CN111829559A - A method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system - Google Patents
A method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system Download PDFInfo
- Publication number
- CN111829559A CN111829559A CN202010589758.9A CN202010589758A CN111829559A CN 111829559 A CN111829559 A CN 111829559A CN 202010589758 A CN202010589758 A CN 202010589758A CN 111829559 A CN111829559 A CN 111829559A
- Authority
- CN
- China
- Prior art keywords
- passive wireless
- readout circuit
- resistance
- symmetrical
- sensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000003990 capacitor Substances 0.000 claims description 44
- 230000000903 blocking effect Effects 0.000 claims description 30
- 230000001939 inductive effect Effects 0.000 claims description 23
- 238000003012 network analysis Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 9
- 238000012360 testing method Methods 0.000 abstract description 8
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/243—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the phase or frequency of AC
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本发明公开了一种PT对称型LC无源无线传感系统实现多参数测量的方法,属于测量、测试的技术领域。该系统包括LC无源无线传感器以及与其通过耦合电感无线连接的读出电路,通过设计探测电路与LC无源无线传感器电路的电容值、电感值和电阻值,使得探测电路与LC无源无线传感器电路的谐振频率相等、系统的增益和损耗也相等,从而满足PT对称性。本发明提出的一种基于PT对称LC无源无线传感系统实现多参数测量的方法使得传感器作为单个谐振回路,通过阻抗相位频率扫描便可实现多个参数的测量。
The invention discloses a method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system, belonging to the technical field of measurement and testing. The system includes an LC passive wireless sensor and a readout circuit wirelessly connected to it through a coupled inductor. By designing the capacitance, inductance and resistance values of the detection circuit and the LC passive wireless sensor circuit, the detection circuit and the LC passive wireless sensor are designed The resonant frequency of the circuit is equal, and the gain and loss of the system are also equal, thus satisfying the PT symmetry. A method for realizing multi-parameter measurement based on a PT symmetrical LC passive wireless sensor system proposed by the present invention makes the sensor as a single resonant circuit, and can realize the measurement of multiple parameters through impedance phase frequency scanning.
Description
技术领域technical field
本发明涉及无线无源传感系统技术,特别涉及一种PT对称型LC无源无线传感系统实现多参数测量的方法,属于测量、测试的技术领域。The invention relates to wireless passive sensing system technology, in particular to a method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensing system, belonging to the technical field of measurement and testing.
背景技术Background technique
无线传感网和物联网的发展对传感器提出了新的要求,即一个传感器节点可以测量多个参数实现传感节点的多功能化。实现LC无源无线传感器的多参数检测最简单的方法即是采用传感器阵列(Sensors Array)形式,其中,每个LC传感器回路的谐振频率间隔开并且相互间要避免电磁干扰。很明显,通过这种阵列形式实现多参数测量系统的器件面积是成倍增加的,多层金属工艺可以实现多个 LC回路的垂直叠加,从而节省器件面积,但是LC传感器中的电感耦合使得情况变得复杂,各LC回路谐振频率之间的相互影响使得电路分析复杂,测量频率不准确。The development of wireless sensor networks and the Internet of Things puts forward new requirements for sensors, that is, a sensor node can measure multiple parameters to realize the multi-function of the sensor node. The easiest way to realize multi-parameter detection of LC passive wireless sensors is to use a sensor array (Sensors Array) form, in which the resonant frequencies of each LC sensor loop are spaced apart and electromagnetic interference is avoided. Obviously, the device area of the multi-parameter measurement system is multiplied by this array form, and the multi-layer metal process can realize the vertical stacking of multiple LC loops, thus saving the device area, but the inductive coupling in the LC sensor makes the situation It becomes complicated, and the mutual influence between the resonant frequencies of each LC circuit makes the circuit analysis complicated and the measurement frequency is inaccurate.
传统的传感系统仅仅根据谐振频率的测量值标定传感器参数是阻碍传感节点多功能化的主要原因之一。原因在于,不论LC传感器包含几个敏感电感或者敏感电容,LC回路由于互感耦合或者等效电容合并最终成为一个等效的LC串联结构,其谐振频率峰只有一个,因此无法反应出各个敏感电感、敏感电容的变化。归根结底,从数学的角度上来说,关于谐振频率的表达式只有一个方程,无法解出多个未知数(即多个敏感电感、敏感电容)。The traditional sensing system only calibrates the sensor parameters according to the measured value of the resonant frequency, which is one of the main reasons that hinder the multi-functionalization of the sensing node. The reason is that no matter how many sensitive inductances or sensitive capacitances the LC sensor contains, the LC loop eventually becomes an equivalent LC series structure due to mutual inductance coupling or the combination of equivalent capacitances, and its resonant frequency peak is only one, so it cannot reflect each sensitive inductance, Sensitive capacitance changes. In the final analysis, from a mathematical point of view, there is only one equation for the expression of the resonant frequency, and multiple unknowns (ie, multiple sensitive inductors, sensitive capacitors) cannot be solved.
