118295241A (en) | Adaptive Control Method for Electro-Hydrostatic Actuator with Inertial Load Estimation and Compensation | |
CN102581183A (en) | Method for determining blank with different thicknesses for two-dimensional integrated loading and forming | |
US10501910B2 (en) | System and method for controlling a lift assembly of a work vehicle | |
CN102632173B (en) | The Method of Determining Unequal Thickness Blank for Two-dimensional Local Loading Forming | |
CN113503288B (en) | Hydraulic cylinder buffer control method and device and hydraulic equipment | |
CN115577442A (en) | Design method for die-casting aluminum alloy shock absorption tower structure with double fork arms | |
US12023802B2 (en) | Method and system for optimizing the joint hinge point position of a hydraulic tandem mechanism based on lightweight | |
CN114019911B (en) | Curve fitting method based on speed planning | |
CN114896736A (en) | Anchor rod drill carriage drill arm positioning control method and system based on improved particle swarm optimization | |
CN102601281A (en) | Method for determining blanks of different thickness for local loading forming of three-dimensional frame-shaped member | |
CN109426149B (en) | Load simulator self-adaptive RISE control method based on third-order mathematical model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |