CN111855745A - 一种电磁式岩土工程超重力模拟装置及操作方法 - Google Patents

一种电磁式岩土工程超重力模拟装置及操作方法 Download PDF

Info

Publication number
CN111855745A
CN111855745A CN202010526504.2A CN202010526504A CN111855745A CN 111855745 A CN111855745 A CN 111855745A CN 202010526504 A CN202010526504 A CN 202010526504A CN 111855745 A CN111855745 A CN 111855745A
Authority
CN
China
Prior art keywords
electromagnet
test
power supply
magnetic
hypergravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010526504.2A
Other languages
English (en)
Inventor
李洪江
刘松玉
童立元
车鸿博
闫鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010526504.2A priority Critical patent/CN111855745A/zh
Publication of CN111855745A publication Critical patent/CN111855745A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供了一种电磁式岩土工程超重力模拟装置,包括电磁式超重力场发生机、供电系统和数控操作系统组成,电磁式超重力场发生机依靠上下两个对称等大的电磁铁产生集中分布、场强均匀的磁场,上下电磁铁的铁芯规格与线圈导线绕线匝数完全一致,上下线圈可以实现串联供电,也可独立供电,上下电磁铁外包裹磁屏蔽壳以消除环境磁场的影响。磁场强度由供电系统的供电电流大小及线圈绕线匝数控制,上部电磁铁可通过数控系统控制轴承转动而调节高度,试验操作台位于两个电磁铁形成的匀强磁场中,采用土样中配掺磁粉的方式,从而在场强梯度变化时获得磁力作用。本装置电磁诱导的超重力场稳定、易于操作和推广使用。