目前,解决传统传感系统不能测量每个敏感器件参数这一问题的常用方法是:利用温度敏感材料做成电感以利用其寄生电阻作为敏感方式之一,利用敏感电容作为另一种敏感方式,从而进行双参数的测量,同时测量LC传感器的谐振频率和Q值/输入阻抗,这样能得到两个方程,即可解出两个敏感量。这种方法仅限于双参数的测量,不能扩展为三个以及更多参数的测量。At present, the common method to solve the problem that the traditional sensing system cannot measure the parameters of each sensitive device is to use the temperature-sensitive material to make an inductor to use its parasitic resistance as one of the sensitive methods, and use the sensitive capacitance as another sensitive method. Therefore, the measurement of two parameters is carried out, and the resonant frequency and Q value/input impedance of the LC sensor are measured at the same time, so that two equations can be obtained, and the two sensitive quantities can be solved. This method is limited to measurements of two parameters and cannot be extended to measurements of three and more parameters.
发明内容SUMMARY OF THE INVENTION
本发明的发明目的是针对上述背景技术的不足,提供了一种PT对称型LC 无源无线传感系统实现多参数测量的方法,该系统中探测电路与LC无源无线传感器电路通过电感磁谐振强耦合无线连接。通过设计使得探测电路与LC无源无线传感器电路的电容值、电感值均相等,因此探测电路与LC无源无线传感器电路的谐振频率相同;电阻值互为相反数,因此系统增益和损耗也相等,满足PT 对称性。本发明提出的PT对称LC无源无线传感系统使得传感器作为单个谐振回路,通过阻抗相位频率扫描实现了仅仅测量谐振频率便可测量3个参数。克服了同时测量LC传感器的谐振频率和Q值/输入阻抗,仅用于进行双参数的测量不能扩展为三个以及更多参数测量的技术问题。The purpose of the present invention is to address the deficiencies of the above-mentioned background technology, and to provide a method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system. In the system, the detection circuit and the LC passive wireless sensor circuit pass through inductive magnetic resonance. Strongly coupled wireless connection. Through the design, the capacitance and inductance values of the detection circuit and the LC passive wireless sensor circuit are equal, so the resonant frequency of the detection circuit and the LC passive wireless sensor circuit is the same; the resistance values are opposite to each other, so the system gain and loss are also equal , which satisfies the PT symmetry. The PT symmetrical LC passive wireless sensor system proposed by the present invention makes the sensor as a single resonant circuit, and realizes the measurement of three parameters only by measuring the resonant frequency through impedance phase frequency scanning. It overcomes the technical problem of measuring the resonant frequency and Q value/input impedance of the LC sensor at the same time, and the measurement only used for two parameters cannot be extended to three or more parameter measurements.
本发明为实现上述发明目的采用如下技术方案:The present invention adopts following technical scheme for realizing above-mentioned purpose of invention:
一种PT对称型LC无源无线传感系统实现多参数测量的方法,采用包含读出电路和LC无源无线传感器电路的系统实现,读出电路与LC无源无线传感器电路通过电感磁共振强耦合无线连接。A method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system, which is realized by a system including a readout circuit and an LC passive wireless sensor circuit. Coupling wireless connection.
LC无源无线传感器电路包括第一电感线圈、敏感电阻、敏感电容,第一电感线圈的一端连接敏感电阻的一端,敏感电阻的另一端连接敏感电容的一极,敏感电容的另一极连接第一电感线圈的另一端。The LC passive wireless sensor circuit includes a first inductive coil, a sensitive resistor and a sensitive capacitor. One end of the first inductive coil is connected to one end of the sensitive resistor, the other end of the sensitive resistor is connected to one pole of the sensitive capacitor, and the other pole of the sensitive capacitor is connected to the first terminal. the other end of an inductor coil.
读出电路包括:第二电感线圈、可调电阻、可调电容模块和矢量网络分析模块,第二电感线圈的一端连接可调电阻的一端,可调电阻的另一端连接矢量网络分析模块的一个输入端子,矢量网络分析模块的另一个输入端子连接可调电容模块的一端,可调电容模块的另一端连接第一电感线圈的另一端。可调电容模块包括:变容二极管、直流电压源、阻交电阻、第一隔直电容、第二隔直电容,变容二极管、直流电压源、阻交电阻、第一隔直电容、第二隔直电容,第二隔直电容的一端与矢量网络分析模块相连,第二隔直电容的另一端与变容二极管的负极相连,变容二极管的正极与第一隔直电容的一端相连,第一隔直电容的另一端与第二电感线圈的一端相连,直流电压源的负极与变容二极管的正极相。连,直流电压源的正极与阻交电阻的一端相连,阻交电阻的另一端与变容二极管的负极相连。The readout circuit includes: a second inductance coil, an adjustable resistance, an adjustable capacitance module and a vector network analysis module, one end of the second inductance coil is connected to one end of the adjustable resistance, and the other end of the adjustable resistance is connected to one of the vector network analysis modules An input terminal, another input terminal of the vector network analysis module is connected to one end of the adjustable capacitance module, and the other end of the adjustable capacitance module is connected to the other end of the first inductance coil. The adjustable capacitance module includes: a varactor diode, a DC voltage source, an AC blocking resistor, a first DC blocking capacitor, a second DC blocking capacitor, a varactor diode, a DC voltage source, an AC blocking resistor, a first DC blocking capacitor, a second DC blocking capacitor DC blocking capacitor, one end of the second DC blocking capacitor is connected to the vector network analysis module, the other end of the second DC blocking capacitor is connected to the negative electrode of the varactor diode, the positive electrode of the varactor diode is connected to one end of the first DC blocking capacitor, and the first The other end of a DC blocking capacitor is connected to one end of the second inductance coil, and the negative electrode of the DC voltage source is in phase with the positive electrode of the varactor diode. The positive pole of the DC voltage source is connected to one end of the AC resistance, and the other end of the AC resistance is connected to the negative pole of the varactor diode.
矢量网络分析模块包括:带有源内阻为R0的交流信号源和源内阻,交流信号源的一端与可调电容模块相连,交流信号源的另一端与源内阻的一端相连,源内阻的另一端与可调电阻的一端相连。矢量网络分析模块与读出电路形成一个闭合回路,在计算读出电路的电阻值时,整个矢量网络分析模块采用负电阻-R0来表示,因此,读出电路的总电阻是负电阻-R0与可调电阻串联的结果。读出电路输入阻抗与传感器阻抗的关系为:Zin=Z读出电路+(ω2M2)/Z传感器,Zin为读出电路输入阻抗,Z读出电路为读出电路阻抗,Z传感器为传感器阻抗,ω为读出电路输入信号频率,M为LC无源无线传感系统互感。The vector network analysis module includes: an AC signal source with source internal resistance R0 and source internal resistance, one end of the AC signal source is connected to the adjustable capacitor module, the other end of the AC signal source is connected to one end of the source internal resistance, and the other end of the source internal resistance is connected. Connect to one end of the adjustable resistor. The vector network analysis module and the readout circuit form a closed loop. When calculating the resistance value of the readout circuit, the entire vector network analysis module is represented by the negative resistance -R0. Therefore, the total resistance of the readout circuit is the negative resistance -R0 and The result of an adjustable resistor in series. The relationship between the input impedance of the readout circuit and the sensor impedance is: Zin=Z readout circuit +(ω 2 M 2 )/Z sensor , Zin is the readout circuit input impedance, Z readout circuit is the readout circuit impedance, and Z sensor is Sensor impedance, ω is the input signal frequency of the readout circuit, M is the mutual inductance of the LC passive wireless sensing system.
第二电感线圈的电感值和第一电感线圈的电感值相同,可调电容模块的电容值和敏感电容的电容值相等,读出电路的电阻值是敏感电阻电阻值的相反数,读出电路与LC无源无线传感器电路的谐振频率相同,读出电路端的增益与LC无源无线传感器电路端的损耗也相等,整个LC无源无线传感系统满足PT对称性。The inductance value of the second inductance coil is the same as the inductance value of the first inductance coil, the capacitance value of the adjustable capacitance module is equal to the capacitance value of the sensitive capacitor, the resistance value of the readout circuit is the opposite of the resistance value of the sensitive resistor, and the readout circuit The same as the resonant frequency of the LC passive wireless sensor circuit, the gain at the readout circuit end is also equal to the loss at the LC passive wireless sensor circuit end, and the entire LC passive wireless sensor system satisfies the PT symmetry.
