CN111856185A - Embedded system and method for wind turbine power quality monitoring and improvement - Google Patents
Embedded system and method for wind turbine power quality monitoring and improvement Download PDFInfo
- Publication number
- CN111856185A CN111856185A CN202010714214.0A CN202010714214A CN111856185A CN 111856185 A CN111856185 A CN 111856185A CN 202010714214 A CN202010714214 A CN 202010714214A CN 111856185 A CN111856185 A CN 111856185A
- Authority
- CN
- China
- Prior art keywords
- current
- power
- voltage
- wind speed
- monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- 238000012544 monitoring process Methods 0.000 title claims abstract description 48
- 230000006872 improvement Effects 0.000 title description 5
- 238000001514 detection method Methods 0.000 claims abstract description 20
- 238000004891 communication Methods 0.000 claims abstract description 11
- 238000013528 artificial neural network Methods 0.000 claims description 20
- 238000004364 calculation method Methods 0.000 claims description 17
- 238000005070 sampling Methods 0.000 claims description 15
- 230000001052 transient effect Effects 0.000 claims description 15
- 230000006870 function Effects 0.000 claims description 13
- 230000009466 transformation Effects 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 11
- 238000001228 spectrum Methods 0.000 claims description 11
- 230000003750 conditioning effect Effects 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000012549 training Methods 0.000 claims description 9
- 238000002955 isolation Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 230000001133 acceleration Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 4
- 238000007493 shaping process Methods 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 238000003062 neural network model Methods 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 238000010183 spectrum analysis Methods 0.000 claims description 3
- 238000012706 support-vector machine Methods 0.000 claims description 3
- 238000012800 visualization Methods 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 101000617546 Homo sapiens Presenilin-2 Proteins 0.000 description 1
- 102100022036 Presenilin-2 Human genes 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
- G01R31/343—Testing dynamo-electric machines in operation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
技术领域technical field
本发明涉及风力发电技术领域,尤其是涉及一种用于风电机组电能质量监测与改善的嵌入式系统和方法。The invention relates to the technical field of wind power generation, in particular to an embedded system and method for monitoring and improving the power quality of wind turbines.
背景技术Background technique
风能作为一种清洁能源,有着十分广阔的应用前景,但由于风能的稳定性极差,速度与方向变化快速且随机,如何有效地检测风速不稳定所带来的电压闪变、功率不稳定、谐波污染等电能质量问题,以及如何快速准确地控制风电系统对电能质量调节改善,是研究风电要解决的首要问题,因此近年来对风力发电机组电能质量监测的研究十分热门,如利用PLC技术、传感器技术、单片机技术等。As a kind of clean energy, wind energy has a very broad application prospect. However, due to the extremely poor stability of wind energy and the rapid and random changes in speed and direction, how to effectively detect the voltage flicker, power instability, Power quality problems such as harmonic pollution, and how to quickly and accurately control the wind power system to adjust and improve power quality are the primary problems to be solved in wind power research. Therefore, in recent years, research on power quality monitoring of wind turbines has become very popular, such as using PLC technology. , sensor technology, microcontroller technology, etc.
利用现有技术,如16位单片机等,对风力发电机电能质量的监测与改善及可视化进行设计,存在数据运算与分析能力有限,系统的安全性和实时性不高的缺点。随着现代电力设备数据量计算包括实时性要求的不断提高,这些数据处理器件在计算上已经无法适应电力要求,无法保证风电机组电能质量监测的可靠性,导致电能系统整体数据处理效果较差,影响数据分析和最终的监测效果,而且无法有效地对电能质量进行调节改善,以至于造成对电网的影响和波动,造成难以估量的损失,现有技术中对风电机组电能质量的研究也在不断进行,例如中国专利CN110865259A中公开了一种风电场电能质量评估方法和装置,该专利中的方法和装置虽然实现了对电能质量的评估,但无法对电能质量进行调节改善。Using the existing technology, such as 16-bit single-chip microcomputer, to design the monitoring, improvement and visualization of the power quality of wind turbines has the disadvantages of limited data operation and analysis capabilities, and low security and real-time performance of the system. With the continuous improvement of data volume calculation of modern power equipment, including real-time requirements, these data processing devices have been unable to meet the power requirements in calculation, and cannot guarantee the reliability of power quality monitoring of wind turbines, resulting in poor overall data processing effect of the power system. It affects the data analysis and the final monitoring effect, and cannot effectively adjust and improve the power quality, so as to cause impact and fluctuations on the power grid, resulting in inestimable losses. The research on the power quality of wind turbines in the existing technology is also ongoing For example, Chinese patent CN110865259A discloses a method and device for evaluating the power quality of a wind farm. Although the method and device in this patent can evaluate the power quality, it cannot adjust and improve the power quality.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可靠性高、实现电能质量监测的可视化、实用性强、实时性好的用于风电机组电能质量监测与改善的嵌入式系统和方法。The purpose of the present invention is to provide an embedded system for monitoring and improving the power quality of wind turbines with high reliability, realizing visualization of power quality monitoring, strong practicability and good real-time performance in order to overcome the above-mentioned defects of the prior art. and method.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
一种用于风电机组电能质量监测与改善的嵌入式系统,该系统与既有风电机组相连,所述的嵌入式系统包括:主控模块、信号采集模块、频率检测模块、功率控制模块、通信模块、上位机、存储模块和风速传感器;所述的信号采集模块、频率检测模块和功率控制模块的一端分别与既有风电机组相连,另一端分别与主控模块相连;所述的存储模块和风速传感器分别与主控模块相连;所述的主控模块通过通信模块与上位机进行通信。An embedded system for monitoring and improving the power quality of wind turbines, the system is connected with existing wind turbines, the embedded system includes: a main control module, a signal acquisition module, a frequency detection module, a power control module, a communication module module, host computer, storage module and wind speed sensor; one end of the signal acquisition module, the frequency detection module and the power control module are respectively connected with the existing wind turbine, and the other end is respectively connected with the main control module; the storage module and The wind speed sensors are respectively connected with the main control module; the main control module communicates with the upper computer through the communication module.
优选地,所述的主控模块为FPGA芯片。Preferably, the main control module is an FPGA chip.
优选地,所述的信号采集模块包括电压传感器、电流传感器、信号调理电路和电压电流采样电路;所述的电压传感器和电流传感器的一端分别与既有风电机组相连,另一端分别与信号调理电路的输入端相连;所述的信号调理电路的输出端与电压电流采样电路的输入端相连;所述的电压电流采样电路的输出端与主控模块相连。Preferably, the signal acquisition module includes a voltage sensor, a current sensor, a signal conditioning circuit, and a voltage and current sampling circuit; one end of the voltage sensor and the current sensor are respectively connected with the existing wind turbine, and the other ends are respectively connected with the signal conditioning circuit The output end of the signal conditioning circuit is connected to the input end of the voltage and current sampling circuit; the output end of the voltage and current sampling circuit is connected to the main control module.
优选地,所述的频率检测模块包括依次相连的隔离变压器、滤波整形电路、施密特触发器、双D触发器和反相器;所述的隔离变压器的一次侧与既有风电机组相连;所述的反相器的输出端与主控模块相连。Preferably, the frequency detection module includes an isolation transformer, a filter shaping circuit, a Schmitt trigger, a double D trigger and an inverter connected in sequence; the primary side of the isolation transformer is connected to the existing wind turbine; The output end of the inverter is connected with the main control module.
优选地,所述的功率控制模块包括依次相连的网侧与转子侧PWM变换器、SVPWM逆变器控制单元和IGBT驱动单元,FPGA主控单元;所述的网侧与转子侧PWM变换器的输入端分别与既有电网和既有风电机组的发电机相连;所述的IGBT驱动单元的输出端与主控模块相连。Preferably, the power control module includes a grid-side and rotor-side PWM converter, an SVPWM inverter control unit, an IGBT drive unit, and an FPGA main control unit that are connected in sequence; the grid-side and rotor-side PWM converters The input end is respectively connected with the existing power grid and the generator of the existing wind turbine; the output end of the IGBT drive unit is connected with the main control module.
一种用于上述嵌入式系统的用于风电机组电能质量监测与改善的方法,包括:A method for monitoring and improving the power quality of a wind turbine for the above-mentioned embedded system, comprising:
步骤1:根据主控模块上传的风速与风向样本,采用风速预测子方法获取预测风速;Step 1: According to the wind speed and wind direction samples uploaded by the main control module, use the wind speed prediction sub-method to obtain the predicted wind speed;
步骤2:获取既有风电机组转子与定子侧的电压与电流信号,同时通过频率检测模块获取频率;Step 2: Obtain the voltage and current signals on the rotor and stator sides of the existing wind turbine, and obtain the frequency through the frequency detection module;
步骤3:采用谐波畸变分析子方法和暂态扰动量监测子方法,分析当前时刻既有风电机组输出的电能质量;Step 3: Use the harmonic distortion analysis sub-method and the transient disturbance monitoring sub-method to analyze the power quality output by the existing wind turbines at the current moment;
步骤4:获取既有风电机组发电机转子的转速数据;Step 4: Obtain the rotational speed data of the existing wind turbine generator rotor;
步骤5:计算当前既有风电机组中发电机的功率;Step 5: Calculate the power of the generators in the current existing wind turbine;
步骤6:判断发电机当前功率是否满足负载需求,若是,则执行步骤8,否则,执行步骤7;Step 6: Determine whether the current power of the generator meets the load demand, if so, go to Step 8, otherwise, go to
步骤7:使用功率控制子方法进行功率控制,然后执行步骤8;Step 7: use the power control sub-method for power control, and then perform step 8;
步骤8:获取风速预测数据;Step 8: Obtain wind speed forecast data;
步骤9:判断是否需要调整机组的吸收功率,若是,则调整机组的吸收功率,然后执行步骤10,否则,直接执行步骤10;Step 9: Determine whether the absorbed power of the unit needs to be adjusted, if so, adjust the absorbed power of the unit, and then execute step 10, otherwise, directly execute step 10;
步骤10:结束本轮计算,重新获取当前时刻的风速数据,判断风速与上一时刻风速预测数据差值是否大于预设误差,若是,则返回步骤1,然后进行下一轮计算,否则,返回步骤2,进行下一轮计算。Step 10: End the current round of calculation, re-acquire the wind speed data at the current moment, and determine whether the difference between the wind speed and the wind speed forecast data at the previous moment is greater than the preset error, if so, return to
优选地,所述的风速预测子方法包括:Preferably, the wind speed prediction sub-method includes:
步骤1-1:获取信号采集模块采集的既有风电机组发电机定子侧输出端电压与电流以及转子侧的电压与电流信号,同时获取风速传感器采集的风速样本数据;Step 1-1: Acquire the voltage and current of the stator side output terminal of the existing wind turbine generator and the voltage and current signals of the rotor side collected by the signal acquisition module, and simultaneously acquire the wind speed sample data collected by the wind speed sensor;
步骤1-2:对数据进行归一化处理,获得样本训练集;Step 1-2: Normalize the data to obtain a sample training set;
所述的归一化处理具体为:The normalization process is specifically:
其中,vi为风速样本数据原始值;vmax和vmin分别为风速样本数据中的最大值和最小值;vi'为风速归一化后的输出值;Among them, v i is the original value of the wind speed sample data; v max and v min are the maximum and minimum values in the wind speed sample data, respectively; v i ' is the normalized output value of the wind speed;
步骤1-3:初始化改进PSO算法;Step 1-3: Initialize the improved PSO algorithm;
步骤1-4:计算初始适应度,所述的适应度的计算方法为:Step 1-4: Calculate the initial fitness, and the calculation method of the fitness is:
其中,N为样本容量;vi *为风速预测值;Among them, N is the sample size; v i * is the predicted value of wind speed;
步骤1-5:进行迭代寻优,更新粒子速度和位置,具体方法为:Steps 1-5: Perform iterative optimization to update particle velocity and position. The specific methods are:
其中,d=1,2,3,…,D;i=1,2,3,…,N;k为当前迭代次数;vid为当前速度;c1和c2为加速因子,且c1和c2均大于零;r1和r2为随机函数,取值范围均为[0,1];和分别为D维上的第i个粒子进行k+1次迭代的位置和速度;z为收缩因子;φ为总加速因子;gen为总迭代次数;K为收缩系数;Among them, d=1,2,3,...,D; i=1,2,3,...,N; k is the current iteration number; v id is the current speed; c 1 and c 2 are acceleration factors, and c 1 and c 2 are both greater than zero; r 1 and r 2 are random functions, and the value range is [0, 1]; and are the position and velocity of the ith particle in the D dimension for k+1 iterations; z is the shrinkage factor; φ is the total acceleration factor; gen is the total number of iterations; K is the shrinkage coefficient;
步骤1-6:计算适应度,更新个体及全局最适应度和最优解;Steps 1-6: Calculate fitness, update individual and global best fitness and optimal solution;
步骤1-7:判断适应度是否满足要求或迭代次数是否达到最大迭代次数,若是,则执行步骤1-8,否则,返回步骤1-5;Step 1-7: Determine whether the fitness meets the requirements or whether the number of iterations reaches the maximum number of iterations, if so, execute steps 1-8, otherwise, return to steps 1-5;
步骤1-8:使用全局最优解作为最小二乘支持向量机LSSVM的参数,训练LSSVM,获得风速预测数据。Steps 1-8: Use the global optimal solution as the parameter of the least squares support vector machine LSSVM, train the LSSVM, and obtain wind speed prediction data.
