CN111826394A - Construction and application of plant transient expression vector - Google Patents

Construction and application of plant transient expression vector Download PDF

Info

Publication number
CN111826394A
CN111826394A CN202010788492.0A CN202010788492A CN111826394A CN 111826394 A CN111826394 A CN 111826394A CN 202010788492 A CN202010788492 A CN 202010788492A CN 111826394 A CN111826394 A CN 111826394A
Authority
CN
China
Prior art keywords
expression vector
transient expression
plant
seq
plant transient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010788492.0A
Other languages
Chinese (zh)
Inventor
周昕
郑蔚
翟璐
赵启超
濮云飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Huadi Pharmaceutical Group Pharmaceutical Development Co ltd
Original Assignee
Zhejiang Huadi Pharmaceutical Group Pharmaceutical Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Huadi Pharmaceutical Group Pharmaceutical Development Co ltd filed Critical Zhejiang Huadi Pharmaceutical Group Pharmaceutical Development Co ltd
Priority to CN202010788492.0A priority Critical patent/CN111826394A/en
Publication of CN111826394A publication Critical patent/CN111826394A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention relates to the field of biotechnology, in particular to construction and application of a plant transient expression vector. The invention adopts the artificially synthesized sequence to improve the transcription amount of the vector, and simultaneously improves the translation level and the stability of the target protein by selectively adding the amino acid sequence, thereby finally achieving the effect of improving the accumulation amount of the target protein in plant leaf cells on the whole.

Description

Construction and application of plant transient expression vector
Technical Field
The invention relates to the field of biotechnology, in particular to construction and application of a plant transient expression vector.
Background
The plant expression system is a biological protein expression reactor with wide application prospect, as well as a mammalian cell expression system and a microbial fermentation system. The mammalian cell expression system has the advantages of high yield, system maturity, similarity to human cells and the like, is generally popularized, but the running price is relatively expensive; the microbial fermentation system is quite complete in technology, high in yield and low in price, but due to the difference of cell types, the microbial fermentation system cannot well express target proteins needing specific protein modification. The plant expression system has inherent advantages, such as less biomass limit of plants, fast growth, low cost and mammalian expression system, and simultaneously, plant cells can carry out various post-translational modifications on proteins, can make up the defects of a microbial fermentation system and an insect expression system, has good production prospect, and is a popular research direction for commercial application.
The expression of target protein in plants is very important, and an effective plant foreign protein expression vector is important. At the present stage, the domestic plant exogenous protein expression vector is mainly applied in the field of basic scientific research, and the exploration of an application vector capable of carrying out high-efficiency commercial production is very little. The international plant recombinant protein expression enterprises, Medicago and IiconGenetic, developed unique expression vectors according to basic research and self-research progress. Therefore, the expression efficiency of the plant exogenous expression vector is improved and improved by means of genetic engineering, so that the plant exogenous expression vector can meet the requirement of commercial production of target protein, and has important practical significance.
Disclosure of Invention
In view of this, the present invention provides the construction and application of plant transient expression vectors. The invention adopts the artificially synthesized sequence to improve the transcription amount of the vector, and simultaneously improves the translation level and the stability of the target protein by selectively adding the amino acid sequence, thereby finally achieving the effect of improving the accumulation amount of the target protein in plant leaf cells on the whole.
In order to achieve the above object, the present invention provides the following technical solutions:
the present invention provides plant transient expression vectors comprising a 5' UTR region, an MCS region and a SEKDEL sequence.
In some embodiments of the invention, the 5' UTR region, MCS region and SEKDEL sequence have the sequences shown in SEQ ID No. 1.
In some embodiments of the invention, the plant transient expression vector has as its basic backbone the plant expression vector pEAQ.
In some embodiments of the present invention, the plant transient expression vector further comprises a target gene, wherein the target gene has a PacI cleavage site at the N-terminal and an XhoI cleavage site at the C-terminal.
In some embodiments of the present invention, in the method for constructing a plant transient expression vector, the sequence shown in SEQ ID No.1 is amplified by using an upstream primer shown in SEQ ID No.2 and a downstream primer shown in SEQ ID No. 3.
In some embodiments of the invention, the amplified amplification system comprises 22. mu.l ddH2O, 25. mu.l KOD OneTM PCRMasterMix, 1. mu.l 10. mu.M upstream primer shown as SEQ ID No.2, 1. mu.l 10. mu.M downstream primer shown as SEQ ID No.3, and 1. mu.l 100 ng/. mu.l plasmid template containing the artificially synthesized sequence SEQ ID No. 1.
In some embodiments of the invention, the procedure for amplification is: 30 seconds at 98 ℃; 28 cycles: 10 seconds at 98 ℃; 30 seconds at 55 ℃; 68 ℃ for 10 seconds; 5 minutes at 68 ℃; 10 minutes at 4 ℃.
The invention also provides application of the plant transient expression vector in expressing foreign protein.
In some embodiments of the invention, the exogenous protein comprises GFP.
On the basis of the research, the invention also provides a method for expressing the foreign protein by the plant transient expression vector, which comprises the following steps:
step 1: constructing the plant transient expression vector;
step 2: inserting a gene of a foreign protein into the plant transient expression vector prepared in the step 1; obtaining a recombinant plasmid;
and step 3: and (3) transforming the recombinant plasmid prepared in the step (2) into host competence, culturing, collecting bacterial liquid, infiltrating plant leaves, and extracting protein.
The expression quantity of the plant exogenous protein expression vector is improved at the present stage mainly from two aspects, namely, the transcription quantity of a target gene expressed by the vector in a plant cell is improved, and the translation quantity and the accumulation quantity of the protein are improved by some methods. The invention adopts the artificially synthesized sequence to improve the transcription amount of the vector, and simultaneously improves the translation level and the stability of the target protein by selectively adding the amino acid sequence, thereby finally achieving the effect of improving the accumulation amount of the target protein in plant leaf cells on the whole.
The modified pEAQ vector provided by the invention is named as pEAQE, and has obvious improvement on the capability of expressing foreign proteins compared with the original pEAQ vector. The promotion is mainly realized by enhancing the transcription level of the vector to target genes in cells and simultaneously promoting the accumulation amount of proteins in the cells. Particularly aiming at some foreign proteins which may be less stable to be expressed in plant cells, the selective fusion expression of SEKDEL can help the target protein to be more stably expressed and accumulated in the plant cells. Can provide a high-quality expression vector platform foundation for the development of commercial protein expression in the later period. Meanwhile, the clever enzyme cutting site design of the pEAQE plant expression vector provides a very simple cloning method for protein operation needing to add fusion expression SEKDEL peptide segment. Saving the labor time and reagent cost of laboratory operations on molecular cloning.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below.
FIG. 1 shows a map of a plasmid with inserted GFP;
FIG. 2 is a photograph showing the comparison of UV fluorescence with the difference in GFP fluorescence of different vectors;
FIG. 3 shows the data comparing the difference in transcription level of GFP mRNA in different vectors by Q-PCR;
FIG. 4 shows the comparison of the difference between the expression data of GFP protein in different vectors by WB.
Detailed Description
The invention discloses construction and application of a plant transient expression vector, and a person skilled in the art can realize the construction by appropriately improving process parameters by referring to the content. It is expressly intended that all such similar substitutes and modifications which would be obvious to one skilled in the art are deemed to be included in the invention. While the methods and applications of this invention have been described in terms of preferred embodiments, it will be apparent to those of ordinary skill in the art that variations and modifications in the methods and applications described herein, as well as other suitable variations and combinations, may be made to implement and use the techniques of this invention without departing from the spirit and scope of the invention.
The raw materials and reagents used in the construction and application of the plant transient expression vector provided by the invention can be purchased from the market.
The invention is further illustrated by the following examples:
EXAMPLE 1 construction of the pEAQE vector
(1) Taking a plant expression vector pEAQ as a basic framework, carrying out enzyme digestion for 2 hours by using two enzyme digestion sites of PacI and XhoI, and then recovering a 9200bp fragment by DNA gel electrophoresis;
(2) synthesizing an artificial sequence shown as SEQ ID No.1, wherein the artificial sequence comprises a 5' UTR region, an MCS region and an SEKDEL sequence;
(3) designing an amplification primer for amplifying the artificial sequence gene segment, wherein an upstream primer is shown as SEQ ID No.2, and a downstream primer is shown as SEQ ID No. 3;
(4) TOYOBO KOD OneTMCarrying out amplification reaction by using the PCRMasterMix, wherein the amplification system is as follows: 22ul ddH2O、25ulKOD OneTMPCRMasterMix, 1ul 10uM upstream primer, 1ul 10uM downstream primer, and 1ul 100ng/ul plasmid template containing an artificially synthesized sequence SEQ ID No. 1. PCR amplification procedure: 98 degrees for 30 seconds; 28 cycles: 98 degrees for 10 seconds; 55 degrees for 30 seconds; 68 degrees for 10 seconds; finally 68 ℃ for 5 minutes; 10 minutes at 4 ℃;
(5) and a PacI enzyme cutting site is added at the N end of the finally amplified gene fragment, and an XhoI enzyme cutting site is added at the C end. Gel electrophoresis is carried out to cut the gel and recover fragments; carrying out single-fragment homologous recombination with Infusion enzyme of Novowed to link a vector skeleton and an amplified fragment;
(6) and performing heat shock transformation on DH5 alpha competence, coating a Kana resistance culture medium, performing colony PCR verification on the next day, selecting positive clone, shaking bacteria, extracting corresponding plasmid and sequencing. And (3) storing the plasmid with completely correct sequencing result, wherein the sequence is shown as SEQ ID No. 6.
Synthetic Artificial sequence of SEQ ID No.1
CAGTGAATTGTTAATTAAGAATTCGAGCTCCACCGCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTTATTGAGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGTTTaAAGAGtCGCAcCCAaAACGCTCaAACcCAATtatTCaACATcTATTtAAgGTCcCTAAAAATGGCCACCCCCGGGAGTGAAAAAGACGAATTATAGCTCGAGGCCTTTAACTCTGGT
SEQ ID No.2 amplification artificial sequence upstream primer
CAGTGAATTGTTAATTAAGGAAACCTC
SEQ ID No.3 amplification artificial sequence downstream primer
ACCAGAGTTAAAGGCCTCGAGCTAGTG
Example 2 insertion of GFP Gene into pEAQE vector
(1) Taking a plant expression vector pEAQE as a basic framework, carrying out enzyme digestion for 2 hours by using SmaI enzyme digestion sites, and then recovering a 10469bp fragment by DNA gel electrophoresis;
(2) designing an amplification primer for amplifying the artificial sequence gene segment, wherein an upstream primer is SEQ ID No.4, and a downstream primer is SEQ ID No. 5;
(3) TOYOBO KOD OneTMCarrying out amplification reaction by using the PCRMasterMix, wherein the amplification system is as follows: 22ul ddH2O、25ulKOD OneTMPCRMasterMix, 1ul 10uM upstream primer, 1ul 10uM downstream primer, 1ul 100ng/ul plasmid template containing GFP. PCR amplification procedure: 98 degrees for 30 seconds; 28 cycles: 98 degrees for 10 seconds; 55 degrees for 30 seconds; 68 degrees for 10 seconds; finally 68 ℃ for 5 minutes; 10 minutes at 4 ℃;
(4) gel electrophoresis is carried out on the finally amplified gene segment to cut the gel and recover the segment; carrying out single-fragment homologous recombination with Infusion enzyme of Novowed to link a vector skeleton and an amplified fragment;
(5) and coating a kanamycin resistance culture medium after heat shock transformation of DH5 alpha competence, carrying out colony PCR verification on the next day, selecting positive clone, shaking bacteria, extracting corresponding plasmid and sequencing. And (3) storing the plasmid with completely correct sequencing result, wherein the sequence is shown as SEQ ID No.6, and the plasmid spectrogram is shown in figure 1.
SEQ ID No.4 GFP amplification upstream primer
AAAATGGCCACCCCCATGGTGAGCAAGGGCGAGGAG
SEQ ID No.5 GFP downstream primer amplification
CTTTTTCACTCCCTTACTTGTACAGCTCGTCCATGCCG
Plasmid sequence of pEAQE-GFP of SEQ ID No.6
AGCGGTGAGTTCGCGGGGCGCACGCATGACGGTGCGGCTTGCGATGGTTTCGGCATCCTCGGCGGAAAACCCCGCGTCGATCAGTTCTTGCCTGTATGCCTTCCGGTCAAACGTCCGATTCATTCACCCTCCTTGCGGGATTGCCCCGACTCACGCCGGGGCAATGTGCCCTTATTCCTGATTTGACCCGCCTGGTGCCTTGGTGTCCAGATAATCCACCTTATCGGCAATGAAGTCGGTCCCGTAGACCGTCTGGCCGTCCTTCTCGTACTTGGTATTCCGAATCTTGCCCTGCACGAATACCAGCGACCCCTTGCCCAAATACTTGCCGTGGGCCTCGGCCTGAGAGCCAAAACACTTGATGCGGAAGAAGTCGGTGCGCTCCTGCTTGTCGCCGGCATCGTTGCGCCACATCTAGGTACTAAAACAATTCATCCAGTAAAATATAATATTTTATTTTCTCCCAATCAGGCTTGATCCCCAGTAAGTCAAAAAATAGCTCGACATACTGTTCTTCCCCGATATCCTCCCTGATCGACCGGACGCAGAAGGCAATGTCATACCACTTGTCCGCCCTGCCGCTTCTCCCAAGATCAATAAAGCCACTTACTTTGCCATCTTTCACAAAGATGTTGCTGTCTCCCAGGTCGCCGTGGGAAAAGACAAGTTCCTCTTCGGGCTTTTCCGTCTTTAAAAAATCATACAGCTCGCGCGGATCTTTAAATGGAGTGTCTTCTTCCCAGTTTTCGCAATCCACATCGGCCAGATCGTTATTCAGTAAGTAATCCAATTCGGCTAAGCGGCTGTCTAAGCTATTCGTATAGGGACAATCCGATATGTCGATGGAGTGAAAGAGCCTGATGCACTCCGCATACAGCTCGATAATCTTTTCAGGGCTTTGTTCATCTTCATACTCTTCCGAGCAAAGGACGCCATCGGCCTCACTCATGAGCAGATTGCTCCAGCCATCATGCCGTTCAAAGTGCAGGACCTTTGGAACAGGCAGCTTTCCTTCCAGCCATAGCATCATGTCCTTTTCCCGTTCCACATCATAGGTGGTCCCTTTATACCGGCTGTCCGTCATTTTTAAATATAGGTTTTCATTTTCTCCCACCAGCTTATATACCTTAGCAGGAGACATTCCTTCCGTATCTTTTACGCAGCGGTATTTTTCGATCAGTTTTTTCAATTCCGGTGATATTCTCATTTTAGCCATTTATTATTTCCTTCCTCTTTTCTACAGTATTTAAAGATACCCCAAGAAGCTAATTATAACAAGACGAACTCCAATTCACTGTTCCTTGCATTCTAAAACCTTAAATACCAGAAAACAGCTTTTTCAAAGTTGTTTTCAAAGTTGGCGTATAACATAGTATCGACGGAGCCGATTTTGAAACCACAATTATGGGTGATGCTGCCAACTTACTGATTTAGTGTATGATGGTGTTTTTGAGGTGCTCCAGTGGCTTCTGTTTCTATCAGCTGTCCCTCCTGTTCAGCTACTGACGGGGTGGTGCGTAACGGCAAAAGCACCGCCGGACATCAGCGCTATCTCTGCTCTCACTGCCGTAAAACATGGCAACTGCAGTTCACTTACACCGCTTCTCAACCCGGTACGCACCAGAAAATCATTGATATGGCCATGAATGGCGTTGGATGCCGGGCAACAGCCCGCATTATGGGCGTTGGCCTCAACACGATTTTACGTCACTTAAAAAACTCAGGCCGCAGTCGGTAACTATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGGTAACCTCGCGCATACAGCCGGGCAGTGACGTCATCGTCTGCGCGGAAATGGACGGGCCCCCGGCGCCAGATCTGGGGAACCCTGTGGTTGGCATGCACATACAAATGGACGAACGGATAAACCTTTTCACGCCCTTTTAAATATCCGATTATTCTAATAAACGCTCTTTTCTCTTAGGTTTACCCGCCAATATATCCTGTCAAACACTGATAGTTTGTGAACCATCACCCAAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTTAATTAAGAATTCGAGCTCCACCGCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTTATTGAGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGTTTaAAGAGtCGCAcCCAaAACGCTCaAACcCAATtatTCaACATcTATTtAAgGTCcCTAAAAATGGCCACCCCCatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaaGGGAGTGAAAAAGACGAATTATAGCTCGAGGCCTTTAACTCTGGTTTCATTAAATTTTCTTTAGTTTGAATTTACTGTTATTCGGTGTGCATTTCTATGTTTGGTGAGCGGTTTTCTGTGCTCAGAGTGTGTTTATTTTATGTAATTTAATTTCTTTGTGAGCTCCTGTTTAGCAGGTCGTCCCTTCAGCAAGGACACAAAAAGATTTTAATTTTATTAAAAAAAAAAAAAAAAAAAAGACCGGGAATTCGATATCAAGCTTATCGACCTGCAGATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATCTCTAGAGTCTCAAGCTTGGCGCGCCAGCTTGGCGTAATCATGGTCATAGCTGTTGCGATTAAGAATTCGAGCTCGGTACCCCCCTACTCCAAAAATGTCAAAGATACAGTCTCAGAAGACCAAAGGGCTATTGAGACTTTTCAACAAAGGGTAATTTCGGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTCATCGAAAGGACAGTAGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCTATCATTCAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGACATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACAGCCCAAGCTTCGACTCTAGAGGATCCCCTTAAATCGATATGGAACGAGCTATACAAGGAAACGACGCTAGGGAACAAGCTAACAGTGAACGTTGGGATGGAGGATCAGGAGGTACCACTTCTCCCTTCAAACTTCCTGACGAAAGTCCGAGTTGGACTGAGTGGCGGCTACATAACGATGAGACGAATTCGAATCAAGATAATCCCCTTGGTTTCAAGGAAAGCTGGGGTTTCGGGAAAGTTGTATTTAAGAGATATCTCAGATACGACAGGACGGAAGCTTCACTGCACAGAGTCCTTGGATCTTGGACGGGAGATTCGGTTAACTATGCAGCATCTCGATTTTTCGGTTTCGACCAGATCGGATGTACCTATAGTATTCGGTTTCGAGGAGTTAGTATCACCGTTTCTGGAGGGTCTCGAACTCTTCAGCATCTCTGTGAGATGGCAATTCGGTCTAAGCAAGAACTGCTACAGCTTGCCCCAATCGAAGTGGAAAGTAATGTATCAAGAGGATGCCCTGAAGGTACTCAAACCTTCGAAAAAGAAAGCGAGTAAGTCGAGGGCGAGCTCGAATTCGGTACGCTGAAATCACCAGTCTCTCTCTACAAATCTATCTCTCTCTATTTTCTCCATAAATAATGTGTGAGTAGTTTCCCGATAAGGGAAATTAGGGTTCTTATAGGGTTTCGCTCATGTGTTGAGCATATAAGAAACCCTTAGTATGTATTTGTATTTGTAAAATACTTCTATCAATAAAATTTCTAATTCCTAAAACCAAAATCCAGTACTAAAATCCAGATCTCCTAAAGTCCCTATAGATCTTTGTCGTGAATATAAACCAGACACGAGACGACTAAACCTGGAGCCCAGACGCCGTTCGAAGCTAGAAGTACCGCTTAGGCAGGAGGCCGTTAGGGAAAAGATGCTAAGGCAGGGTTGGTTACGTTGACTCCCCCGTAGGTTTGGTTTAAATATGATGAAGTGGACGGAAGGAAGGAGGAAGACAAGGAAGGATAAGGTTGCAGGCCCTGTGCAAGGTAAGAAGATGGAAATTTGATAGAGGTACGCTACTATACTTATACTATACGCTAAGGGAATGCTTGTATTTATACCCTATACCCCCTAATAACCCCTTATCAATTTAAGAAATAATCCGCATAAGCCCCCGCTTAAAAATTGGTATCAGAGCCATGAATAGGTCTATGACCAAAACTCAAGAGGATAAAACCTCACCAAAATACGAAAGAGTTCTTAACTCTAAAGATAAAAGATGGCGCGTGGCCGGCCATGAGCGGAGAATTAAGGGAGTCACGTTATGACCCCCGCCGATGACGCGGGACAAGCCGTTTTACGTTTGGAACTGACAGAACCGCAACGTTGAAGGAGCCACTCAGCCGCGGGTTTCTGGAGTTTAATGAGCTAAGCACATACGTCAGAAACCATTATTGCGCGTTCAAAAGTCGCCTAAGGTCACTATCAGCTAGCAAATATTTCTTGTCAAAAATGCTCCACTGACGTTCCATAAATTCCCCTCGGTATCCAATTAGAGTCTCATATTCACTCTCAATCCAAATAATCTGCACCGGATCTGGATCGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGATGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACGGGATCTCTGCGGAACAGGCGGTCGAAGGTGCCGATATCATTACGACAGCAACGGCCGACAAGCACAACGCCACGATCCTGAGCGACAATATGATCGCGGCGTCCACATCAACGGCGTCGGCGGCGACTGCCCAGGCAAGACCGAGATGCACCGCGATATCTTGCTGCGTTCGGATATTTTCGTGGAGTTCCCGCCACAGACCCGGATGATCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATCGGGGGCCGGCCCTCACTGGTGAAAAGAAAAACCACCCCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAATTTGTTTACACCACAATATATCCTGCCACCAGCCAGCCAACAGCTCCCCGACCGGCAGCTCGGCACAAAATCACCACTCGATACAGGCAGCCCATCAGTCCGGGACGGCGTCAGCGGGAGAGCCGTTGTAAGGCGGCAGACTTTGCTCATGTTACCGATGCTATTCGGAAGAACGGCAACTAAGCTGCCGGGTTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAACGATGACAGAGCGTTGCTGCCTGTGATCAAATATCATCTCCCTCGCAGAGATCCGAATTATCAGCCTTCTTATTCATTTCTCGCTTAACCGTGACAGAGTAGACAGGCTGTCTCGCGGCCGAGGGGCGCAGCCCCTGGGGGGATGGGAGGCCCGCGTTAGCGGGCCGGGAGGGTTCGAGAAGGGGGGGCACCCCCCTTCGGCGTGCGCGGTCACGCGCACAGGGCGCAGCCCTGGTTAAAAACAAGGTTTATAAATATTGGTTTAAAAGCAGGTTAAAAGACAGGTTAGCGGTGGCCGAAAAACGGGCGGAAACCCTTGCAAATGCTGGATTTTCTGCCTGTGGACAGCCCCTCAAATGTCAATAGGTGCGCCCCTCATCTGTCAGCACTCTGCCCCTCAAGTGTCAAGGATCGCGCCCCTCATCTGTCAGTAGTCGCGCCCCTCAAGTGTCAATACCGCAGGGCACTTATCCCCAGGCTTGTCCACATCATCTGTGGGAAACTCGCGTAAAATCAGGCGTTTTCGCCGATTTGCGAGGCTGGCCAGCTCCACGTCGCCGGCCGAAATCGAGCCTGCCCCTCATCTGTCAACGCCGCGCCGGGTGAGTCGGCCCCTCAAGTGTCAACGTCCGCCCCTCATCTGTCAGTGAGGGCCAAGTTTTCCGCGAGGTATCCACAACGCCGGCGGCCGCGGTGTCTCGCACACGGCTTCGACGGCGTTTCTGGCGCGTTTGCAGGGCCATAGACGGCCGCCAGCCCAGCGGCGAGGGCAACCAGCCCGGTGAGCGTCGGAAAGGCGCTCGGTCTTGCCTTGCTCGTCGGTGATGTACACTAGTCGCTGGCTGCTGAACCCCCAGCCGGAACTGACCCCACAAGGCCCTAGCGTTTGCAATGCACCAGGTCATCATTGACCCAGGCGTGTTCCACCAGGCCGCTGCCTCGCAACTCTTCGCAGGCTTCGCCGACCTGCTCGCGCCACTTCTTCACGCGGGTGGAATCCGATCCGCACATGAGGCGGAAGGTTTCCAGCTTGAGCGGGTACGGCTCCCGGTGCGAGCTGAAATAGTCGAACATCCGTCGGGCCGTCGGCGACAGCTTGCGGTACTTCTCCCATATGAATTTCGTGTAGTGGTCGCCAGCAAACAGCACGACGATTTCCTCGTCGATCAGGACCTGGCAACGGGACGTTTTCTTGCCACGGTCCAGGACGCGGAAGCGGTGCAGCAGCGACACCGATTCCAGGTGCCCAACGCGGTCGGACGTGAAGCCCATCGCCGTCGCCTGTAGGCGCGACAGGCATTCCTCGGCCTTCGTGTAATACCGGCCATTGATCGACCAGCCCAGGTCCTGGCAAAGCTCGTAGAACGTGAAGGTGATCGGCTCGCCGATAGGGGTGCGCTTCGCGTACTCCAACACCTGCTGCCACACCAGTTCGTCATCGTCGGCCCGCAGCTCGACGCCGGTGTAGGTGATCTTCACGTCCTTGTTGACGTGGAAAATGACCTTGTTTTGCAGCGCCTCGCGCGGGATTTTCTTGTTGCGCGTGGTGAACAGGGCAGAGCGGGCCGTGTCGTTTGGCATCGCTCGCATCGTGTCCGGCCACGGCGCAATATCGAACAAGGAAAGCTGCATTTCCTTGATCTGCTGCTTCGTGTGTTTCAGCAACGCGGCCTGCTTGGCCTCGCTGACCTGTTTTGCCAGGTCCTCGCCGGCGGTTTTTCGCTTCTTGGTCGTCATAGTTCCTCGCGTGTCGATGGTCATCGACTTCGCCAAACCTGCCGCCTCCTGTTCGAGACGACGCGAACGCTCCACGGCGGCCGATGGCGCGGGCAGGGCAGGGGGAAGCCAGTTGCACGCTGTCGCGCTCGATCTTGGCCGTAGCTTGCTGGACCATCGAGCCGACGGACTGGAAGGTTTCGCGGGGCGCACGCATGACGGTGCGGCTTGCGATGGTTTCGGCATCCTCGGCGGAAAACCCCGCGTCGATCAGTTCTTGCCTGTATGCCTTCCGGTCAAACGTCCGATTCATTCACCCTCCTTGCGGGATTGCCCCGACTCACGCCGGGGCAATGGGCCCTTATTCCTGATTTGACCCGCCTGGGGGCTTGGGTGTCCAGAA
EXAMPLE 3 infiltration
(1) The plasmid pEAQE-GFP is introduced into the agrobacterium competence by an electric shock method and smeared on a kanamycin and rifampicin double-resistant culture medium.
(2) Selecting culture medium for monoclone, and shaking to OD600When the concentration was 0.8, the mixture was centrifuged at 8000rpm for 2 minutes, and the precipitated bacterial solution was treated with an infiltration buffer (10mM MES, 10mM Mgcl)21uM acetosyringone) were resuspended and OD adjusted600=0.6。
(3) And infiltrating the bacterial liquid into the tobacco leaves by using a negative pressure vacuum pump, and observing fluorescence after 2 days.
Example 4 fluorescence imaging
The leaf-soaked areas were illuminated with a hand-held uv fluorescent lamp and a photograph taken under a yellow filter (see figure 2). In the areas infiltrated with and expressed by pEAQE-GFP, bright green color was observed in the leaves, whereas in the areas not infiltrated with pEAQE-GFP, the leaves appeared red.
As can be seen from the data in the figure, three sets of repeated experiments we performed maintained good stability and consistency, the fluorescence of peaxe was found to be stronger than pEAQ by data Students T-test, and this difference was significant.
Example 5Q-PCR
(1) And extracting RNA. 0.1g of the infiltrated leaf was ground with liquid nitrogen, 1ml of TRIZOL and 300ul of chloroform were added thereto and mixed well, and then allowed to stand at room temperature for 10 minutes. The mixture was centrifuged at 15000rpm for 5 minutes, and the supernatant was transferred to a new centrifuge tube, and an equal volume of isopropanol was added thereto, and after standing at room temperature for 10 minutes, the mixture was centrifuged at 15000rpm for 5 minutes. After washing twice with 70% ethanol, the precipitate was air-dried and dissolved in 100ul of DEPC water.
(2) And carrying out reverse transcription by using an RT-PCR QuickMasterMix kit of TOYOBO to obtain cDNA.
(3) The Q-PCR reaction system comprises SYBRMIX 10ul, Forwardprimer 0.8ul, Reverse primer0.8ul, DNA template 2ul and ddH2O6.4 ul. Reaction conditions are as follows: PCR cycling parameters: pre-denaturation at 95 ℃ for 3 min; then 30 cycles of denaturation at 95 ℃ for 30s, low-temperature annealing at 55 ℃ for 45s and extension at 72 ℃ for 30 s; and (3) selecting a melting curve according to instrument operation instructions for analysis: 95 ℃ for 15s, 60 ℃ for 15s and 95 ℃ for 15 s.
The results are shown in FIG. 3. The expression of the pEAQ and pEAQE vectors was analyzed for GFP at the transcriptional level. The difference in the amount of accumulation of mRNA of GFP expressed by each of the two vectors was compared by RT-qPCR. Data analysis shows that the mRNA content of GFP expressed by pEAQE is 120% of that of pEAQ, and Students T-test shows that the mRNA content of pEAQE GFP is obviously higher than that of pEAQ.
Example 6SDS-PAGE gels and WB manipulation
(1) And taking 0.1g of leaves in the infiltration area, grinding the leaves by using liquid nitrogen, adding 200ul of protein extraction buffer solution, centrifuging the mixture at 15000rpm for 10 minutes, taking 200ul of supernatant, and adding 50ul of protein loading. Boiled at 100 ℃ for 10 minutes and then cooled on ice.
(2) 10ul of sample is taken and is applied, and after half an hour of 80V electrophoresis, 100V electrophoresis is carried out for 1 hour.
(3) The gel concentrate was removed and placed in transfer buffer. And shearing a Nitrocellulose (NC) membrane with the same size as the gel and clean filter paper, and wetting in a transfer buffer solution for 5-10 min. And opening the electrotransfer clamp, keeping the cathode black side down, wetting the spongy cushion, the filter paper, the gel, the NC membrane, the filter paper and the spongy cushion in sequence, then horizontally placing the spongy cushion, removing bubbles between the middle layers, clamping the electrotransfer clamp, and rotating the membrane for 60min by adopting constant voltage 100V.