测量多参数的方法为:初始化系统读出电路,测量读出电路输入信号频率扫描过程中的输入阻抗相位,由读出电路输入阻抗n个零相位对应的读出电路输入信号频率反解n个待测参量,n为正整数。The method of measuring multi-parameters is: initialize the system readout circuit, measure the input impedance phase during the frequency scanning process of the readout circuit input signal, and inversely solve n input signal frequencies of the readout circuit corresponding to n zero phases of the readout circuit input impedance. The parameter to be measured, n is a positive integer.
本发明采用上述技术方案,具有以下有益效果:本申请公开的一种PT对称型LC无源无线传感系统实现多参数测量的方法,使得传感器作为单个谐振回路,通过阻抗相位频率扫描实现了仅仅测量谐振频率便可测量3个参数,避免了多个谐振回路谐振频率之间的相互影响克服了同时测量LC传感器的谐振频率和Q值 /输入阻抗仅能实现双参数测量的缺陷。The present invention adopts the above-mentioned technical scheme, and has the following beneficial effects: a method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system disclosed in the present application makes the sensor as a single resonant circuit, through impedance phase frequency scanning to realize only Three parameters can be measured by measuring the resonant frequency, which avoids the mutual influence between the resonant frequencies of multiple resonant tanks and overcomes the defect that simultaneous measurement of the resonant frequency and Q value/input impedance of the LC sensor can only achieve dual-parameter measurement.
附图说明Description of drawings
图1是本发明涉及的PT对称型LC无源无线传感系统的结构框图。FIG. 1 is a structural block diagram of the PT symmetrical LC passive wireless sensing system involved in the present invention.
图2是图1所示LC无源无线传感系统的简化等效电路图。FIG. 2 is a simplified equivalent circuit diagram of the LC passive wireless sensing system shown in FIG. 1 .
图3是本发明实施例中提出的采用PT对称型LC无源无线传感系统测试不同湿度得到的相频图。FIG. 3 is a phase-frequency diagram obtained by using a PT symmetrical LC passive wireless sensor system to test different humidity levels proposed in an embodiment of the present invention.
图4是本发明实施例中提出的采用PT对称型LC无源无线传感系统测试不同温度得到的相频图。FIG. 4 is a phase-frequency diagram obtained by testing different temperatures using a PT symmetrical LC passive wireless sensor system proposed in an embodiment of the present invention.
图5是本发明实施例中提出的采用PT对称型LC无源无线传感系统测试不同探测距离得到的相频图。FIG. 5 is a phase-frequency diagram obtained by using a PT symmetrical LC passive wireless sensor system to test different detection distances proposed in an embodiment of the present invention.
图中标号说明:1、LC无源无线传感器电路,2、读出电路,11、第一电感线圈,12、敏感电阻,13、敏感电容,21、第二电感线圈,22、可调电阻,23、可调电容模块,231、变容二极管,232、直流电压源,233、阻交电阻,234、第一个隔直电容,235、第二个隔直电容,24、矢量网络分析模块。Description of the symbols in the figure: 1, LC passive wireless sensor circuit, 2, readout circuit, 11, first inductive coil, 12, sensitive resistor, 13, sensitive capacitor, 21, second inductive coil, 22, adjustable resistance, 23. Adjustable capacitance module, 231, varactor diode, 232, DC voltage source, 233, AC resistance, 234, first DC blocking capacitor, 235, second DC blocking capacitor, 24, vector network analysis module.
具体实施方式Detailed ways
下面结合附图对发明的技术方案进行详细说明。The technical solutions of the invention will be described in detail below with reference to the accompanying drawings.