Description

一种电磁式岩土工程超重力模拟装置及操作方法
技术领域
本发明涉及岩土工程试验模拟领域,具体涉及一种电磁式岩土工程超重力模拟装置及操作方法。
背景技术
物理试验的模拟是解决岩土工程问题的重要技术途径,岩土工程物理模型试验通常包括1g条件下的室内模型试验和Ng超重力模型试验。岩土工程涉及的工程尺度很大,诸如地下空间开挖、高土石筑坝、高层建筑桩基础等等,要想准确获取以上工程建设带来的稳定性问题及环境安全问题是非常困难的。合理、准确的岩土工程物理模拟装置及模拟技术不可或缺。传统意义上,1g(常重力环境)试验由于受到试验场地、试验经费等的限制,只能在小尺度上近似呈现岩土工程试验现象,不能准确代表大型原型试验的真实结果。因此,Ng试验成为解决大型岩土工程物理模拟的重要手段,在国际上得到广泛认可。目前,国际上模拟Ng试验依靠的是高速旋转的离心机,离心机在高速旋转时会对装在其内的岩土试样产生离心力,形成Ng的超重力模拟效果。按照相似理论,Ng超重力环境下的小尺度试样即可以等效成相应比例下的1g条件原型试验效果,目前超重力离心机可以实现上百个重力加速度(>100g)的模拟,有效节省和避免了模型尺度上的浪费。
尽管超重力离心机的应用为岩土工程物理模拟提供了强有力工具,推动了岩土物理模拟水平的发展,但是依靠离心机形成的超重力模拟长期存在问题。有些问题虽然得到共识,但从离心机应用到岩土工程领域起始至今就一直未能解决。最重要的三个问题是:1.离心机借助离心加速度形成的重力场与超重力场不完全匹配,离心机受旋转臂长的影响,试验箱中的岩土试验重力场不均匀;2. 高速旋转的离心机无法摆脱起始转动阶段和停止转动阶段两个时间阶段对试验箱中岩土试样的扰动和不均匀受力状态变化;3. 超重力离心机一旦旋转后,试验人员无法再手动对试验装置作出调整,只能借助活动有限的机械手。以上问题严重限制着超重力离心机的使用效率,而且高速旋转的离心机耗电量巨大,试验成本高。尽管如此,目前国内外仍没有更高效的超重力模拟技术,也没有可替代装置。岩土工程超重力模拟仍是一大难题。
发明内容
为解决上述问题,本发明公开了发明目的:依据电磁场与重力场等效的原理,提供一种电磁式岩土工程超重力模拟装置及操作方法。
技术方案:本发明提供了
包括电磁式超重力场发生机、供电系统和数控操作系统;电磁式超重力场发生机固定在刚性支撑架上;所述电磁式超重力场发生机主构件为两个对称等大的上、下电磁铁,可在上、下电磁铁空间域产生集中分布、场强均匀的磁场;所述上、下磁铁的表面分别绕制上、下线圈;所述上、下电磁铁上设有内部铁芯;磁场强度由供电系统的供电电流大小及上、下线圈绕线的匝数控制;所述上、下电磁铁的外层分别包裹有一层上磁屏蔽壳和下磁屏蔽壳;所述数控操作系统包括计算机和显示器;计算机通过高斯计所测量的磁场大小来控制上、下电磁铁的输入电流大小;通过实时反馈获得稳定的目标场强。试验操作台位于上、下电磁铁形成的匀强磁场中,试验操作台上采用土样配掺磁粉的方式,在磁粉被饱和磁化后获得基于电磁场梯度磁力加载的超重力模拟效果。
进一步,所述上、下电磁铁的规格可依据不同岩土工程试验需求、样品测试尺度进行选择。
进一步,其中每个所述内部铁芯的规格及对应的上、下线圈导线绕线匝数完全一致,上、下线圈通过供电系统支配可以实现串联供电,也可独立供电。
进一步,所述上、下电磁铁的内部铁芯选择软铁材料,电磁铁通电时产生磁场,断电后磁力消失。