优选地,所述的谐波畸变分析子方法包括:Preferably, the harmonic distortion analysis sub-method includes:
步骤2-1:使用FIR滤波器对转子与定子侧的电压与电流信号进行去噪处理;Step 2-1: Use the FIR filter to de-noise the voltage and current signals on the rotor and stator sides;
步骤2-2:按位倒序方式输入数据,使用加窗FFT方法获得的数据按自然顺序输出;Step 2-2: Input data in reverse order, and output the data obtained by using the windowed FFT method in natural order;
步骤2-3:计算谐波总畸变率,计算方法为:Step 2-3: Calculate the total harmonic distortion rate, the calculation method is:
其中,Un为第n次谐波电压的有效值;In为第n次谐波电流的有效值;THDu为电压总谐波畸变率;THDi为电流总谐波畸变率;U1为基波电压有效值;I1为基波电流有效值;Among them, U n is the effective value of the nth harmonic voltage; In is the effective value of the nth harmonic current; THD u is the total harmonic distortion rate of voltage; THD i is the total harmonic distortion rate of current; U 1 is the rms value of the fundamental wave voltage; I 1 is the rms value of the fundamental wave current;
步骤2-4:判断谐波总畸变率是否超过预设值,若是,则将既有风电机组切出电网,否则,结束本轮循环。Step 2-4: Determine whether the total harmonic distortion rate exceeds the preset value, if so, cut the existing wind turbines out of the grid, otherwise, end the current cycle.
优选地,所述的暂态扰动量监测子方法包括:Preferably, the transient disturbance monitoring sub-method includes:
步骤3-1:判断步骤2获得的转子与定子侧的电压与电流信号是否超过预设值,若是,则将风机切出电网,结束本轮循环,否则,执行步骤3-2;Step 3-1: Determine whether the voltage and current signals on the rotor and stator sides obtained in Step 2 exceed the preset values, if so, cut the fan out of the grid to end the current cycle, otherwise, go to Step 3-2;
步骤3-2:使用FIR滤波器对定子侧的电压与电流信号数据进行去噪处理;Step 3-2: Use the FIR filter to de-noise the voltage and current signal data on the stator side;
步骤3-3:采用希尔伯特-黄变换检测算法HHT分析步骤3-2获得的数据,HHT算法包括EMD和Hilbert谱分析方法两部分,首先利用EMD方法将给定信号分解为若干固有模态函数IMF,然后对每一个IMF进行Hilbert变换,求取特征参数,得到相应原始信号的Hilbert谱,具体步骤为:Step 3-3: Use the Hilbert-Huang transform detection algorithm HHT to analyze the data obtained in step 3-2. The HHT algorithm includes two parts, the EMD and the Hilbert spectrum analysis method. First, the given signal is decomposed into several natural modes using the EMD method. state function IMF, and then perform Hilbert transform on each IMF, obtain the characteristic parameters, and obtain the Hilbert spectrum of the corresponding original signal. The specific steps are:
将经验模态分解得到固有模态函数组:Decompose the empirical mode to get the intrinsic mode function group:
其中,si(t)为原信号中各固有模态分量;d(t)为原信号中的直流分量;r(t)为分解获得的残差函数数据序列;Among them, s i (t) is the natural modal component in the original signal; d(t) is the DC component in the original signal; r(t) is the residual function data sequence obtained by decomposition;
然后对所有IMF进行Hilbert变换,获得变换的每个IMF的解析式:Then perform Hilbert transform on all IMFs to obtain the analytical expression of each IMF transformed:
其中,ai为IMF幅值,上式为Hilbert谱,可记为:Among them, a i is the IMF amplitude, and the above formula is the Hilbert spectrum, which can be written as:
对上式在时域内积分,获得对应的Hilbert边际谱:Integrate the above formula in the time domain to obtain the corresponding Hilbert marginal spectrum:
其中瞬时频率为:where the instantaneous frequency is:
步骤3-4:判断是否有发生暂态扰动,包括电压骤升类扰动、电压骤降类扰动和频率波动类扰动等,若是,则执行步骤3-5,否则,返回步骤3-1,执行下一轮循环;Step 3-4: Determine whether transient disturbances have occurred, including voltage swell disturbances, voltage sag disturbances, and frequency fluctuation disturbances. If so, go to step 3-5, otherwise, go back to step 3-1 and execute the next cycle;
步骤3-5:判断暂态扰动是否为周期扰动,若是,则执行步骤3-6,否则,返回步骤3-1,执行下一轮循环;Step 3-5: determine whether the transient disturbance is a periodic disturbance, if so, execute step 3-6, otherwise, return to step 3-1 to execute the next cycle;
步骤3-6:计算扰动量大小;Step 3-6: Calculate the amount of disturbance;
步骤3-7:判断扰动量是否超过并网标准,若是,则将风机切出电网,否则,返回步骤3-1,执行下一轮循环。Step 3-7: Determine whether the disturbance amount exceeds the grid-connected standard, if so, cut the wind turbine out of the grid, otherwise, return to step 3-1 to execute the next cycle.