本发明涉及PT对称型LC无源无线传感系统的结构框图如图1所示,远距离LC无源无线传感系统包括:LC无源无线传感器电路1和读出电路2,LC 无源无线传感器电路1和读出电路2通过电感磁共振强耦合无线连接。The present invention relates to the structural block diagram of the PT symmetrical LC passive wireless sensing system as shown in Figure 1. The long-distance LC passive wireless sensing system includes: an LC passive
本发明涉及的PT对称型LC无源无线传感系统的简化等效电路如图2所示, LC无源无线传感器电路1包括:第一电感线圈11、敏感电阻12、敏感电容13;第一电感线圈11的一端连接敏感电阻12的一端,敏感电阻12的另一端连接敏感电容13的一端,敏感电容13的另一端连接第一电感线圈11的另一端。The simplified equivalent circuit of the PT symmetrical LC passive wireless sensor system involved in the present invention is shown in FIG. 2 . The LC passive
根据图2所示,读出电路2包括:第二电感线圈21、可调电阻22、可调电容模块23和矢量网络分析模块24。第二电感线圈21的一端连接可调电阻22的一端,可调电阻22的另一端连接矢量网络分析模块24的一端,矢量网络分析模块24的另一端连接可调电容模块23的一端,可调电容模块23的另一端连接第二电感线圈21的另一端。As shown in FIG. 2 , the
其中,可调电容模块23包括:变容二极管231、直流电压源232、阻交电阻 233、第一隔直电容234、第二隔直电容235。第二隔直电容235的一端与矢量网络分析模块24相连,第二隔直电容235的另一端与变容二极管231的负极相连,变容二极管231的正极与第一隔直电容234的一端相连,第一隔直电容234的另一端与第二电感线圈21的一端相连;直流电压源232的负极与变容二极管231 的正极相连,直流电压源232的正极与阻交电阻233的一端相连,阻交电阻233 的另一端与变容二极管231的负极相连。The
矢量网络分析模块24以载波信号的形式发出激励信号,由第二电感线圈21 通过电感磁共振强耦合传输激励信号给第一电感线圈11,此时,载波信号带来的能量在第一电感线圈11与敏感电容13之间来回震荡,同时,敏感电阻13产生能量损耗。当受环境影响的敏感电容13的电容值和敏感电阻12的电阻值发生变化,这一特性使得LC无源无线传感器电路1的阻抗Z发生变化。因此,可以利用变化的阻抗Z来调制LC无源无线传感器电路1中载波信号的相位,因相位变化而形成的调相信号再由第一电感线圈11通过电感磁共振强耦合到第二电感线圈21,由矢量网络分析模块24根据调相信号进行相位变化的分析。The vector
读出电路输入阻抗Zin与LC无源无线传感器阻抗Z传感器的关系为:Zin=Z读出电路+(ω2M2)/Z传感器,Zin为读出电路输入阻抗,Z读出电路为读出电路阻抗,Z传感器为传感器阻抗,ω为读出电路输入信号频率,M为LC无源无线传感系统互感。本申请通过量测读出电路输入阻抗多个零相位处的读出电路输入信号频率反解多个变化参量。The relationship between the readout circuit input impedance Zin and the LC passive wireless sensor impedance Z sensor is: Zin=Z readout circuit + (ω 2 M 2 )/Z sensor , Zin is the readout circuit input impedance, and Z readout circuit is the readout circuit. Output circuit impedance, Z sensor is the sensor impedance, ω is the input signal frequency of the readout circuit, M is the mutual inductance of the LC passive wireless sensor system. The present application inversely solves multiple variation parameters by measuring the input signal frequency of the readout circuit at multiple zero phases of the readout circuit input impedance.
下面以一个LC型温湿度传感器开展试验以验证本申请公开的一种基于PT 对称LC无源无线传感系统实现多参数测量的方法。敏感电容的电容值随着环境湿度的变化而发生变化,类似的,敏感电阻的电阻值随着环境温度变化而变化,最终导致传感器谐振频率的变化。采用本发明提出的多参数测量的方法,通过读取输入阻抗Zin 3个零相位处的谐振频率,即可反解得出电感、电容以及耦合系数(即探测距离)3种变化参量。在耦合系数k=0.1时,测试得到5个不同湿度点下的一系列响应曲线Zin,如图3所示。同样的,在耦合系数k=0.1时,测试得到5个不同温度点下的一系列响应曲线Zin,如图4所示。在温湿度不变情况下,我们又测试了不同探测距离下的响应曲线,如图5所示。可见,本发明提出的一种基于PT对称LC无源无线传感系统实现多参数测量的方法实现了传感器作为单个谐振回路,通过阻抗相位频率扫描实现了仅仅测量谐振频率便可测量3 个参数。The following tests are carried out with an LC type temperature and humidity sensor to verify a method for realizing multi-parameter measurement based on a PT symmetrical LC passive wireless sensor system disclosed in the present application. The capacitance value of the sensitive capacitor changes with the change of the ambient humidity. Similarly, the resistance value of the sensitive resistor changes with the change of the ambient temperature, which eventually leads to the change of the resonant frequency of the sensor. Using the multi-parameter measurement method proposed by the present invention, by reading the resonant frequencies at the three zero phases of the input impedance Zin, three changing parameters of inductance, capacitance and coupling coefficient (ie detection distance) can be obtained by inverse solution. When the coupling coefficient k=0.1, a series of response curves Zin under 5 different humidity points are obtained from the test, as shown in Figure 3. Similarly, when the coupling coefficient k=0.1, a series of response curves Zin at 5 different temperature points are obtained from the test, as shown in Figure 4. Under the condition of constant temperature and humidity, we tested the response curves at different detection distances, as shown in Figure 5. It can be seen that a method for multi-parameter measurement based on a PT symmetrical LC passive wireless sensor system proposed in the present invention realizes that the sensor acts as a single resonant circuit, and only measures the resonant frequency to measure three parameters through impedance phase frequency scanning.