进一步,所述上电磁铁的顶部与轴承连接固定;其中轴承的另一端穿过所述刚性支撑架的顶部与电动马达连接固定;其中数控操作系统通过电动马达来控制轴承转动从而调节上磁铁高度,在保证磁场均匀性强度条件下充分适应不同的试验操作台高度。
进一步,所述供电系统利用整流器将交流电转换为直流电;保证试验过程中供电电流的稳定及电磁铁磁场强度的稳定。
进一步,所述试验操作台位于上、下电磁铁形成的匀强磁场中,试验操作台上采用土样配掺磁粉的方式,在磁粉被饱和磁化后获得基于电磁场梯度磁力加载的超重力模拟效果。
进一步,所述数控操作系统集成了数显与计算机操作功能,计算机依据高斯计所测量的磁场大小来控制电磁铁输入电流的大小,通过实时反馈获得稳定的目标场强。
一种电磁式岩土工程超重力模拟装置及操作方法,包括以下步骤:
步骤(1):依据测试需求,预先制备土样,土样中掺入一定量磁粉(磁粉掺入比由试验需求而定,建议不低于20%)并搅拌均匀,将制备好的试样置入试验操作台上;
步骤(2):开启供电系统电源,通过数控操作系统控制轴承转动调节上部电磁铁的高度,待上、下电磁铁间距满足试验条件后,锁定上电磁铁高度。
步骤(3)采用上、下电磁铁串联供电模式,且上、下线圈供电电流方向相同,由此在试验操作台区域产生均匀NS磁场强度。通过高斯计测量磁场强度并反馈给数控操作系统内的计算机,由计算机控制线圈输入电流的大小继而获得目标场强。在足够长的通电时间下,直至试验操作台上的磁粉达到饱和磁化。
步骤(4)改换成上、下电磁铁独立供电模式,通过控制供电电流大小,可形成上部电磁铁场强大而下部电磁铁场强小(上大下小模式),或者上部电磁铁场强小而下部电磁铁场强大(上小下大模式),或者上、下电磁铁场强动态线性变化(动态模式)的场强模式。根据试验需要,通过变换绕线线圈的电流方向,上、下电磁铁的磁场方向也可获得改变。以上场强的梯度变化会对试样磁粉产生不同的磁场力,从而模拟不同的受力模式,附加的磁力施加到试样上可以达到Ng超重力模拟效果(1g为常重力环境,N>1为超重力,N<1为反重力)。
步骤(5)在试验操作平台上开展试验测试内容,按常规操作完成小比尺试样在超重力环境下的岩土体稳定性或者岩土体-结构体相互作用模拟试验,根据相似原理即可获得原型尺寸下的试验结果。由于是开放试验操作平台,试验过程中可以人工干预时时调整试验设计。
步骤(6)测试结束,清理试验操作平台,并依次关闭数控操作系统和供电系统电源,保持电磁式超重力场发生机的整洁干净。
有益效果:本发明所提出的电磁式岩土工程超重力模拟装置及操作方法,具有以下显著的进步:解决了长期存在的岩土工程超重力模拟难问题,摆脱了依靠高速旋转离心机模拟超重力时无法实时人为干预的问题。该装置提供的电磁场稳定,可以通过变化电流强度模拟不同的超重力场环境,试验操作简单,易于掌握且经济安全。
附图说明
图 1为本发明电磁式岩土工程超重力模拟装置整体示意图;
图2为上、下电磁铁串联供电线路图;
图3为上、下电磁铁独立供电线路图;
图4为磁场强度数控调配原理示意图。
图中:1-电磁式超重力场发生机、2-供电系统、3-数控操作系统、4-上电磁铁、5-下电磁铁、6-铁芯、7-上线圈、8-下线圈、9-试验操作台、10-上磁屏蔽壳、11-下磁屏蔽壳、12-刚性支撑架、13-轴承、14-高斯计、15-电动马达。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。需要说明的是,下面描述中使用的词语“前”、“后”、“左”、“右”、“上”和“下”指的是附图中的方向,词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向。