(4) After the NC membrane is rinsed by PBST buffer solution, the NC membrane is immersed into the sealing solution and incubated for 1h at room temperature; immersing the membrane into a GFP primary antibody diluent, slowly shaking the membrane on a horizontal shaking table, and incubating the membrane for 1 to 2 hours at normal temperature; washing the membrane with PBST for 3 times, transferring the membrane into a diluent of a required secondary antibody, and slowly shaking for reaction for 1-2 h at room temperature; washing the membrane with PBST for 5min for 4 times, and removing Tween-20 on the membrane surface by using PBS;
(5) alkaline Phosphatase (AP) color development: and adding 66 mu L of LNBT and 33 mu L of BCIP into 10mL of color development buffer solution respectively, and immersing the membrane into the color development solution to carry out dark reaction until the specific strip is clear and the non-specific strip and the background are low, wherein 3-30 min is generally needed. The fully developed membrane was placed in deionized water to stop the reaction.
(6) Coomassie brilliant blue staining: SDS-PAGE gels were stained with Coomassie Brilliant blue stain (40% methanol; 10% acetic acid; 0.25% Coomassie Brilliant blue G250) for 30min on a shaker; bands were visualized clearly with destaining solution (40% methanol; 10% acetic acid).
As shown in fig. 4. The accumulation of the pEAQ-GFP and pEAQE-GFP expressed GFP proteins was compared by SDS-PAGE gel staining and WB. It can be known that the expression level of the pEAQE-GFP is higher than that of the pEAQ-GFP, and Students T-test can know that P is less than 0.001, which indicates that the increase difference of the expression level is very significant.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and decorations can be made without departing from the principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention.
Sequence listing
<110> Zhejiang Huazhi Dai pharmaceutical industry group medicine development Co., Ltd
Construction and application of <120> plant transient expression vector
<130>MP2012471
<160>6
<170>SIPOSequenceListing 1.0
<210>1
<211>472
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>1
cagtgaattg ttaattaaga attcgagctc caccgcggaa acctcctcgg attccattgc 60
ccagctatct gtcactttat tgagaagata gtggaaaagg aaggtggctc ctacaaatgc 120
catcattgcg ataaaggaaa ggccatcgtt gaagatgcct ctgccgacag tggtcccaaa 180
gatggacccc cacccacgag gagcatcgtg gaaaaagaag acgttccaac cacgtcttca 240
aagcaagtgg attgatgtga tatctccact gacgtaaggg atgacgcaca atcccactat 300
ccttcgcaag acccttcctc tatataagga agttcatttc atttggagag gtttaaagag 360
tcgcacccaa aacgctcaaa cccaattatt caacatctat ttaaggtccc taaaaatggc 420
cacccccggg agtgaaaaag acgaattata gctcgaggcc tttaactctg gt 472
<210>2
<211>27
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>2
cagtgaattg ttaattaagg aaacctc 27
<210>3
<211>27
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>3
accagagtta aaggcctcga gctagtg 27
<210>4
<211>36
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>4
aaaatggcca cccccatggt gagcaagggc gaggag 36
<210>5
<211>38
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>5
ctttttcact cccttacttg tacagctcgt ccatgccg 38
<210>6
<211>10472
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>6
agcggtgagt tcgcggggcg cacgcatgac ggtgcggctt gcgatggttt cggcatcctc 60
ggcggaaaac cccgcgtcga tcagttcttg cctgtatgcc ttccggtcaa acgtccgatt 120
cattcaccct ccttgcggga ttgccccgac tcacgccggg gcaatgtgcc cttattcctg 180
atttgacccg cctggtgcct tggtgtccag ataatccacc ttatcggcaa tgaagtcggt 240
cccgtagacc gtctggccgt ccttctcgta cttggtattc cgaatcttgc cctgcacgaa 300
taccagcgac cccttgccca aatacttgcc gtgggcctcg gcctgagagc caaaacactt 360
gatgcggaag aagtcggtgc gctcctgctt gtcgccggca tcgttgcgcc acatctaggt 420
actaaaacaa ttcatccagt aaaatataat attttatttt ctcccaatca ggcttgatcc 480
ccagtaagtc aaaaaatagc tcgacatact gttcttcccc gatatcctcc ctgatcgacc 540
ggacgcagaa ggcaatgtca taccacttgt ccgccctgcc gcttctccca agatcaataa 600
agccacttac tttgccatct ttcacaaaga tgttgctgtc tcccaggtcg ccgtgggaaa 660
agacaagttc ctcttcgggc ttttccgtct ttaaaaaatc atacagctcg cgcggatctt 720
taaatggagt gtcttcttcc cagttttcgc aatccacatc ggccagatcg ttattcagta 780
agtaatccaa ttcggctaag cggctgtcta agctattcgt atagggacaa tccgatatgt 840
cgatggagtg aaagagcctg atgcactccg catacagctc gataatcttt tcagggcttt 900
gttcatcttc atactcttcc gagcaaagga cgccatcggc ctcactcatg agcagattgc 960
tccagccatc atgccgttca aagtgcagga cctttggaac aggcagcttt ccttccagcc 1020
atagcatcat gtccttttcc cgttccacat cataggtggt ccctttatac cggctgtccg 1080
tcatttttaa atataggttt tcattttctc ccaccagctt atatacctta gcaggagaca 1140
ttccttccgt atcttttacg cagcggtatt tttcgatcag ttttttcaat tccggtgata 1200
ttctcatttt agccatttat tatttccttc ctcttttcta cagtatttaa agatacccca 1260
agaagctaat tataacaaga cgaactccaa ttcactgttc cttgcattct aaaaccttaa 1320
ataccagaaa acagcttttt caaagttgtt ttcaaagttg gcgtataaca tagtatcgac 1380
ggagccgatt ttgaaaccac aattatgggt gatgctgcca acttactgat ttagtgtatg 1440
atggtgtttt tgaggtgctc cagtggcttc tgtttctatc agctgtccct cctgttcagc 1500
tactgacggg gtggtgcgta acggcaaaag caccgccgga catcagcgct atctctgctc 1560
tcactgccgt aaaacatggc aactgcagtt cacttacacc gcttctcaac ccggtacgca 1620
ccagaaaatc attgatatgg ccatgaatgg cgttggatgc cgggcaacag cccgcattat 1680
gggcgttggc ctcaacacga ttttacgtca cttaaaaaac tcaggccgca gtcggtaact 1740
atgcggtgtg aaataccgca cagatgcgta aggagaaaat accgcatcag gcgctcttcc 1800
gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct 1860
cactcaaagg cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg 1920
tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 1980
cataggctcc gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga 2040
aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct 2100
cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg 2160
gcgctttctc atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag 2220
ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat 2280
cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcagg taacctcgcg 2340
catacagccg ggcagtgacg tcatcgtctg cgcggaaatg gacgggcccc cggcgccaga 2400
tctggggaac cctgtggttg gcatgcacat acaaatggac gaacggataa accttttcac 2460
gcccttttaa atatccgatt attctaataa acgctctttt ctcttaggtt tacccgccaa 2520
tatatcctgt caaacactga tagtttgtga accatcaccc aaatcaagtt ttttggggtc 2580
gaggtgccgt aaagcactaa atcggaaccc taaagggagc ccccgattta gagcttgacg 2640
gggaaagccg gcgaacgtgg cgagaaagga agggaagaaa gcgaaaggag cgggcgccat 2700
tcaggctgcg caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc 2760
tggcgaaagg gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt 2820
cacgacgttg taaaacgacg gccagtgaat tgttaattaa gaattcgagc tccaccgcgg 2880
aaacctcctc ggattccatt gcccagctat ctgtcacttt attgagaaga tagtggaaaa 2940
ggaaggtggc tcctacaaat gccatcattg cgataaagga aaggccatcg ttgaagatgc 3000
ctctgccgac agtggtccca aagatggacc cccacccacg aggagcatcg tggaaaaaga 3060
agacgttcca accacgtctt caaagcaagt ggattgatgt gatatctcca ctgacgtaag 3120
ggatgacgca caatcccact atccttcgca agacccttcc tctatataag gaagttcatt 3180
tcatttggag aggtttaaag agtcgcaccc aaaacgctca aacccaatta ttcaacatct 3240
atttaaggtc cctaaaaatg gccaccccca tggtgagcaa gggcgaggag ctgttcaccg 3300
gggtggtgcc catcctggtc gagctggacg gcgacgtaaa cggccacaag ttcagcgtgt 3360
ccggcgaggg cgagggcgat gccacctacg gcaagctgac cctgaagttc atctgcacca 3420
ccggcaagct gcccgtgccc tggcccaccc tcgtgaccac cctgacctac ggcgtgcagt 3480
gcttcagccg ctaccccgac cacatgaagc agcacgactt cttcaagtcc gccatgcccg 3540
aaggctacgt ccaggagcgc accatcttct tcaaggacga cggcaactac aagacccgcg 3600
ccgaggtgaa gttcgagggc gacaccctgg tgaaccgcat cgagctgaag ggcatcgact 3660
tcaaggagga cggcaacatc ctggggcaca agctggagta caactacaac agccacaacg 3720
tctatatcat ggccgacaag cagaagaacg gcatcaaggt gaacttcaag atccgccaca 3780