优选地,所述的功率控制子方法包括:Preferably, the power control sub-method includes:
步骤4-1:使用功率控制模型对机组功率进行控制;Step 4-1: Use the power control model to control the power of the unit;
所述的功率控制模型包括基于神经网络的PID子模型和坐标变换子模型;Described power control model comprises PID sub-model and coordinate transformation sub-model based on neural network;
所述的基于神经网络的PID子模型具体为选用神经网络作为训练模型的增量式PID控制算法:The described PID sub-model based on the neural network is specifically the incremental PID control algorithm that selects the neural network as the training model:
u(k)=u(k-1)+Δu(k)u(k)=u(k-1)+Δu(k)
Δu(t)=kp(e(k)-e(k-1))+kie(k)+kd(e(k)-2e(k-1)+e(k-2))Δu(t)=k p (e(k)-e(k-1))+k i e(k)+k d (e(k)-2e(k-1)+e(k-2))
其中,u(k-1)为上一时刻的状态;u(k)为当前时刻的状态;kp、ki和kd分别为比例系数、积分系数和微分系数;Among them, u(k-1) is the state at the previous moment; u(k) is the state at the current moment; k p , k i and k d are the proportional coefficient, integral coefficient and differential coefficient, respectively;
使用神经网络进行训练的步骤具体为:The steps for training a neural network are as follows:
S1:确定输入层和隐含层的节点数N和Q,并给出各层加权系数的初始值,选定学习速率η和惯性系数α,设定k=1;S1: Determine the number of nodes N and Q of the input layer and the hidden layer, and give the initial value of the weighting coefficient of each layer, select the learning rate η and the inertia coefficient α, and set k=1;
S2:计算当前时刻误差:S2: Calculate the current time error:
e(k)=rin(k)-yout(k)e(k)=rin(k)-yout(k)
其中,rin(k)为期望的量;yout(k)为输出的量;Among them, rin(k) is the expected quantity; yout(k) is the output quantity;
S3:计算神经网络模型各层神经元的输入输出,选取神经网络的最终输出,作为kp、ki和kd;S3: Calculate the input and output of neurons in each layer of the neural network model, and select the final output of the neural network as k p , ki and k d ;
S4:计算u(k);S4: Calculate u(k);
S5:进行神经网络学习,调制加权系数,实现PID控制参数的自适应调整;S5: Perform neural network learning, modulate weighting coefficients, and realize self-adaptive adjustment of PID control parameters;
S5:设置k=k+1,返回S1重复执行;S5: Set k=k+1, return to S1 and repeat;
所述的坐标变换子模型的2s/2r变换矩阵具体为:The 2s/2r transformation matrix of the coordinate transformation sub-model is specifically:
其中,θ为α轴与d轴的夹角;Among them, θ is the angle between the α axis and the d axis;
2s/2r变换矩阵的逆矩阵具体为:The inverse matrix of the 2s/2r transformation matrix is specifically:
步骤4-2:重新计算有功功率和无功功率,并判断是否满足预设阈值,若是,则结束本轮循环,否则,返回步骤4-1。Step 4-2: Recalculate the active power and reactive power, and determine whether the preset threshold is satisfied, if so, end the current cycle, otherwise, return to step 4-1.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
一、电能质量监测的可靠性高,同时有效地对电能质量进行调节改善:本发明中用于风电机组电能质量监测与改善的嵌入式系统采用FPGA作为处理器,具有高性能并行算法的能力,提高了电能质量监测的可靠性与实时性;同时,通过对暂态扰动量监测、谐波畸变分析以及功率控制来对电能质量进行有效改善,减少对电网的影响和波动。1. The reliability of power quality monitoring is high, and at the same time, the power quality is effectively adjusted and improved: the embedded system for monitoring and improving the power quality of wind turbines in the present invention uses FPGA as the processor, and has the ability of high-performance parallel algorithms. The reliability and real-time performance of power quality monitoring are improved; at the same time, the power quality is effectively improved by monitoring transient disturbances, harmonic distortion analysis and power control, reducing the impact and fluctuation on the power grid.
二、实现电能质量监测的可视化:本发明中用于风电机组电能质量监测与改善的嵌入式系统设有上位机,在上位机中对电能质量监测相关数据进行可视化处理,实现电能质量监测的可视化。2. Realize the visualization of power quality monitoring: The embedded system used for monitoring and improving the power quality of wind turbines in the present invention is provided with a host computer, and the data related to power quality monitoring is visualized in the host computer to realize the visualization of power quality monitoring. .
三、实用性强:本发明中用于风电机组电能质量监测与改善的嵌入式系统和方法能够有效检测风速不稳定所带来的电压善变、功率不稳定、谐波污染等电能质量问题,并且能够快速准确地控制风电系统对电能质量调节改善,降低了因电能质量问题所带来的的经济损失和人员伤亡。3. Strong practicability: the embedded system and method for monitoring and improving the power quality of wind turbines in the present invention can effectively detect power quality problems such as voltage fluctuation, power instability, and harmonic pollution caused by unstable wind speed. And it can quickly and accurately control the wind power system to adjust and improve the power quality, reducing economic losses and casualties caused by power quality problems.
四、实时性好:本发明中用于风电机组电能质量监测与改善的嵌入式系统以FPGA芯片为主控模块,利用其并行运算能力高、速度快、实时性好的优势来实现对风电机组电能质量的监测与改善。4. Good real-time performance: The embedded system used for monitoring and improving the power quality of wind turbines in the present invention takes the FPGA chip as the main control module, and uses its advantages of high parallel computing capability, fast speed and good real-time performance to realize the monitoring of wind turbines. Monitoring and improvement of power quality.
附图说明Description of drawings
图1为本发明中嵌入式系统的结构示意图;1 is a schematic structural diagram of an embedded system in the present invention;
图2为本发明中电能质量监测与改善方法的流程示意图;FIG. 2 is a schematic flowchart of the power quality monitoring and improvement method in the present invention;
图3为本发明中风速预测子方法的流程示意图;3 is a schematic flowchart of a sub-method of wind speed prediction in the present invention;
图4为本发明中谐波畸变分析子方法的流程示意图;4 is a schematic flowchart of the harmonic distortion analysis sub-method in the present invention;
图5为本发明中暂态扰动量监测子方法的流程示意图;5 is a schematic flowchart of a sub-method for monitoring transient disturbance in the present invention;
图6为本发明中功率控制子方法的流程示意图;6 is a schematic flowchart of a power control sub-method in the present invention;
图7为本发明中基于神经网络的PID子模型的控制框图。FIG. 7 is a control block diagram of a PID sub-model based on a neural network in the present invention.
图中标号所示:The numbers in the figure show:
1、既有风电机组,2、主控模块,3、信号采集模块,4、频率检测模块,5、功率控制模块,6、通信模块,7、上位机,8、存储模块,9、风速传感器,301、电压传感器,302、电流传感器,303、信号调理电路,304、电压电流采样电路,401、隔离变压器,402、滤波整形电路,403、施密特触发器,404、双D触发器,405、反相器、501、网侧与转子侧PWM变换器,502、SVPWM逆变器控制单元,503、IGBT驱动单元。1. Existing wind turbines, 2. Main control module, 3. Signal acquisition module, 4. Frequency detection module, 5. Power control module, 6. Communication module, 7. Host computer, 8. Storage module, 9. Wind speed sensor , 301, voltage sensor, 302, current sensor, 303, signal conditioning circuit, 304, voltage and current sampling circuit, 401, isolation transformer, 402, filter shaping circuit, 403, Schmitt trigger, 404, double D trigger, 405, inverter, 501, grid side and rotor side PWM converter, 502, SVPWM inverter control unit, 503, IGBT drive unit.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present invention.