一种电磁式岩土工程超重力模拟装置,如图1所示,包括电磁式超重力场发生机1、供电系统2和数控操作系统3。电磁式超重力场发生机1主构件为上、下两个对称等大的电磁铁4和5,可在上、下电磁铁4和5空间域产生集中分布、场强均匀的磁场。电磁式超重力场发生机1固定在刚性支撑架12上,是一个完全开放系统,可以在试验进行中实时对试验设计作出调整。
磁场强度由供电系统2的供电电流大小及上、下线圈7、8绕线匝数控制。
上、下电磁铁4、5的内部铁芯6规格及上、下线圈7、8绕线匝数完全一致,上、下线圈7、8通过供电系统2支配可以实现串联供电,也可独立供电。上、下电磁铁4、5的内部铁芯6选择软铁材料,电磁铁通电时产生磁场,断电后磁力消失。另外,上、下电磁铁4、5的规格可依据不同岩土工程试验需求、样品测试尺度进行选择。上部电磁铁4可通过数控操作系统3启动电动马达15控制轴承13转动而调节高度,在保证磁场均匀性强度条件下充分适应不同的试验操作台9高度。上、下电磁铁4、5外层包裹有上、下磁屏蔽壳10、11,用以消除环境磁场对内部磁场的干扰以及内部磁场的外泄。
试验操作台9位于上、下电磁铁4、5形成的匀强磁场中,试验操作台9上采用土样配掺磁粉的方式,在磁粉被饱和磁化后获得基于电磁场梯度磁力加载的超重力模拟效果。
供电系统2利用整流器将交流电转换为直流电,保证试验过程中供电电流的稳定及上、下电磁铁4和5磁场强度的稳定。
数控操作系统3集成了数显与计算机操作功能,计算机依据高斯计14所测量的磁场大小来控制上、下电磁铁4和5的输入电流大小,按照图4所示,通过实时反馈获得稳定的目标场强。
上述电磁式岩土工程超重力模拟装置的操作方法如下,如图1所示:(1)依据测试需求,预先制备土样,土样中掺入一定量磁粉(磁粉掺入比由试验需求而定,建议不低于20%)并搅拌均匀,将制备好的试样置入试验操作台9上;
(2)开启供电系统2电源,通过数控操作系统3控制轴承13转动调节上部电磁铁4的高度,待上、下电磁铁4、5间距满足试验条件后,锁定上电磁铁4高度。
(3)如图2,采用上、下电磁铁4和5串联供电模式,且上、下线圈7和8供电电流方向相同,由此在试验操作台9区域产生均匀NS磁场强度。通过高斯计14测量磁场强度并反馈给数控操作系统3内的计算机,计算机进而控制线圈7和8输入电流的大小,如图4所示,形成闭环反馈机制,最终获得目标场强。在足够长的通电时间下,直至试验操作台9上的磁粉达到饱和磁化。
(4)如图3,改换成上、下电磁铁4和5独立供电模式,通过控制供电电流大小,可形成上部电磁铁4场强大而下部电磁铁5场强小(上大下小模式),或者上部电磁铁4场强小而下部电磁铁5场强大(上小下大模式),或者上、下电磁铁4和5场强动态线性变化(动态模式)的场强模式。根据试验需要,通过变换绕线线圈7和8的电流方向,上、下电磁铁4、5的磁场方向也可获得改变。以上场强的梯度变化会对试样磁粉产生不同的磁场力,从而模拟不同的受力模式,附加的磁力施加到试样上可以达到Ng超重力模拟效果。
(5)在试验操作平台9上开展试验测试内容,按常规操作完成小比尺试样在超重力环境下的岩土体稳定性或者岩土体-结构体相互作用模拟试验,根据相似原理即可获得原型尺寸下的试验结果。由于是开放试验操作平台,试验过程中可以人工干预时时调整试验设计。
(6)测试结束,清理试验操作平台9,并依次关闭数控操作系统3和供电系统2的电源,保持电磁式超重力场发生机1的整洁干净。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。