acatcgagga cggcagcgtg cagctcgccg accactacca gcagaacacc cccatcggcg 3840
acggccccgt gctgctgccc gacaaccact acctgagcac ccagtccgcc ctgagcaaag 3900
accccaacga gaagcgcgat cacatggtcc tgctggagtt cgtgaccgcc gccgggatca 3960
ctctcggcat ggacgagctg tacaagtaag ggagtgaaaa agacgaatta tagctcgagg 4020
cctttaactc tggtttcatt aaattttctt tagtttgaat ttactgttat tcggtgtgca 4080
tttctatgtt tggtgagcgg ttttctgtgc tcagagtgtg tttattttat gtaatttaat 4140
ttctttgtga gctcctgttt agcaggtcgt cccttcagca aggacacaaa aagattttaa 4200
ttttattaaa aaaaaaaaaa aaaaaaagac cgggaattcg atatcaagct tatcgacctg 4260
cagatcgttc aaacatttgg caataaagtt tcttaagatt gaatcctgtt gccggtcttg 4320
cgatgattat catataattt ctgttgaatt acgttaagca tgtaataatt aacatgtaat 4380
gcatgacgtt atttatgaga tgggttttta tgattagagt cccgcaatta tacatttaat 4440
acgcgataga aaacaaaata tagcgcgcaa actaggataa attatcgcgc gcggtgtcat 4500
ctatgttact agatctctag agtctcaagc ttggcgcgcc agcttggcgt aatcatggtc 4560
atagctgttg cgattaagaa ttcgagctcg gtacccccct actccaaaaa tgtcaaagat 4620
acagtctcag aagaccaaag ggctattgag acttttcaac aaagggtaat ttcgggaaac 4680
ctcctcggat tccattgccc agctatctgt cacttcatcg aaaggacagt agaaaaggaa 4740
ggtggctcct acaaatgcca tcattgcgat aaaggaaagg ctatcattca agatgcctct 4800
gccgacagtg gtcccaaaga tggaccccca cccacgagga gcatcgtgga aaaagaagac 4860
gttccaacca cgtcttcaaa gcaagtggat tgatgtgaca tctccactga cgtaagggat 4920
gacgcacaat cccactatcc ttcgcaagac ccttcctcta tataaggaag ttcatttcat 4980
ttggagagga cagcccaagc ttcgactcta gaggatcccc ttaaatcgat atggaacgag 5040
ctatacaagg aaacgacgct agggaacaag ctaacagtga acgttgggat ggaggatcag 5100
gaggtaccac ttctcccttc aaacttcctg acgaaagtcc gagttggact gagtggcggc 5160
tacataacga tgagacgaat tcgaatcaag ataatcccct tggtttcaag gaaagctggg 5220
gtttcgggaa agttgtattt aagagatatc tcagatacga caggacggaa gcttcactgc 5280
acagagtcct tggatcttgg acgggagatt cggttaacta tgcagcatct cgatttttcg 5340
gtttcgacca gatcggatgt acctatagta ttcggtttcg aggagttagt atcaccgttt 5400
ctggagggtc tcgaactctt cagcatctct gtgagatggc aattcggtct aagcaagaac 5460
tgctacagct tgccccaatc gaagtggaaa gtaatgtatc aagaggatgc cctgaaggta 5520
ctcaaacctt cgaaaaagaa agcgagtaag tcgagggcga gctcgaattc ggtacgctga 5580
aatcaccagt ctctctctac aaatctatct ctctctattt tctccataaa taatgtgtga 5640
gtagtttccc gataagggaa attagggttc ttatagggtt tcgctcatgt gttgagcata 5700
taagaaaccc ttagtatgta tttgtatttg taaaatactt ctatcaataa aatttctaat 5760
tcctaaaacc aaaatccagt actaaaatcc agatctccta aagtccctat agatctttgt 5820
cgtgaatata aaccagacac gagacgacta aacctggagc ccagacgccg ttcgaagcta 5880
gaagtaccgc ttaggcagga ggccgttagg gaaaagatgc taaggcaggg ttggttacgt 5940
tgactccccc gtaggtttgg tttaaatatg atgaagtgga cggaaggaag gaggaagaca 6000
aggaaggata aggttgcagg ccctgtgcaa ggtaagaaga tggaaatttg atagaggtac 6060
gctactatac ttatactata cgctaaggga atgcttgtat ttatacccta taccccctaa 6120
taacccctta tcaatttaag aaataatccg cataagcccc cgcttaaaaa ttggtatcag 6180
agccatgaat aggtctatga ccaaaactca agaggataaa acctcaccaa aatacgaaag 6240
agttcttaac tctaaagata aaagatggcg cgtggccggc catgagcgga gaattaaggg 6300
agtcacgtta tgacccccgc cgatgacgcg ggacaagccg ttttacgttt ggaactgaca 6360
gaaccgcaac gttgaaggag ccactcagcc gcgggtttct ggagtttaat gagctaagca 6420
catacgtcag aaaccattat tgcgcgttca aaagtcgcct aaggtcacta tcagctagca 6480
aatatttctt gtcaaaaatg ctccactgac gttccataaa ttcccctcgg tatccaatta 6540
gagtctcata ttcactctca atccaaataa tctgcaccgg atctggatcg tttcgcatga 6600
ttgaacaaga tggattgcac gcaggttctc cggccgcttg ggtggagagg ctattcggct 6660
atgactgggc acaacagaca atcggctgct ctgatgccgc cgtgttccgg ctgtcagcgc 6720
aggggcgccc ggttcttttt gtcaagaccg acctgtccgg tgccctgaat gaactgcagg 6780
acgaggcagc gcggctatcg tggctggcca cgacgggcgt tccttgcgca gctgtgctcg 6840
acgttgtcac tgaagcggga agggactggc tgctattggg cgaagtgccg gggcaggatc 6900
tcctgtcatc tcaccttgct cctgccgaga aagtatccat catggctgat gcaatgcggc 6960
ggctgcatac gcttgatccg gctacctgcc cattcgacca ccaagcgaaa catcgcatcg 7020
agcgagcacg tactcggatg gaagccggtc ttgtcgatca ggatgatctg gacgaagagc 7080
atcaggggct cgcgccagcc gaactgttcg ccaggctcaa ggcgcgcatg cccgacggcg 7140
atgatctcgt cgtgacccat ggcgatgcct gcttgccgaa tatcatggtg gaaaatggcc 7200
gcttttctgg attcatcgac tgtggccggc tgggtgtggc ggaccgctat caggacatag 7260
cgttggctac ccgtgatatt gctgaagagc ttggcggcga atgggctgac cgcttcctcg 7320
tgctttacgg tatcgccgct cccgattcgc agcgcatcgc cttctatcgc cttcttgacg 7380
agttcttctg agcgggactc tggggttcga aatgaccgac caagcgacgc ccaacctgcc 7440
atcacgagat ttcgattcca ccgccgcctt ctatgaaagg ttgggcttcg gaatcgtttt 7500
ccgggacgcc ggctggatga tcctccagcg cggggatctc atgctggagt tcttcgccca 7560
cgggatctct gcggaacagg cggtcgaagg tgccgatatc attacgacag caacggccga 7620
caagcacaac gccacgatcc tgagcgacaa tatgatcgcg gcgtccacat caacggcgtc 7680
ggcggcgact gcccaggcaa gaccgagatg caccgcgata tcttgctgcg ttcggatatt 7740
ttcgtggagt tcccgccaca gacccggatg atccccgatc gttcaaacat ttggcaataa 7800
agtttcttaa gattgaatcc tgttgccggt cttgcgatga ttatcatata atttctgttg 7860
aattacgtta agcatgtaat aattaacatg taatgcatga cgttatttat gagatgggtt 7920
tttatgatta gagtcccgca attatacatt taatacgcga tagaaaacaa aatatagcgc 7980
gcaaactagg ataaattatc gcgcgcggtg tcatctatgt tactagatcg ggggccggcc 8040
ctcactggtg aaaagaaaaa ccaccccagt acattaaaaa cgtccgcaat gtgttattaa 8100
gttgtctaag cgtcaatttg tttacaccac aatatatcct gccaccagcc agccaacagc 8160
tccccgaccg gcagctcggc acaaaatcac cactcgatac aggcagccca tcagtccggg 8220
acggcgtcag cgggagagcc gttgtaaggc ggcagacttt gctcatgtta ccgatgctat 8280
tcggaagaac ggcaactaag ctgccgggtt tgaaacacgg atgatctcgc ggagggtagc 8340
atgttgattg taacgatgac agagcgttgc tgcctgtgat caaatatcat ctccctcgca 8400
gagatccgaa ttatcagcct tcttattcat ttctcgctta accgtgacag agtagacagg 8460
ctgtctcgcg gccgaggggc gcagcccctg gggggatggg aggcccgcgt tagcgggccg 8520
ggagggttcg agaagggggg gcacccccct tcggcgtgcg cggtcacgcg cacagggcgc 8580
agccctggtt aaaaacaagg tttataaata ttggtttaaa agcaggttaa aagacaggtt 8640
agcggtggcc gaaaaacggg cggaaaccct tgcaaatgct ggattttctg cctgtggaca 8700
gcccctcaaa tgtcaatagg tgcgcccctc atctgtcagc actctgcccc tcaagtgtca 8760
aggatcgcgc ccctcatctg tcagtagtcg cgcccctcaa gtgtcaatac cgcagggcac 8820
ttatccccag gcttgtccac atcatctgtg ggaaactcgc gtaaaatcag gcgttttcgc 8880
cgatttgcga ggctggccag ctccacgtcg ccggccgaaa tcgagcctgc ccctcatctg 8940
tcaacgccgc gccgggtgag tcggcccctc aagtgtcaac gtccgcccct catctgtcag 9000
tgagggccaa gttttccgcg aggtatccac aacgccggcg gccgcggtgt ctcgcacacg 9060
gcttcgacgg cgtttctggc gcgtttgcag ggccatagac ggccgccagc ccagcggcga 9120
gggcaaccag cccggtgagc gtcggaaagg cgctcggtct tgccttgctc gtcggtgatg 9180
tacactagtc gctggctgct gaacccccag ccggaactga ccccacaagg ccctagcgtt 9240
tgcaatgcac caggtcatca ttgacccagg cgtgttccac caggccgctg cctcgcaact 9300
cttcgcaggc ttcgccgacc tgctcgcgcc acttcttcac gcgggtggaa tccgatccgc 9360
acatgaggcg gaaggtttcc agcttgagcg ggtacggctc ccggtgcgag ctgaaatagt 9420
cgaacatccg tcgggccgtc ggcgacagct tgcggtactt ctcccatatg aatttcgtgt 9480
agtggtcgcc agcaaacagc acgacgattt cctcgtcgat caggacctgg caacgggacg 9540
ttttcttgcc acggtccagg acgcggaagc ggtgcagcag cgacaccgat tccaggtgcc 9600
caacgcggtc ggacgtgaag cccatcgccg tcgcctgtag gcgcgacagg cattcctcgg 9660
ccttcgtgta ataccggcca ttgatcgacc agcccaggtc ctggcaaagc tcgtagaacg 9720
tgaaggtgat cggctcgccg ataggggtgc gcttcgcgta ctccaacacc tgctgccaca 9780
ccagttcgtc atcgtcggcc cgcagctcga cgccggtgta ggtgatcttc acgtccttgt 9840
tgacgtggaa aatgaccttg ttttgcagcg cctcgcgcgg gattttcttg ttgcgcgtgg 9900
tgaacagggc agagcgggcc gtgtcgtttg gcatcgctcg catcgtgtcc ggccacggcg 9960
caatatcgaa caaggaaagc tgcatttcct tgatctgctg cttcgtgtgt ttcagcaacg 10020
cggcctgctt ggcctcgctg acctgttttg ccaggtcctc gccggcggtt tttcgcttct 10080
tggtcgtcat agttcctcgc gtgtcgatgg tcatcgactt cgccaaacct gccgcctcct 10140
gttcgagacg acgcgaacgc tccacggcgg ccgatggcgc gggcagggca gggggaagcc 10200
agttgcacgc tgtcgcgctc gatcttggcc gtagcttgct ggaccatcga gccgacggac 10260
tggaaggttt cgcggggcgc acgcatgacg gtgcggcttg cgatggtttc ggcatcctcg 10320
gcggaaaacc ccgcgtcgat cagttcttgc ctgtatgcct tccggtcaaa cgtccgattc 10380
attcaccctc cttgcgggat tgccccgact cacgccgggg caatgggccc ttattcctga 10440
tttgacccgc ctgggggctt gggtgtccag aa 10472