以上具体实施方式及实施例是对本发明提出的一种基于PT对称LC无源无线传感系统实现多参数测量的方法技术思想的具体支持,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想以及在本技术方案基础上所做的任何等同变化或等效的改动均落入本发明技术方案划定的范围。The above specific embodiments and examples are specific support for the technical idea of a method for realizing multi-parameter measurement based on a PT symmetric LC passive wireless sensor system proposed by the present invention, which cannot limit the protection scope of the present invention. The proposed technical ideas and any equivalent changes or equivalent modifications made on the basis of the technical solutions all fall within the scope defined by the technical solutions of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010589758.9A CN111829559B (en) | 2020-06-24 | 2020-06-24 | A method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010589758.9A CN111829559B (en) | 2020-06-24 | 2020-06-24 | A method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111829559A true CN111829559A (en) | 2020-10-27 |
CN111829559B CN111829559B (en) | 2022-07-08 |
Family
ID=72898088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010589758.9A Active CN111829559B (en) | 2020-06-24 | 2020-06-24 | A method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111829559B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112985635A (en) * | 2021-03-17 | 2021-06-18 | 哈尔滨工程大学 | Wireless temperature sensor based on PT symmetry |
CN113037335A (en) * | 2021-03-12 | 2021-06-25 | 同济大学 | Passive wireless sensing system and method |
CN113507300A (en) * | 2021-06-21 | 2021-10-15 | 华南理工大学 | Wireless energy-carrying communication system based on autonomous circuit principle |
CN113627112A (en) * | 2021-08-02 | 2021-11-09 | 东南大学 | Multi-resonance LC circuit decoupling method |
CN113701789A (en) * | 2021-09-03 | 2021-11-26 | 东南大学 | Passive wireless LC neutral sensor based on negative resistance circuit |
CN113758505A (en) * | 2021-09-03 | 2021-12-07 | 东南大学 | A LC passive wireless dual-parameter sensing system based on PT symmetry |
CN114577856A (en) * | 2022-03-04 | 2022-06-03 | 山西大同大学 | Passive wireless sensor for monitoring coal gangue mixing ratio based on second-order EP point |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3175145A (en) * | 1961-06-14 | 1965-03-23 | Stewart Warner Corp | Motive means for electrically controlling distance between a body and object |
EP1965177A1 (en) * | 2007-02-27 | 2008-09-03 | Senstronic, S.A. | Inductive presence or position sensor |
JP2010045532A (en) * | 2008-08-11 | 2010-02-25 | Panasonic Electric Works Co Ltd | Proximity sensor |
CN102003973A (en) * | 2010-10-19 | 2011-04-06 | 首都医科大学 | Wireless passive measuring method and circuit |
JP2011166197A (en) * | 2010-02-04 | 2011-08-25 | Sony Corp | Signal transmission circuit, column a/d converter, solid-state imaging element, and camera system |
EP2395651A2 (en) * | 2010-04-16 | 2011-12-14 | General Electric Company | System and method for damping lc circuits in power conversion systems |
CN103471653A (en) * | 2013-09-06 | 2013-12-25 | 中北大学 | High temperature wireless passive three-parameter-integrated sensor based on co-firing ceramic technology |
CN103727964A (en) * | 2013-11-22 | 2014-04-16 | 中北大学 | Mechanical parameter measuring system and method based on LC resonance sensor |
US20150184993A1 (en) * | 2013-12-30 | 2015-07-02 | Texas Instruments Incorporated | Resonant inductive sensing with active resonator target |
CN106643826A (en) * | 2016-11-02 | 2017-05-10 | 中国科学院电子学研究所 | Detection circuit and method of LC resonant transducer |
CN108110908A (en) * | 2018-01-23 | 2018-06-01 | 中国矿业大学(北京) | Asymmetric coils magnetic coupling resonant radio energy Transmission system and method |
CN110426064A (en) * | 2019-07-18 | 2019-11-08 | 东南大学 | Wireless sourceless sensor and wireless and passive method for sensing |