Claims (8)

1.一种电磁式岩土工程超重力模拟装置,其特征在于:包括电磁式超重力场发生机(1)、供电系统(2)和数控操作系统(3);电磁式超重力场发生机(1)固定在刚性支撑架(12)上;所述电磁式超重力场发生机(1)主构件为两个对称等大的上、下电磁铁(4、5),可在上、下电磁铁(4、5)空间域产生集中分布、场强均匀的磁场;所述上、下磁铁(4、5)的表面分别绕制上、下线圈(7、8);所述上、下电磁铁(4、5)上设有内部铁芯(6);磁场强度由供电系统(2)的供电电流大小及上、下线圈(7、8)绕线的匝数控制;所述上、下电磁铁(4、5)的外层分别包裹有一层上磁屏蔽壳(10)和下磁屏蔽壳(11);所述数控操作系统(3)包括计算机和显示器;计算机通过高斯计(14)所测量的磁场大小来控制上、下电磁铁(4、5)的输入电流大小;试验操作台(9)位于上、下电磁铁(4、5)形成的匀强磁场中,试验操作台上采用土样配掺磁粉的方式,在磁粉被饱和磁化后获得基于电磁场梯度磁力加载的超重力模拟效果。
2.根据权利要求1所述的电磁式岩土工程超重力模拟装置,其特征在于:所述上、下电磁铁(4、5)的规格可依据不同岩土工程试验需求、样品测试尺度进行选择。
3.根据权利要求1所述的电磁式岩土工程超重力模拟装置,其特征在于:其中每个所述内部铁芯(6)的规格及对应的上、下线圈(7、8)导线绕线匝数完全一致,上、下线圈(7、8)通过供电系统(2)支配可以实现串联供电,也可独立供电。
4.根据权利要求1所述的电磁式岩土工程超重力模拟装置,其特征在于:所述上、下电磁铁(4、5)的内部铁芯(6)选择软铁材料,电磁铁通电时产生磁场,断电后磁力消失。
5.根据权利要求1所述的电磁式岩土工程超重力模拟装置,其特征在于:所述上电磁铁(4)的顶部与轴承(13)连接固定;其中轴承(13)的另一端穿过所述刚性支撑架(12)的顶部与电动马达(15)连接固定;其中数控操作系统(3)通过电动马达(15)来控制轴承(13)转动从而调节上电磁铁(4)高度,在保证磁场均匀性强度条件下充分适应不同的试验操作台(9)高度。
6.根据权利要求1所述的电磁式岩土工程超重力模拟装置,其特征在于:所述供电系统(2)利用整流器将交流电转换为直流电。
7.一种电磁式岩土工程超重力模拟装置的操作方法,其特征在于:包括以下步骤:
步骤(1):依据测试需求,预先制备土样,土样中掺入一定量磁粉并搅拌均匀,将制备好的试样置入试验操作台上;
步骤(2):开启供电系统电源,通过数控操作系统控制轴承转动调节上部电磁铁的高度,待上、下电磁铁间距满足试验条件后,锁定上电磁铁高度;
步骤(3):采用上、下电磁铁串联供电模式,且上、下线圈供电电流方向相同,由此在试验操作台区域产生均匀NS磁场强度;通过高斯计测量磁场强度并反馈给数控操作系统内的计算机,计算机进而控制线圈输入电流的大小获得目标场强;在足够长的通电时间下,直至试验操作台上的磁粉达到饱和磁化;
步骤(4):改换成上、下电磁铁独立供电模式,通过控制供电电流大小,可以形成不同的磁场模式:
上大下小模式: 上部电磁铁场强大而下部电磁铁场强小;
或者上小下大模式:上部电磁铁场强小而下部电磁铁场强大;
或者动态模式:上、下电磁铁场强动态线性变化的场强模式;
根据试验需要,通过变换绕线线圈的电流方向,上、下电磁铁的磁场方向也可获得改变;以上场强的梯度变化会对试样磁粉产生不同的磁场力,从而模拟不同的受力模式,附加的磁力施加到试样上可以达到Ng超重力模拟效果(1g为常重力环境,N>1为超重力,N<1为反重力);
步骤(5):在试验操作平台上开展试验测试内容,按常规操作完成小比尺试样在超重力环境下的岩土体稳定性或者岩土体-结构体相互作用模拟试验,根据相似原理即可获得原型尺寸下的试验结果;
由于是开放试验操作平台,试验过程中可以人工干预时时调整试验设计;
步骤(6):测试结束,清理试验操作平台,并依次关闭数控操作系统和供电系统电源,保持电磁式超重力场发生机的整洁干净。
8.根据权利要求7所述的一种电磁式岩土工程超重力模拟装置的操作方法,其特征在于:所述步骤(1)中磁粉掺入比由试验需求而定,不低于20%。
CN202010526504.2A 2020-06-10 2020-06-10 一种电磁式岩土工程超重力模拟装置及操作方法 Pending CN111855745A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010526504.2A CN111855745A (zh) 2020-06-10 2020-06-10 一种电磁式岩土工程超重力模拟装置及操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010526504.2A CN111855745A (zh) 2020-06-10 2020-06-10 一种电磁式岩土工程超重力模拟装置及操作方法

Publications (1)

Publication Number Publication Date
CN111855745A true CN111855745A (zh) 2020-10-30

Family

ID=72987605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010526504.2A Pending CN111855745A (zh) 2020-06-10 2020-06-10 一种电磁式岩土工程超重力模拟装置及操作方法

Country Status (1)

Country Link
CN (1) CN111855745A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115112858A (zh) * 2022-05-09 2022-09-27 苏交科集团股份有限公司 一种通过磁场加速土体固结沉降的试验方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213658A (zh) * 2011-03-18 2011-10-12 三峡大学 一种地质力学磁场试验装置及试验方法
CN102841129A (zh) * 2012-08-20 2012-12-26 中国矿业大学 一种岩土工程模型试验重力场模拟装置及方法
CN103247208A (zh) * 2013-04-24 2013-08-14 中国矿业大学 基于电磁线圈的岩土工程磁重力模型试验装置及方法
CN103267650A (zh) * 2013-04-24 2013-08-28 中国矿业大学 基于永磁体的模型试验重力场模拟装置及方法
CN108956301A (zh) * 2018-08-23 2018-12-07 三峡大学 一种采用电磁铁与磁粉的作用力模拟岩石受力情况的装置
CN109001437A (zh) * 2018-09-22 2018-12-14 浙江大学 一种适用于高超重力环境的泥石流实验装置
CN110736821A (zh) * 2019-10-29 2020-01-31 中国石油大学(华东) 一种基于重力加载材料的滑坡区域管道安全性的模型试验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213658A (zh) * 2011-03-18 2011-10-12 三峡大学 一种地质力学磁场试验装置及试验方法
CN102841129A (zh) * 2012-08-20 2012-12-26 中国矿业大学 一种岩土工程模型试验重力场模拟装置及方法
CN103247208A (zh) * 2013-04-24 2013-08-14 中国矿业大学 基于电磁线圈的岩土工程磁重力模型试验装置及方法
CN103267650A (zh) * 2013-04-24 2013-08-28 中国矿业大学 基于永磁体的模型试验重力场模拟装置及方法
CN108956301A (zh) * 2018-08-23 2018-12-07 三峡大学 一种采用电磁铁与磁粉的作用力模拟岩石受力情况的装置
CN109001437A (zh) * 2018-09-22 2018-12-14 浙江大学 一种适用于高超重力环境的泥石流实验装置
CN110736821A (zh) * 2019-10-29 2020-01-31 中国石油大学(华东) 一种基于重力加载材料的滑坡区域管道安全性的模型试验装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115112858A (zh) * 2022-05-09 2022-09-27 苏交科集团股份有限公司 一种通过磁场加速土体固结沉降的试验方法
CN115112858B (zh) * 2022-05-09 2024-05-07 苏交科集团股份有限公司 一种通过磁场加速土体固结沉降的试验方法

Similar Documents

Publication Publication Date Title
CN102213658B (zh) 一种地质力学磁场试验装置及试验方法
CN102841129B (zh) 一种岩土工程模型试验重力场模拟装置及方法
CN101858963B (zh) 静态磁特性测量方法
CN103267650B (zh) 基于永磁体的模型试验重力场模拟装置及方法
CN108917694B (zh) 一种隧洞岩土体开挖后变形监测及支护的装置和方法
CN103247208B (zh) 基于电磁线圈的岩土工程磁重力模型试验装置及方法
CN111855745A (zh) 一种电磁式岩土工程超重力模拟装置及操作方法
CN104319795B (zh) 增强系统阻尼的核电机组励磁及pss参数优化整定方法
Jia et al. Simulation method for current-limiting effect of saturated-core superconducting fault current limiter
CN111751072A (zh) 一种电磁激励超重力振动台模拟装置及模拟方法
CN207396711U (zh) 电流互感器中剩磁的试验电路
Li et al. Measurement and modelling of the rotational core losses in an induction machine at different load conditions
Zhao et al. Topological transient models of three-phase, three-legged transformer
CN112847391B (zh) 一种磁控多脚软体机器人的充磁系统及充磁方法
CN109446707A (zh) 一种y/δ变压器绕组匝间短路振动加速度计算方法
CN105548521B (zh) 开放式磁重力模型试验系统重力场模拟装置及其方法
CN108489784B (zh) 一种基于3d打印技术的体积力梯度加载方法
CN108061872A (zh) 电流互感器中剩磁的试验方法、装置、存储介质及处理器
CN209682546U (zh) 一种适用于frp加固钢纤维混凝土的智能定向纤维系统
Choi et al. Experimental and analytical studies on electromagnetic behaviors of the GdBCO racetrack coils in a time-varying magnetic field
CN205822284U (zh) 一种对扩展基础轴心和偏心加载的加载箱
GB857059A (en) Electromagnetic displacing means for neutron absorbing control rods
Qu et al. Calculation and simulation analysis on starting performance of the high-voltage line-start PMSM
CN211627765U (zh) 手持式电机定子旋向仪
CN106373700A (zh) 用于地质力学模型试验加载的梯度磁场发生装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201030