Claims (10)

1. A plant transient expression vector comprising a 5' UTR region, an MCS region and a SEKDEL sequence.
2. The plant transient expression vector of claim 1, wherein the sequence of said 5' UTR region, MCS region and SEKDEL sequence is as set forth in SEQ ID No. 1.
3. The plant transient expression vector of claim 1 or 2, which has as its basic backbone the plant expression vector pEAQ.
4. The plant transient expression vector of any one of claims 1 to 3, further comprising a target gene, wherein the target gene has a PacI cleavage site added at the N-terminal and an XhoI cleavage site added at the C-terminal.
5. The plant transient expression vector of any one of claims 2 to 4, wherein the sequence shown in SEQ ID No.1 is amplified by using the upstream primer shown in SEQ ID No.2 and the downstream primer shown in SEQ ID No. 3.
6. The plant transient expression vector of claim 5, wherein said amplified amplification system comprises 22 μ lddH2O, 25. mu.l KOD OneTM PCR MasterMix, 1. mu.l 10. mu.M upstream primer shown in SEQ ID No.2, 1. mu.l 10. mu.MA downstream primer shown as SEQ ID No.3, and 1ul of 100ng/ul of plasmid template containing an artificially synthesized sequence SEQ ID No. 1.
7. The plant transient expression vector of claim 5 or 6, wherein said amplification procedure is: 30 seconds at 98 ℃; 28 cycles: 10 seconds at 98 ℃; 30 seconds at 55 ℃; 68 ℃ for 10 seconds; 5 minutes at 68 ℃; 10 minutes at 4 ℃.
8. Use of the plant transient expression vector of any one of claims 1 to 7 for expressing a foreign protein.
9. The use of claim 8, wherein said foreign protein comprises GFP.
10. The method for expressing the foreign protein by the plant transient expression vector is characterized by comprising the following steps:
step 1: constructing a plant transient expression vector of claim 1;
step 2: inserting a gene of a foreign protein into the plant transient expression vector prepared in the step 1; obtaining a recombinant plasmid;
and step 3: and (3) transforming the recombinant plasmid prepared in the step (2) into host competence, culturing, collecting bacterial liquid, infiltrating plant leaves, and extracting protein.
CN202010788492.0A 2020-08-07 2020-08-07 Construction and application of plant transient expression vector Pending CN111826394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010788492.0A CN111826394A (en) 2020-08-07 2020-08-07 Construction and application of plant transient expression vector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010788492.0A CN111826394A (en) 2020-08-07 2020-08-07 Construction and application of plant transient expression vector

Publications (1)

Publication Number Publication Date
CN111826394A true CN111826394A (en) 2020-10-27

Family

ID=72919608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010788492.0A Pending CN111826394A (en) 2020-08-07 2020-08-07 Construction and application of plant transient expression vector

Country Status (1)

Country Link
CN (1) CN111826394A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107129973A (en) * 2009-09-22 2017-09-05 麦迪卡格公司 The method for preparing the VLP of plant origin
CN110105438A (en) * 2019-05-29 2019-08-09 东北农业大学 The albumen and application of alfalfa anti-drought gene MsTHI1 and its coding
CN111321167A (en) * 2020-03-09 2020-06-23 江苏师范大学 Construction method and application of rolling circle replication recombinant vector expressed by heterologous protein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107129973A (en) * 2009-09-22 2017-09-05 麦迪卡格公司 The method for preparing the VLP of plant origin
CN110105438A (en) * 2019-05-29 2019-08-09 东北农业大学 The albumen and application of alfalfa anti-drought gene MsTHI1 and its coding
CN111321167A (en) * 2020-03-09 2020-06-23 江苏师范大学 Construction method and application of rolling circle replication recombinant vector expressed by heterologous protein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SELVARAJU KANAGARAJAN 等: "Transient Expression of Hemagglutinin Antigen from Low Pathogenic Avian Influenza A (H7N7) in Nicotiana benthamiana" *

Similar Documents

Publication Publication Date Title
CN108486146B (en) Application of LbCpf1-RR mutant in CRISPR/Cpf1 system in plant gene editing
CN108997484B (en) Application of wheat TaWox5 gene in improving wheat transformation efficiency
CN111534535B (en) Method for constructing ergothioneine producing strain
CN106834338B (en) Expression vector of arabidopsis gene REM16 and application thereof in regulating and controlling plant flowering period
CN113234738A (en) red grape ABA8ox3 gene overexpression vector and construction method and application thereof
CN109022285B (en) Method for improving tolerance capacity of Synechocystis PCC6803 ammonium salt and application thereof
CN108531502A (en) The structure and inoculation method of citrus decline virus infectious clone
CN105296534A (en) Method of establishing Lycium Ruthenicum genetic transformation system and application of method
CN111826394A (en) Construction and application of plant transient expression vector
CN101709300B (en) Method for quickly constructing artificial mi RNA gene interference vector of paddy
CN110938650B (en) mRNA variable shearing-luciferase report system and application thereof
CN112553246A (en) Efficient genome editing vector based on CRISPR-SaCas9 system and application thereof
CN109456990B (en) Method for improving chloroplast genetic transformation efficiency by using genome editing technology
CN108559759A (en) Ternary shuttle vector and the method for building CLBV infectious clones using it
CN114672509B (en) Corynebacterium and escherichia coli dual-expression vector with high expression capacity and construction method thereof
CN113403314B (en) Corn drought inducible promoter ZmOMAp1730 and application thereof
CN112391409A (en) Efficient genetic transformation technology for duckweed
CN108060174A (en) A kind of method for improving Escherichia coli Growth performance
CN112980710B (en) Engineering strain, construction method and application thereof
CN116144675B (en) SlCNR8 gene and application, protein, detection method and acquisition method thereof
CN110724689B (en) Cas 9-mediated dendrocalamus latiflorus gene editing vector and application
CN107012159B (en) A kind of streptococcus mutans biomembrane pH indicating gage and its application based on gene recombination plasmid
CN113174400B (en) Transgenic method for automatically deleting selection markers
CN113106117B (en) Method for obtaining known TDNA flanking sequence inserted into genome locus
LU502442B1 (en) Sugar transporter gene for affecting wood formation in poplar and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201027