一种用于风电机组电能质量监测与改善的嵌入式系统,其结构如图1所示,包括:主控模块2、信号采集模块3、频率检测模块4、功率控制模块5、通信模块6、上位机7、存储模块8和风速传感器9。信号采集模块3、频率检测模块4和功率控制模块5的一端分别与既有风电机组1相连,另一端分别与主控模块2相连,存储模块8和风速传感器9分别与主控模块2相连,主控模块2通过通信模块6与上位机7进行通信。An embedded system for monitoring and improving the power quality of wind turbines, its structure is shown in Figure 1, including: a main control module 2, a signal acquisition module 3, a frequency detection module 4, a
下面对主要模块进行详细描述:The main modules are described in detail below:
一、主控模块21. Main control module 2
在硬件设计中,主控模块是构成最小系统运行的电路,它主要包括配置单元、电源单元、外扩存储器单元这几部分。主控模块2的芯片选用Xilinx公司的SPARTAN-6系列xc6slx25-3csg324为型号的FPGA,其配置方式采用JTAG模式,电源引入脚分为锁相环电源、核心电源、I/O口电源,其附近加入滤波电容保证供电稳定。因FPGA内部空间匮乏,外扩一个Flash和一个SDRAM作为扩展芯片。In the hardware design, the main control module is the circuit that constitutes the minimum system operation, which mainly includes the configuration unit, the power supply unit, and the external expansion memory unit. The chip of the main control module 2 selects the FPGA of the SPARTAN-6 series xc6slx25-3csg324 of Xilinx Company, the configuration method adopts the JTAG mode, and the power introduction pins are divided into the phase-locked loop power supply, the core power supply, and the I/O port power supply. Add filter capacitors to ensure stable power supply. Due to the lack of space in the FPGA, a Flash and an SDRAM are expanded as expansion chips.
二、信号采集模块32. Signal acquisition module 3
信号采集模块3包括电压传感器301、电流传感器302、信号调理电路303和电压电流采样电路304,电压传感器301和电流传感器302的一端分别与既有风电机组1相连,另一端分别与信号调理电路303的输入端相连,信号调理电路303的输出端与电压电流采样电路304的输入端相连,电压电流采样电路304的输出端与主控模块2相连。The signal acquisition module 3 includes a voltage sensor 301, a current sensor 302, a signal conditioning circuit 303, and a voltage and
电压电流采样电路304选用两片TI公司的ADS7864芯片,采样包括定子侧的电压与电流信号,转子侧的电压与电流信号。The voltage and
三、频率检测模块43. Frequency detection module 4
频率检测模块4包括依次相连的隔离变压器401、滤波整形电路402、施密特触发器403、双D触发器404和反相器405,隔离变压器的一次侧与既有风电机组1,反相器405的输出端与主控模块2相连。The frequency detection module 4 includes an isolation transformer 401, a filter shaping circuit 402, a Schmitt trigger 403, a double D trigger 404 and an inverter 405 connected in sequence. The primary side of the isolation transformer is connected to the existing
四、功率控制模块54.
包括依次相连的网侧与转子侧PWM变换器501、SVPWM逆变器控制单元502和IGBT驱动单元503,FPGA主控单元,网侧与转子侧PWM变换器501的输入端分别与既有电网和既有风电机组1的发电机相连,IGBT驱动单元503的输出端与主控模块2相连。It includes grid-side and rotor-side PWM converters 501, SVPWM inverter control unit 502 and
五、通信模块65.
FPGA与上位机的网络通信采用SMSC公司LAN91C111芯片实现,以太网通信协议标准IEEE802.3,完成数据交换。The network communication between the FPGA and the host computer is realized by the LAN91C111 chip of SMSC Company, and the Ethernet communication protocol standard IEEE802.3 is used to complete the data exchange.
六、上位机76.
本实施例中所涉及的数据均可在上位机7中显示,上位机7实现了电能质量监测的可视化。The data involved in this embodiment can be displayed in the
七、风速传感器9Seven, wind speed sensor 9
采用风杯式光电传感器检测风速,型号为STM2。The wind cup type photoelectric sensor is used to detect the wind speed, and the model is STM2.
本实施例还涉及一种用于电机组电能质量监测与改善的方法,其流程如图2所示,包括:This embodiment also relates to a method for monitoring and improving the power quality of a generator set, the process of which is shown in Figure 2, including:
步骤1:根据主控模块2上传的风速与风向样本,采用风速预测子方法获取预测风速;Step 1: According to the wind speed and wind direction samples uploaded by the main control module 2, use the wind speed prediction sub-method to obtain the predicted wind speed;
步骤2:获取既有风电机组1转子与定子侧的电压与电流信号,同时通过频率检测模块4获取频率;Step 2: Obtain the voltage and current signals on the rotor and stator sides of the existing
步骤3:采用谐波畸变分析子方法和暂态扰动量监测子方法,分析当前时刻既有风电机组1输出的电能质量;Step 3: Use the harmonic distortion analysis sub-method and the transient disturbance monitoring sub-method to analyze the power quality output by the existing
步骤4:获取既有风电机组1发电机转子的转速数据;Step 4: Obtain the rotational speed data of the generator rotor of the existing
步骤5:计算当前既有风电机组1中发电机的功率;Step 5: Calculate the power of the generator in the current existing
步骤6:判断发电机当前功率是否满足负载需求,若是,则执行步骤8,否则,执行步骤7;Step 6: Determine whether the current power of the generator meets the load demand, if so, go to Step 8, otherwise, go to
步骤7:使用功率控制子方法进行功率控制,然后执行步骤8;Step 7: use the power control sub-method for power control, and then perform step 8;
步骤8:获取风速预测数据;Step 8: Obtain wind speed forecast data;
步骤9:判断是否需要调整机组的吸收功率,若是,则调整机组的吸收功率,然后执行步骤10,否则,直接执行步骤10;Step 9: Determine whether the absorbed power of the unit needs to be adjusted, if so, adjust the absorbed power of the unit, and then execute step 10, otherwise, directly execute step 10;
步骤10:结束本轮计算,重新获取当前时刻的风速数据,判断风速与上一时刻风速预测数据差值是否大于预设误差,若是,则返回步骤1,然后进行下一轮计算,否则,返回步骤2,进行下一轮计算。Step 10: End the current round of calculation, re-acquire the wind speed data at the current moment, and determine whether the difference between the wind speed and the wind speed forecast data at the previous moment is greater than the preset error, if so, return to
下面对各个子方法进行详细描述:Each sub-method is described in detail below:
一、风速预测子方法1. Wind speed prediction sub-method
风速预测子方法的流程如图3所示,包括:The flow of the wind speed prediction sub-method is shown in Figure 3, including:
步骤1-1:获取信号采集模块3采集的既有风电机组1发电机定子侧输出端电压与电流以及转子侧的电压与电流信号,同时获取风速传感器9采集的风速样本数据;Step 1-1: Obtain the voltage and current at the output terminal of the generator stator side of the existing
步骤1-2:对数据进行归一化处理,获得样本训练集;Step 1-2: Normalize the data to obtain a sample training set;
所述的归一化处理具体为:The normalization process is specifically:
其中,vi为风速样本数据原始值;vmax和vmin分别为风速样本数据中的最大值和最小值;vi'为风速归一化后的输出值;Among them, v i is the original value of the wind speed sample data; v max and v min are the maximum and minimum values in the wind speed sample data, respectively; v i ' is the normalized output value of the wind speed;
步骤1-3:初始化改进PSO算法;Step 1-3: Initialize the improved PSO algorithm;
步骤1-4:计算初始适应度,所述的适应度的计算方法为:Step 1-4: Calculate the initial fitness, and the calculation method of the fitness is:
其中,N为样本容量;vi *为风速预测值;Among them, N is the sample size; v i * is the predicted value of wind speed;
步骤1-5:进行迭代寻优,更新粒子速度和位置,具体方法为:Steps 1-5: Perform iterative optimization to update particle velocity and position. The specific methods are:
其中,d=1,2,3,…,D;i=1,2,3,…,N;k为当前迭代次数;vid为当前速度;c1和c2为加速因子,且c1和c2均大于零;r1和r2为随机函数,取值范围均为[0,1];和分别为D维上的第i个粒子进行k+1次迭代的位置和速度;z为收缩因子;φ为总加速因子;gen为总迭代次数;K为收缩系数;Among them, d=1,2,3,...,D; i=1,2,3,...,N; k is the current iteration number; v id is the current speed; c 1 and c 2 are acceleration factors, and c 1 and c 2 are both greater than zero; r 1 and r 2 are random functions, and the value range is [0, 1]; and are the position and velocity of the ith particle in the D dimension for k+1 iterations; z is the shrinkage factor; φ is the total acceleration factor; gen is the total number of iterations; K is the shrinkage coefficient;
在PSO算法中引入了收缩因子z,周所因子的变化既能保证PSO算法的收敛性,又能不受速度边界的影响,在加快种群的全局搜索速度的同时增强粒子的局部搜索能力;The shrinkage factor z is introduced into the PSO algorithm. The change of the Zhousuo factor can not only ensure the convergence of the PSO algorithm, but also not be affected by the speed boundary, which can speed up the global search speed of the population and enhance the local search ability of particles;
步骤1-6:计算适应度,更新个体及全局最适应度和最优解;Steps 1-6: Calculate fitness, update individual and global best fitness and optimal solution;
步骤1-7:判断适应度是否满足要求或迭代次数是否达到最大迭代次数,若是,则执行步骤1-8,否则,返回步骤1-5;Step 1-7: Determine whether the fitness meets the requirements or whether the number of iterations reaches the maximum number of iterations, if so, execute steps 1-8, otherwise, return to steps 1-5;
步骤1-8:使用全局最优解作为最小二乘支持向量机LSSVM的参数,训练LSSVM,获得风速预测数据。Steps 1-8: Use the global optimal solution as the parameter of the least squares support vector machine LSSVM, train the LSSVM, and obtain wind speed prediction data.
二、谐波畸变分析子方法2. Harmonic Distortion Analysis Sub-method
谐波畸变分析子方法的流程如图4所示,包括:The flowchart of the harmonic distortion analysis sub-method is shown in Figure 4, including:
步骤2-1:采样得到的电压或电流信号含有高频干扰噪声或高频谐波分量,因此通过ROM查找表方法设计有限长数字FIR滤波器完成信号去噪,由于对信号采样不可能是无限长的采样,因此采样是有限长的信号进行分析;Step 2-1: The sampled voltage or current signal contains high-frequency interference noise or high-frequency harmonic components. Therefore, a finite-length digital FIR filter is designed through the ROM look-up table method to complete the signal denoising. Since the sampling of the signal cannot be infinite Long sampling, so sampling is a finite length signal for analysis;
步骤2-2:按位倒序方式输入数据,使用加窗FFT方法获得的数据按自然顺序输出;Step 2-2: Input data in reverse order, and output the data obtained by using the windowed FFT method in natural order;
采用傅里叶加窗截断的办法是对时域信号进行有限长截断,将其变为有限长离散序列,使之可以用离散傅里叶变换进行分析,窗函数的选取,也有效减少了频谱泄漏效应的发生,通过信号的频谱即可得到信号的谐波组成成分,信号去噪之后按位倒序方式取出数据送入加窗FFT模块运算,输出顺序为自然顺序;The method of using Fourier window truncation is to truncate the time domain signal with finite length and turn it into a finite length discrete sequence, so that it can be analyzed by discrete Fourier transform. The selection of window function also effectively reduces the frequency spectrum. When the leakage effect occurs, the harmonic components of the signal can be obtained through the spectrum of the signal. After the signal is de-noised, the data is taken out in a bit reverse order and sent to the windowed FFT module for operation, and the output order is the natural order;
步骤2-3:计算谐波总畸变率,计算方法为:Step 2-3: Calculate the total harmonic distortion rate, the calculation method is:
其中,Un为第n次谐波电压的有效值;In为第n次谐波电流的有效值;THDu为电压总谐波畸变率;THDi为电流总谐波畸变率;U1和I1分别为基波电压有效值和基波电流有效值;Among them, U n is the effective value of the nth harmonic voltage; In is the effective value of the nth harmonic current; THD u is the total harmonic distortion rate of voltage; THD i is the total harmonic distortion rate of current; U 1 and I 1 are the rms value of the fundamental wave voltage and the rms value of the fundamental wave current, respectively;
步骤2-4:判断谐波总畸变率是否超过预设值,若是,则将既有风电机组1切出电网,否则,结束本轮循环。Step 2-4: Determine whether the total harmonic distortion rate exceeds the preset value, if so, disconnect the existing
三、暂态扰动量监测子方法3. Transient disturbance monitoring sub-method
暂态扰动量监测子方法的流程如图5所示,包括:The flow of the transient disturbance monitoring sub-method is shown in Figure 5, including:
步骤3-1:判断步骤2获得的转子与定子侧的电压与电流信号是否超过预设值,若是,则将风机切出电网,结束本轮循环,否则,执行步骤3-2;Step 3-1: Determine whether the voltage and current signals on the rotor and stator sides obtained in Step 2 exceed the preset values, if so, cut the fan out of the grid to end the current cycle, otherwise, go to Step 3-2;
步骤3-2:使用FIR滤波器对定子侧的电压与电流信号数据进行去噪处理;Step 3-2: Use the FIR filter to de-noise the voltage and current signal data on the stator side;
步骤3-3:采用希尔伯特-黄变换检测算法HHT分析步骤3-2获得的数据,HHT算法包括EMD和Hilbert谱分析方法两部分,首先利用EMD方法将给定信号分解为若干固有模态函数IMF,然后对每一个IMF进行Hilbert变换,求取特征参数,得到相应原始信号的Hilbert谱,具体步骤为:Step 3-3: Use the Hilbert-Huang transform detection algorithm HHT to analyze the data obtained in step 3-2. The HHT algorithm includes two parts, the EMD and the Hilbert spectrum analysis method. First, the given signal is decomposed into several natural modes using the EMD method. state function IMF, and then perform Hilbert transform on each IMF, obtain the characteristic parameters, and obtain the Hilbert spectrum of the corresponding original signal. The specific steps are:
将经验模态分解得到固有模态函数组:Decompose the empirical mode to get the intrinsic mode function group:
其中,si(t)为原信号中各固有模态分量;d(t)为原信号中的直流分量;r(t)为分解获得的残差函数数据序列;Among them, s i (t) is the natural modal component in the original signal; d(t) is the DC component in the original signal; r(t) is the residual function data sequence obtained by decomposition;
然后对所有IMF进行Hilbert变换,获得变换的每个IMF的解析式:Then perform Hilbert transform on all IMFs to obtain the analytical expression of each IMF transformed:
其中,ai为IMF幅值,上式为Hilbert谱,可记为:Among them, a i is the IMF amplitude, and the above formula is the Hilbert spectrum, which can be written as:
对上式在时域内积分,获得对应的Hilbert边际谱:Integrate the above formula in the time domain to obtain the corresponding Hilbert marginal spectrum:
其中瞬时频率为:where the instantaneous frequency is:
步骤3-4:判断是否有发生暂态扰动,包括电压骤升类扰动、电压骤降类扰动和频率波动类扰动,若是,则执行步骤3-5,否则,返回步骤3-1,执行下一轮循环;Step 3-4: Determine whether transient disturbances have occurred, including voltage swell disturbances, voltage sag disturbances and frequency fluctuation disturbances, if so, go to step 3-5, otherwise, go back to step 3-1, and execute the following one cycle;
步骤3-5:判断暂态扰动是否为周期扰动,若是,则执行步骤3-6,否则,返回步骤3-1,执行下一轮循环;Step 3-5: determine whether the transient disturbance is a periodic disturbance, if so, execute step 3-6, otherwise, return to step 3-1 to execute the next cycle;
步骤3-6:计算扰动量大小;Step 3-6: Calculate the amount of disturbance;
步骤3-7:判断扰动量是否超过并网标准,若是,则将风机切出电网,否则,返回步骤3-1,执行下一轮循环。Step 3-7: Determine whether the disturbance amount exceeds the grid-connected standard, if so, cut the wind turbine out of the grid, otherwise, return to step 3-1 to execute the next cycle.
四、功率控制子方法Fourth, the power control sub-method
功率控制子方法的流程如图6所示,包括:The flow of the power control sub-method is shown in Figure 6, including:
步骤4-1:使用功率控制模型对机组功率进行控制;Step 4-1: Use the power control model to control the power of the unit;
功率控制模型包括基于神经网络的PID子模型和坐标变换子模型,基于神经网络的PID子模型的控制框图如图7所示。The power control model includes a neural network-based PID sub-model and a coordinate transformation sub-model. The control block diagram of the neural network-based PID sub-model is shown in Figure 7.
基于神经网络的PID子模型具体为选用神经网络作为训练模型的增量式PID控制算法:The PID sub-model based on neural network is an incremental PID control algorithm that selects neural network as the training model:
u(k)=u(k-1)+Δu(k)u(k)=u(k-1)+Δu(k)
Δu(t)=kp(e(k)-e(k-1))+kie(k)+kd(e(k)-2e(k-1)+e(k-2))Δu(t)=k p (e(k)-e(k-1))+k i e(k)+k d (e(k)-2e(k-1)+e(k-2))
其中,u(k-1)为上一时刻的状态;u(k)为当前时刻的状态;kp、ki和kd分别为比例系数、积分系数和微分系数;Among them, u(k-1) is the state at the previous moment; u(k) is the state at the current moment; k p , k i and k d are the proportional coefficient, integral coefficient and differential coefficient, respectively;
使用神经网络进行训练的步骤具体为:The steps for training a neural network are as follows:
S1:确定输入层和隐含层的节点数N和Q,并给出各层加权系数的初始值,选定学习速率η和惯性系数α,设定k=1;S1: Determine the number of nodes N and Q of the input layer and the hidden layer, and give the initial value of the weighting coefficient of each layer, select the learning rate η and the inertia coefficient α, and set k=1;
S2:计算当前时刻误差:S2: Calculate the current time error:
e(k)=rin(k)-yout(k)e(k)=rin(k)-yout(k)
其中,rin(k)期望的量;yout(k)为输出的量;Among them, rin(k) is the expected quantity; yout(k) is the output quantity;
S3:计算神经网络模型各层神经元的输入输出,选取神经网络的最终输出,作为kp、ki和kd;S3: Calculate the input and output of neurons in each layer of the neural network model, and select the final output of the neural network as k p , ki and k d ;
S4:计算u(k);S4: Calculate u(k);
S5:进行神经网络学习,调制加权系数,实现PID控制参数的自适应调整;S5: Perform neural network learning, modulate weighting coefficients, and realize self-adaptive adjustment of PID control parameters;
S5:设置k=k+1,返回S1重复执行;S5: Set k=k+1, return to S1 and repeat;
所述的坐标变换子模型的2s/2r变换矩阵具体为:The 2s/2r transformation matrix of the coordinate transformation sub-model is specifically:
其中,θ为α轴与d轴的夹角;Among them, θ is the angle between the α axis and the d axis;
2s/2r变换矩阵的逆矩阵具体为:The inverse matrix of the 2s/2r transformation matrix is specifically:
步骤4-2:重新计算有功功率和无功功率,并判断是否满足预设阈值,若是,则结束本轮循环,否则,返回步骤4-1。Step 4-2: Recalculate the active power and reactive power, and determine whether the preset threshold is satisfied, if so, end the current cycle, otherwise, return to step 4-1.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art can easily think of various equivalents within the technical scope disclosed by the present invention. Modifications or substitutions should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010714214.0A CN111856185A (en) | 2020-07-23 | 2020-07-23 | Embedded system and method for wind turbine power quality monitoring and improvement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010714214.0A CN111856185A (en) | 2020-07-23 | 2020-07-23 | Embedded system and method for wind turbine power quality monitoring and improvement |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111856185A true CN111856185A (en) | 2020-10-30 |
Family
ID=72950375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010714214.0A Pending CN111856185A (en) | 2020-07-23 | 2020-07-23 | Embedded system and method for wind turbine power quality monitoring and improvement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111856185A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112986744A (en) * | 2021-04-26 | 2021-06-18 | 湖南大学 | Frequency fault tolerance detection method and system under transient fault condition of power system |
CN113902326A (en) * | 2021-10-21 | 2022-01-07 | 上海电机学院 | Biomass unit electric energy quality and unit efficiency measurement and control system based on FPGA |
CN118798854A (en) * | 2024-09-11 | 2024-10-18 | 四川省能投美姑新能源开发有限公司 | A remote operation and maintenance platform and fault diagnosis method for wind turbines based on the Internet of Things |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323480A (en) * | 2011-05-19 | 2012-01-18 | 西南交通大学 | A Power Quality Analysis Method Based on Hilbert-Huang Transform |
CN102522777A (en) * | 2011-12-27 | 2012-06-27 | 东方电气集团东方汽轮机有限公司 | Wind driven generator set |
CN102664411A (en) * | 2012-03-31 | 2012-09-12 | 东北大学 | A maximum power tracking wind power generation system and its control method |
CN103400052A (en) * | 2013-08-22 | 2013-11-20 | 武汉大学 | Combined method for predicting short-term wind speed in wind power plant |
CN103487650A (en) * | 2013-10-08 | 2014-01-01 | 水利部农村电气化研究所 | Frequency measurement device of hydroelectric generating set |
CN105450122A (en) * | 2016-01-14 | 2016-03-30 | 重庆大学 | IGBT device junction temperature fluctuation inhibition method of doubly-fed wind turbine generator system machine-side current transformer |
CN110197310A (en) * | 2019-06-10 | 2019-09-03 | 燕山大学 | A kind of electric charging station Optimization Scheduling based on load margin domain |
-
2020
- 2020-07-23 CN CN202010714214.0A patent/CN111856185A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323480A (en) * | 2011-05-19 | 2012-01-18 | 西南交通大学 | A Power Quality Analysis Method Based on Hilbert-Huang Transform |
CN102522777A (en) * | 2011-12-27 | 2012-06-27 | 东方电气集团东方汽轮机有限公司 | Wind driven generator set |
CN102664411A (en) * | 2012-03-31 | 2012-09-12 | 东北大学 | A maximum power tracking wind power generation system and its control method |
CN103400052A (en) * | 2013-08-22 | 2013-11-20 | 武汉大学 | Combined method for predicting short-term wind speed in wind power plant |
CN103487650A (en) * | 2013-10-08 | 2014-01-01 | 水利部农村电气化研究所 | Frequency measurement device of hydroelectric generating set |
CN105450122A (en) * | 2016-01-14 | 2016-03-30 | 重庆大学 | IGBT device junction temperature fluctuation inhibition method of doubly-fed wind turbine generator system machine-side current transformer |
CN110197310A (en) * | 2019-06-10 | 2019-09-03 | 燕山大学 | A kind of electric charging station Optimization Scheduling based on load margin domain |
Non-Patent Citations (3)
Title |
---|
王家乐: "风力发电机组电能质量监测与改善的研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 * |
纪萍, 吴静妹, 陈玲: "基于HHT 的电能质量暂态扰动信号检测技术", 《长江大学学报(自科版)》 * |
范曼萍,周冬: "基于改进粒子群优化LS—SVM的短期风速预测", 《电力学报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112986744A (en) * | 2021-04-26 | 2021-06-18 | 湖南大学 | Frequency fault tolerance detection method and system under transient fault condition of power system |
CN113902326A (en) * | 2021-10-21 | 2022-01-07 | 上海电机学院 | Biomass unit electric energy quality and unit efficiency measurement and control system based on FPGA |
CN113902326B (en) * | 2021-10-21 | 2025-02-07 | 上海电机学院 | FPGA-based biomass unit power quality and unit efficiency measurement and control system |
CN118798854A (en) * | 2024-09-11 | 2024-10-18 | 四川省能投美姑新能源开发有限公司 | A remote operation and maintenance platform and fault diagnosis method for wind turbines based on the Internet of Things |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111856185A (en) | Embedded system and method for wind turbine power quality monitoring and improvement | |
CN109802406B (en) | Method for analyzing resonance stability of flexible direct-current transmission access system | |
CN111917131A (en) | Harmonic suppression method for photovoltaic LCL grid-connected inverter based on PI and MPR | |
CN107632200B (en) | Harmonic detection method based on discrete Fourier transform | |
CN112255457B (en) | Phase angle difference measuring method suitable for automatic quasi-synchronization device | |
CN110417056A (en) | Equipment-level oscillation source location method and device for double-fed fan grid-connected system | |
CN104539221A (en) | Global optimization method for control parameters of photovoltaic power generation system | |
CN103529294A (en) | HHT (Hilbert-Huang Transform)-based harmonic detection system and method for grid-connected inverter of photovoltaic system | |
CN115184839A (en) | A method for locating open-circuit fault power tubes in a cascaded H-bridge grid-connected inverter system | |
CN112018784A (en) | Subsynchronous resonance tracing method based on synchronous phasor measurement data | |
CN116298669A (en) | Distribution network fault diagnosis method based on particle swarm optimization LSTM network | |
CN104659815B (en) | Dynamic equivalence method of grid-connected inverter system | |
CN114759594A (en) | Direct-drive wind power plant stability assessment method and system considering inter-machine interaction | |
CN113078670A (en) | Method for evaluating resonance stability of receiving-end power grid under effect of hybrid cascade direct-current transmission | |
CN110323746B (en) | A method and system for detecting the stability of dissipated energy in a direct-drive permanent magnet wind power system | |
Li et al. | An improved quantitative analysis method of oscillation mode for DFIG-based wind power base with LCC-HVDC transmission considering frequency coupling characteristic | |
CN112036010A (en) | Photovoltaic system dynamic process hybrid equivalent modeling method based on data driving | |
CN113241779B (en) | Stability analysis method and device for direct-drive wind power plant grid-connected system | |
CN114357787B (en) | Offshore wind farm equivalent modeling method and system | |
CN114357785B (en) | Evaluation parameter determination method for stability analysis applicability of equivalent model of wind power plant | |
CN110210170A (en) | A kind of large-scale wind power group of planes equivalence small-signal model modeling method | |
CN116470534A (en) | A Subsynchronous Oscillation Suppression Method for Doubly-fed Wind Turbine Series Compensation Grid-connected System | |
CN205721844U (en) | Based on the Power Disturbance analyser improving S-transformation | |
CN114977302A (en) | A new energy grid-connected inverter small-signal equivalent modeling method and system | |
Wang et al. | Microgrid harmonic and interharmonic analysis algorithm based on cubic spline interpolation signal reconstruction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201030 |
|
RJ01 | Rejection of invention patent application after publication |