CN110530253A (en) * | 2019-08-30 | 2019-12-03 | 西安电子科技大学 | Optimum design method for resistance-type wireless and passive strain transducer measuring circuit |
CN110853318A (en) * | 2019-10-28 | 2020-02-28 | 东南大学 | A long-distance LC passive wireless sensor system |
CN111028496A (en) * | 2019-12-10 | 2020-04-17 | 东南大学 | Remote LC passive wireless sensing system with automatic matching working frequency |
CN111245391A (en) * | 2020-01-14 | 2020-06-05 | 东南大学 | Reading circuit and method for realizing impedance automatic matching of LC passive wireless sensing system |
-
2020
- 2020-06-24 CN CN202010589758.9A patent/CN111829559B/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3175145A (en) * | 1961-06-14 | 1965-03-23 | Stewart Warner Corp | Motive means for electrically controlling distance between a body and object |
EP1965177A1 (en) * | 2007-02-27 | 2008-09-03 | Senstronic, S.A. | Inductive presence or position sensor |
JP2010045532A (en) * | 2008-08-11 | 2010-02-25 | Panasonic Electric Works Co Ltd | Proximity sensor |
JP2011166197A (en) * | 2010-02-04 | 2011-08-25 | Sony Corp | Signal transmission circuit, column a/d converter, solid-state imaging element, and camera system |
EP2395651A2 (en) * | 2010-04-16 | 2011-12-14 | General Electric Company | System and method for damping lc circuits in power conversion systems |
CN102003973A (en) * | 2010-10-19 | 2011-04-06 | 首都医科大学 | Wireless passive measuring method and circuit |
CN103471653A (en) * | 2013-09-06 | 2013-12-25 | 中北大学 | High temperature wireless passive three-parameter-integrated sensor based on co-firing ceramic technology |
CN103727964A (en) * | 2013-11-22 | 2014-04-16 | 中北大学 | Mechanical parameter measuring system and method based on LC resonance sensor |
US20150184993A1 (en) * | 2013-12-30 | 2015-07-02 | Texas Instruments Incorporated | Resonant inductive sensing with active resonator target |
CN106643826A (en) * | 2016-11-02 | 2017-05-10 | 中国科学院电子学研究所 | Detection circuit and method of LC resonant transducer |
CN108110908A (en) * | 2018-01-23 | 2018-06-01 | 中国矿业大学(北京) | Asymmetric coils magnetic coupling resonant radio energy Transmission system and method |
CN110426064A (en) * | 2019-07-18 | 2019-11-08 | 东南大学 | Wireless sourceless sensor and wireless and passive method for sensing |
CN110530253A (en) * | 2019-08-30 | 2019-12-03 | 西安电子科技大学 | Optimum design method for resistance-type wireless and passive strain transducer measuring circuit |
CN110853318A (en) * | 2019-10-28 | 2020-02-28 | 东南大学 | A long-distance LC passive wireless sensor system |
CN111028496A (en) * | 2019-12-10 | 2020-04-17 | 东南大学 | Remote LC passive wireless sensing system with automatic matching working frequency |
CN111245391A (en) * | 2020-01-14 | 2020-06-05 | 东南大学 | Reading circuit and method for realizing impedance automatic matching of LC passive wireless sensing system |
Non-Patent Citations (4)
Title |
---|
BIN-BIN ZHOU 等: "Ultra-remote LC Sensor Based on The Broken PT-Symmetry", 《2019 IEEE SENSORS》 * |
CHEN, PAI-YEN 等: "High-Order PT-Symmetric Telemetric Sensors with Singularity-Enhanced Sensitivity", 《2018 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING》 * |
董蕾: "基于LC无源无线传感的探测方法", 《中国博士学位论文全文数据库 信息科技辑》 * |
黄学良等: "磁耦合谐振式无线电能传输技术研究动态与应用展望", 《电力系统自动化》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113037335A (en) * | 2021-03-12 | 2021-06-25 | 同济大学 | Passive wireless sensing system and method |
CN113037335B (en) * | 2021-03-12 | 2021-11-23 | 同济大学 | Passive wireless sensing system and method |
CN112985635B (en) * | 2021-03-17 | 2021-12-21 | 哈尔滨工程大学 | Wireless temperature sensor based on PT symmetry |
CN112985635A (en) * | 2021-03-17 | 2021-06-18 | 哈尔滨工程大学 | Wireless temperature sensor based on PT symmetry |
CN113507300A (en) * | 2021-06-21 | 2021-10-15 | 华南理工大学 | Wireless energy-carrying communication system based on autonomous circuit principle |
CN113507300B (en) * | 2021-06-21 | 2022-06-14 | 华南理工大学 | Wireless energy-carrying communication system based on autonomous circuit principle |
CN113627112A (en) * | 2021-08-02 | 2021-11-09 | 东南大学 | Multi-resonance LC circuit decoupling method |
CN113627112B (en) * | 2021-08-02 | 2022-11-11 | 东南大学 | Multi-resonance LC circuit decoupling method |
CN113758505A (en) * | 2021-09-03 | 2021-12-07 | 东南大学 | A LC passive wireless dual-parameter sensing system based on PT symmetry |
CN113701789A (en) * | 2021-09-03 | 2021-11-26 | 东南大学 | Passive wireless LC neutral sensor based on negative resistance circuit |
CN113701789B (en) * | 2021-09-03 | 2022-11-29 | 东南大学 | Passive wireless LC neutral sensor based on negative resistance circuit |
CN114577856A (en) * | 2022-03-04 | 2022-06-03 | 山西大同大学 | Passive wireless sensor for monitoring coal gangue mixing ratio based on second-order EP point |
CN114577856B (en) * | 2022-03-04 | 2023-09-22 | 山西大同大学 | Passive wireless sensor for monitoring coal-gangue mixing proportion based on second-order EP (EP) points |
Also Published As
Publication number | Publication date |
---|---|
CN111829559B (en) | 2022-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111829559B (en) | A method for realizing multi-parameter measurement in a PT symmetrical LC passive wireless sensor system | |
CN103278181B (en) | A kind of wireless sensing circuit of passive LC resonator sensor | |
Nopper et al. | Wireless readout of passive LC sensors | |
CN106643826B (en) | Detection circuit and detection method of LC resonant sensor | |
CN110853318B (en) | Long-distance L C passive wireless sensing system | |
CN101876528B (en) | Electromagnetic sensor-based metal film thickness measuring device and method | |
CN103176215A (en) | Detection apparatus, power receiving apparatus, non-contact power transmission system and detection method | |
Babu et al. | A linear and high sensitive interfacing scheme for wireless passive LC sensors | |
CN103562736A (en) | Simple and minimally invasive methods and systems for sensing and computing load impedance | |
CN103512592B (en) | Wireless and passive LC resonant transducer testing circuit and corresponding information getting method | |
CN101963514A (en) | The measurement mechanism and the measuring system that are used for the remote measurement analyte sensors | |
CN203231758U (en) | A Wireless Readout Circuit of Passive LC Resonant Sensor | |
CN110426064B (en) | Wireless passive sensor and wireless passive sensing method | |
CN103873013A (en) | Application circuit of surface acoustic wave transducer | |
Simić et al. | Wireless readout of resistive sensors | |
CN102508034B (en) | Method and device for measuring parameters of micro solid gyroscope equivalent circuit | |
CN117434320B (en) | Resonant frequency adjusting system and method for calibrating resonant circuit of differential transformer | |
Marioli et al. | An inductive telemetric measurement system for humidity sensing | |
US4777430A (en) | Circuit for determining the effective series resistance and Q-factor of capacitors | |
CN113758505B (en) | PT symmetry-based LC passive wireless double-parameter sensing system | |
CN116256007A (en) | Second-order space symmetric time-symmetry passive wireless sensing system based on singular point | |
CN114295645B (en) | Resonant microwave sensor with adjustable working frequency | |
CN108896131B (en) | Level gauging unit and material level gauge in RF admittance level meter based on temperature-compensating | |
CN113627112B (en) | Multi-resonance LC circuit decoupling method | |
CN110441616A (en) | A kind of coefficient of frequency modification method of inductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |