CN111534535B - Method for constructing ergothioneine producing strain - Google Patents

Method for constructing ergothioneine producing strain Download PDF

Info

Publication number
CN111534535B
CN111534535B CN202010587928.XA CN202010587928A CN111534535B CN 111534535 B CN111534535 B CN 111534535B CN 202010587928 A CN202010587928 A CN 202010587928A CN 111534535 B CN111534535 B CN 111534535B
Authority
CN
China
Prior art keywords
ergothioneine
gene expression
egt1
pgpd
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010587928.XA
Other languages
Chinese (zh)
Other versions
CN111534535A (en
Inventor
范文超
高书良
王金刚
任亮
俞想
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Huarui Biotechnology Co ltd
Original Assignee
Zhejiang Huarui Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Huarui Biotechnology Co ltd filed Critical Zhejiang Huarui Biotechnology Co ltd
Publication of CN111534535A publication Critical patent/CN111534535A/en
Priority to PCT/CN2021/077815 priority Critical patent/WO2021185039A1/en
Application granted granted Critical
Publication of CN111534535B publication Critical patent/CN111534535B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/99Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Abstract

The rhodotorula toruloides engineering bacteria can express exogenous egt1 enzyme, so that the capacity of producing ergothioneine is improved, the yield of the ergothioneine after fermentation is close to 1.5g/L, the genetic character of the engineering bacteria is stable, and the rhodotorula toruloides engineering bacteria have industrial application prospect.

Description

Method for constructing ergothioneine producing strain
Technical Field
The invention belongs to the field of genetic engineering, relates to a method for constructing ergothioneine-producing bacteria, and particularly relates to a method for constructing rhodotorula toruloides for producing ergothioneine.
Background
Ergothioneine (L-ergothinine, EGT) with the chemical name of 2-sulfhydryl histidine trimethyl inner salt has the following structural formula:
Figure BDA0002554464340000011
ergothioneine is the only natural 2-thioimidazole amino acid known to date. Ergothioneine has antioxidant, antiinflammatory, cell life cycle prolonging or anti-cell aging activity, and nerve cell generation improving effects. Meanwhile, the traditional Chinese medicine composition has better effects of protecting cells and resisting damage in various disease models including complications of Alzheimer disease, diabetes and the like, and has wide market application prospect.
At present, ergothioneine can be obtained by chemical synthesis, edible fungus extraction and microbial fermentation production. A variety of microorganisms have been demonstrated to have ergothioneine synthesis ability, including various microorganisms such as mycobacteria, Streptomyces, molds and yeasts. There are many patent technologies relating to the production of ergothioneine by microbial fermentation, such as CN102978121B, which discloses that edible mushroom Pleurotus nebrodensis catalyzes histidine substrate to produce ergothioneine, the substrate conversion rate can reach 70%, and the product yield is not reported; CN103184246A discloses that the yield of ergothioneine is 51mg/L after the fermentation of the large filamentous fungus Lepista sordida in a shake flask for 10 days; WO2017150304A1 discloses that the yield of ergothioneine is 900mg/L after fermentation of Streptomyces lividans for 7 days; WO2015180492A1 discloses Pleurotus ostreatus with an ergothioneine yield of 352mg/L when fermented in a 75L fermenter for 14 days; CN103734022 discloses that edible fungus Pleurotus ostreatus is fermented for 7-15 days, and the highest yield of ergothioneine reaches 143.7 mg/L; CN107250347 discloses genetically engineered aspergillus including Aspergillus oryzae, Aspergillus sojae and Aspergillus niger, which are genetically engineered to achieve a fermentation yield of 438 mg/L; e.coli is transformed by genetic engineering, the ergothioneine gene of the heterologous expression mycobacterium is clustered, and the yield of the ergothioneine is 640 mg/L; CN106661585 discloses that Escherichia coli is transformed by genetic engineering, the ergothioneine gene of the heterologously expressed mycobacteria is synthesized into clusters, and the yield of the ergothioneine is 12mg/L by fermentation of engineering bacteria; CN105296559A discloses Pleurotus ostreatus edible fungus, which is fermented for at least 6 days by adjusting the components of the multiple fermentation formula, and the highest yield of ergothioneine is 315.7 mg/L; CN201910664772.8A discloses that the yield of ergothioneine of the constructed genetically engineered bacterium reaches 568.4mg/L by using bacillus subtilis 168 as a host to express exogenous genes.
Literature (Takusagawa, S., Y.Satoh, I.Ohtsu and T.Dairi (2018). "Ergotheine production with Aspergillus oryzae".Bioscience,Biotechnology,and Biochemistry1-4.) discloses that Aspergillus oryzae has been genetically engineered to produce an ergothioneine yield of 231 mg/L. In addition, the highest yield of microbial fermentation ergothioneine is currently in the literature (Tanaka, n., y.kawano, y.satoh, t.dairi and i.ohtsu (2019). "Gram-scale fermentation production of ergothioneine drive by overproduction of cysteine in Escherichia coli"Scientific reports1895-1895), which utilizes genetic engineering means to heterologously express the synthesis of ergothioneine from mycobacteria in Escherichia coli, to study and obtain engineering bacteria, to culture in a fermentation tank, to induce and open a synthesis switch by adding IPTG, to continuously supplement precursor histidine, to ferment for 9 days as long as 216h, and finally to obtain the yield of 1.3g/L ergothioneine. But as a conditional pathogen and a transgenic strain, the product application prospect is worried about. The method is particularly important for solving the problem of high-efficiency production of ergothioneine by searching for microorganisms with natural sources and food source safety attributes and developing a proper production process. Literature (van der Hoek, s.a., b.darbani, k.e.zugaj, b.k.prabhala, m.b.bion, m.randelovic, j.b.medina, d.b.kell and i.borodina (2019). "Engineering the year<em>Saccharomyces cerevisiae</em>for the production of L-(+)-ergothioneine."bioRxiv667592.) discloses that the Saccharomyces cerevisiae Saccharomyces cerevisiae expresses exogenous genes through genetic engineering, can synthesize ergothioneine, and has the yield of 630 mg/L.
Disclosure of Invention
In order to explore an industrial approach for producing ergothioneine by using food-source safe microorganisms through a fermentation method, the invention utilizes a genetic engineering technology to carry out genetic transformation on natural Rhodotorula toruloides (or Rhodotorula toruloides) so as to construct a strain with high yield of the ergothioneine. Specifically, the invention comprises the following technical scheme:
an EGT1 gene expression cassette selected from SEQ ID NO 1, SEQ ID NO 2 or SEQ ID NO 3.
Wherein SEQ ID NO. 1 comprises promoter pGPD, gene NcEGT1 coding for enzyme egt1 derived from Neurospora crassa and a Saccharomyces cerevisiae-derived CYC1t terminator, XbaI cleavage sites and PmeI cleavage sites are respectively added from head to tail for subsequent plasmid construction, and the sequence is named Pgpd-NcEGT1-ScCYC1 t;
2 contains promoter pGPD, coding gene CpEGT1 of enzyme egt1 derived from Claviceps purpurea of rye ergot bacteria and CYC1t terminator derived from saccharomyces cerevisiae, adds XbaI and PmeI restriction sites from head to tail respectively for subsequent plasmid construction, and is named Pgpd-CpEGT1-ScCYC1t in the text;
SEQ ID NO 3 contains promoter pGPD, gene RmEGT1 encoding enzyme egt1 derived from Rhodotorula mucilaginosa and Saccharomyces cerevisiae-derived CYC1t terminator, and XbaI and PmeI cleavage sites are added head and tail respectively for the subsequent plasmid construction, herein named Pgpd-RmEGT1-ScCYC1 t.
According to a second aspect of the present invention, there is provided an EGT1 gene expression plasmid obtained by cloning the above-described gene expression cassette on Puc57 plasmid. Corresponding to the names of the gene expression cassettes, the gene expression cassettes are named as Puc57-Pgpd-NcEGT1-ScCYC1t, Puc57-Pgpd-CpEGT1-ScCYC1t and Puc57-Pgpd-RmEGT1-ScCYC1 t.
According to a third aspect of the present invention, there is provided an ergothioneine functional gene expression plasmid (or EGT1 gene transformation plasmid) constructed by a method comprising the steps of:
1) the EGT1 gene expression plasmid Puc57-Pgpd-NcEGT1-ScCYC1t, Puc57-Pgpd-CpEGT1-ScCYC1t and Puc57-Pgpd-RmEGT1-ScCYC1t are subjected to enzyme digestion by using restriction enzyme XbaI/PmeI, and 3.7kb, 3.6kb and 4.9kb fragments are respectively recovered by gel to obtain an EGT1 gene expression fragment;
2) carrying out enzyme digestion on plasmid pZPK-PGPD-Hyg-Tnos with the nucleotide sequence of SEQ ID NO. 4 by using restriction enzyme XbaI/PmeI, and carrying out gel recovery on an 8.3kb fragment to obtain a plasmid skeleton;
3) connecting the EGT1 gene expression fragment obtained in the step 1) with the plasmid skeleton obtained in the step 2) to obtain an ergothioneine functional gene expression plasmid. The ergothioneine functional gene expression plasmids are pZPK-NcEGT1, pZPK-CpEGT1 and pZPK-RmEGT1 plasmids corresponding to the plasmids Puc57-Pgpd-NcEGT1-ScCYC1t, Puc57-Pgpd-CpEGT1-ScCYC1t and Puc57-Pgpd-RmEGT1-ScCYC1 t.
The plasmid pZPK-PGPD-Hyg-Tnos described above is described in "Functional integration of multiple genes to the genes" FEMS Yeast Research 14(4):547-555 "(Lin, X., et al (2014)).
According to a fourth aspect of the present invention, there is provided a method of constructing an ergothioneine-producing bacterium, comprising the steps of: the above-mentioned ergothioneine functional gene expression plasmids (pZPK-NcEGT1, pZPK-CpEGT1 and pZPK-RmEGT1) were transformed into a strain capable of producing ergothioneine to obtain a positive clone.
The strain can be Rhodotorula toruloides (or Rhodotorula toruloides).
In one embodiment, the above method is to transfect rhodotorula toruloides with Agrobacterium mediated transformation of ergothioneine functional gene expression plasmids (pZPK-NcEGT1, pZPK-CpEGT1 and pZPK-RmEGT1) to obtain positive transformants.
For example, the method may specifically include the following steps:
A. transforming the ergothioneine functional gene expression plasmids (pZPK-NcEGT1, pZPK-CpEGT1 and pZPK-RmEGT1) into agrobacterium-infected cells to obtain agrobacterium engineering bacteria; preferably the agrobacterium is agrobacterium tumefaciens;
B. the liquid phase of the agrobacterium engineering bacteria is mixed with the rhodotorula toruloides, resistance screening is carried out, and positive transformants are obtained through phenotype and PCR verification, so that agrobacterium-mediated transfection of rhodotorula toruloides is realized.
According to a fifth aspect of the present invention, there is provided an ergothioneine-producing bacterium obtained by the method of constructing the ergothioneine-producing bacterium.
In one embodiment, the ergothioneine-producing bacteria is Rhodotorula toruloides 2.1389, preferably Rhodotorula toruloides 2.1389.
The ergothioneine-producing bacteria can be used for producing ergothioneine by fermentation.
The invention carries out genetic modification on natural rhodotorula toruloides by means of genetic engineering to obtain the ergothioneine high-yield strain with food source safety. Fermentation verifies that the yield of the ergothioneine can reach about 1.5g/L, and the constructed engineering strain has relatively stable genetic characters after multiple passages and has better industrial application potential.
Drawings
FIG. 1 is a map structure diagram of plasmid pZPK-PGPD-Hyg-Tnos constructed by the invention.
Detailed Description
egt1 is a multifunctional enzyme that catalyzes the formation of S- (hercyn-2-yl) -L-cysteine S-oxide (S- (hercyn-2-yl) -L-cysteine S-oxide), the ergothioneine precursor, by catalyzing the substrate histidine. It was found that the ergothioneine production could be promoted by expressing the egt1 gene in a strain producing ergothioneine.
For the sake of simplicity of description herein, a protein such as egt1 will sometimes be used in combination with its encoding gene (DNA) name, and one skilled in the art will understand that they will represent different substances at different instances of description. Their meaning will be readily understood by those skilled in the art based on the context and context. For example, for egt1, when used to describe an enzyme function or class, refers to a protein; when described as a gene, refers to the gene encoding the enzyme.
We screened three microbial sources of egt1 enzymes, respectively from Neurospora crassa, Claviceps purpurea and Rhodotorula mucilaginosa, encoding genes NcEGT1, CpEGT1 and RmEGT 1.
The gene NcEGT1 can obtain the following base sequences through codon optimization according to the NCBI database, Genbank access: XP-956324.3 sequence:
atgccatccgctgagtcgatgaccccgtcctccgctttgggccagctcaaagccaccggccagcacgtcctctcgaagctccagcagcaaacttcgaacgccgacatcatcgacattcgccgcgtcgctgttgagatcaacctcaagaccgagatcacctcgatgttcagaccgaaggacggtccgagacaactcccgactttgctcttgtacaatgagcgcggcctccaattgtttgagcgcattacctatttggaggagtactacctcactaatgatgagattaagatcctcaccaagcacgctaccgaaatggcctcgtttatcccgtccggcgccatgatcatcgagctcggttcgggtaacttgcgcaaggttaacttgctcctcgaggccctcgataacgctggtaaggccatcgactactacgctctcgacttgtcgcgcgaggaattggagcgcactctcgctcaagtcccgtcgtacaagcacgttaagtgccacggtctcctcggcacctacgacgatggccgcgactggctcaaggccccagagaacatcaacaaacagaagtgcatcctccacttgggctcctccattggcaactttaaccgctccgacgctgccacttttttgaagggcttcactgacgtcctcggtccgaacgacaaaatgctcatcggtgtcgatgcttgcaatgacccggcccgcgtctaccatgcctacaacgacaaagtcggcatcacccacgaattcatcttgaacggcttgcgcaacgccaacgagattatcggcgagaccgcctttatcgaaggcgactggagagtcatcggcgaatacgtctacgacgaggagggtggtcgccaccaagccttctatgccccaactcgcgatactatggtcatgggcgagctcatcagatcccacgatcgcatccagatcgagcagtccctcaagtactccaaggaggagtccgagcgcctctggtcgactgctggtctcgaacaagtctccgaatggacctacggcaacgaatacggtctccatttgctcgccaaatccagaatgtcgttctccctcatcccgtcggtctatgcccgctcggctctcccaactctcgacgattgggaagccttgtgggccacttgggacgtcgtcaccagacagatgttgccgcaagaggaactcctcgagaagccgatcaagctccgcaacgcttgcatcttctacctcggccacattccaaccttcctcgacatccagttgaccaagaccaccaaacaagccccgtccgagccagctcacttctgcaagatcttcgagcgcggtatcgacccggatgtcgataatccggagctctgccacgctcactccgagatcccggacgagtggccaccagtcgaggagatcctcacctatcaagagaccgttcgctcgcgcttgcgcggtttgtacgcccacggtattgctaacatcccgcgcaacgttggtagagctatttgggtcggtttcgagcacgagctcatgcacatcgagaccctcctctacatgatgttgcagtcggacaagaccctcattccgacccatattccacgcccggacttcgataagttggcccgcaaggctgaatcggagagagtcccgaaccagtggttcaagatcccggcccaagagatcactatcggtctcgacgacccggaggacggttccgacatcaataaacactacggctgggataacgagaagccaccgcgcagagttcaagtcgccgcctttcaagcccaaggtagaccaatcactaacgaggagtacgcccaatacttgctcgagaagaacatcgacaaactcccagcctcgtgggctcgcttggacaatgagaacatctccaacggcaccaccaattccgtttccggtcaccactccaaccgcacctccaagcagcagctcccgtcctcgttcttggagaaaaccgccgtcagaaccgtttatggtttggttccactcaagcacgccctcgactggccggtcttcgcttcgtatgacgaactcgctggttgcgccgcttacatgggcggtcgcatcccgactttcgaagagacccgctccatctatgcctatgccgacgccctcaagaaaaagaaggaagctgaacgccagttgggtcgcaccgtcccagctgttaacgcccacctcaccaataacggcgttgaaatcaccccgccgtcgtcgccgtcgtccgaaaccccggccgaatcctcctccccgtcggattcgaacaccactctcatcaccactgaggacttgttctcggacctcgacggcgccaacgtcggcttccataactggcacccgatgccaatcacctcgaagggtaacactctcgtcggtcaaggtgagctcggcggtgtctgggaatggacctcgtcggtcctccgcaagtgggagggcttcgagccgatggagctctatccgggctacactgctgacttcttcgacgaaaagcacaatatcgtcctcggcggttcgtgggctacccacccaagaatcgccggccgcaagtcctttgtcaactggtaccagcgcaactacccgtatgcttgggtcggcgccagagttgtcagagacctctaa;
CpEGT1 sequence reference van der Hoek, S.A., et al (2019). "Engineering the yeast Saccharomyces cerevisiae for the production of L- (+) -Ergothioeine." bioRxiv:667592. it is
atgactgccgttaagcaaattcctgaaagaaaggtgttgatagattcaaatcataagtctccatcaaaaccgggtaaacatcctaattctgtcattgatatcaggtctaataaggacgatttaaatttacgtcatgccctagtctcatcttttaatccacacgatggaaaacctaggtggctacctactatgttattgtacgacgaaaaaggtttacaattgtttgaagatataacttacttagatgagtattatttgactggctacgaaattgaattattgaagaaacattcagcagaaattgcagctgctattcctgatggttctatggtcatcgaattgggctctggtaatttgagaaagatctgtttgttgttacaagcctttgaggattcacataagtctatcgactactatgcattagatttatcacaaaaggaattagaaagaactttgagccatgttcctgactttaaatatgtctcttgtcatggactgctaggtacatatgatgatggtgttacatggttgaaacaaccaggtatagtcaataagactaagtgcatcatccatcttggttcgtctattgggaattttcatagaaatgaagctgccgatttcctgcagacatttgctgatgtaatgaaaccagacgactctatggttattggtcttgattcatgcggtaatccagagatgtctcgcattcaaagattcattttgaacggcttatccaatgctaatagcgtttatggcaaggaaatattctatgttccagattggagagtaattggtgaatatgtttacgatgatgaaggtggcagacaccaggcttttatttcacctttgaaagaagtcactgctttagggtctgttattaaagcccatgaaagaattaaaattgaacaatctttgaagtactctaaggcctcagctgacgatttatggagaaatgctggctttcgagaaactcaaacttggacgagaaacggtgaatatggactacatatgttgcaaagagctgatccgcccttctctaaggctccttctttgtatgcagctaatactcttccctctctttctgattggagagcattgtggtgtgcctgggatattgtcactagagctatgttgccacaacaggaattgactgagaaacctatagagttaagacatgcctacatcttttaccttggtcatattcctaccttcttagacatccagttaaccaaaacatcagcatgggctccaacctctccagtttcttatcatgccattttcgagcgcggcattgatcccgatgttgataacccagaaaagtgtcatgatcactcagagattccagatgaatggccaccagtcgaagaaattattgcttatcaagatagggtgcgtgttagattgacagaactgtataaacagggtgtgcacacaattacaagaaaggctgctagagctatctgggtttcatttgaacatgaagctatgcatttggaaaccttgttgtatatgatgctacaaagtgataaagtgttgccacctccacacactggcgttccagactttgaaagaatggcaactaaggctttcgaagctcgtacgcaaaatatgtggttcgaaattccagaacagactattagtcttggaacagatgatccagaagatggggatgaagacgttcattttggatgggacaacgaaaaaccagttagaagagttaaggttcacgcgttgcaagctcaaggaagaccaattacaaatgaggaatacgcattatatatttaccataccaactcttctaaactgccagcatcttggagttcgtccccttcatcttctctgtctaacggcgtgtctcatcccagctcccataacaagcatattccaactgatttgcctcattccttcttgcaaggtaagtttgttagaaccgtatatggtttgatacctttatctttggcgttggattggcctgttcaagcttcttatgatgaattagctgactgtgcattatggatgggtggaagaattccaaccttagaggaagccagatcaatctatgcctttgttgaatctaaaacgcaaatagcaacaggtaacacattggtcaagaaagttcctgctgttaatggacacttggttaataacggagttgaggaaactccaccacatgaatcctcttcggcagttgagaattctttattcatcgacttagccggtttgaacgtgggttttaaaagttggaatcctgaacctgttacatcttctggtacgtctttggctggacaatcctctatgggtggtgtatgggagtggacctcttctgttttaagaccacatgaagggttccacccaatggagttgtatcctggttatacagccgatttctttgatgaaaaacataatattgttctcggaggatcatgggctactcatccaagaatagcgggtagaaaaagctttgttaactggtatcaaagaaactatccgtacgcctgggctggtgccagacttgttaaagatgcttga;
RmEGT1, using the NcEGT1 protein sequence, in the NCBI database blastp tool, to define the Rhodotorula mucilaginosa Rhodotorula muscilaginosa genome, and performing sequence alignment to obtain the following egt1 sequence:
atgccagacgccgcctcaaccgccgctgttcagcctccgcccttcatcctcgacctgcggaaccgctcgccgccgacctcgccgagccaggtcgcctccgatgccgctcgctcgtcctctccgtcgtccctgggcgaatcggagggcactacctcgaccaatgctacccccgaggccccctccgatccgctccgcgagcagatcatcgccggcttgatcggatcgcccaagcccaccgttccaggcaagacggaaaaggatcgcgcgtatgcgtaccgccgcacgatcccgaccatgacactgtacagcgagcgtggcctgtctatctacgaggaaatcaccaagaccaaggtatgctcggccctttccgtccgctttggttcacgaggggccaatgctttctcagcaggccctcgcgcgccgtcggccccacttgccctacggcgtgcgggctctccttcggactaggtggctggcaagcatcccctttgcagacgcactgacctcgtctttgcgtttcgattcaggcctactacccattcgaagccgaaaaggagattctcgaaaagtatggagacgaaattgcctgccgcatgtttggactgccgtcggccttgctcgtcccggacgacgtagtccgtggcaaagacgaccagtacgaaccctctccggcttcaaacatcggcgcgaagaaggagaagtggtgagccggcgttcggaactataacggctcctcatccgcggtacaggcgctgacgcactgcttacaggggcgacgtcgctgtcggtctccacaactacggtgtcaacggctctgcgaacctcgcgcagaacaatgtcgtcgccacgcagggcctcgcggtcgagcttggctcgggctcgctcgacaagacccgtcatctcctccgctctatggccaagctgttgcagtctcgcgacgagggcagctgcccggtctctcctctgcgctccattgactacaaagcagtgcgtttggcgaaacctccgcgagtataggaaatcaatactgacctcccacgtctgccgctgaacagctcgaccttgaagcggcgtcgctctactcgacactgtcctcgcttgcatcggtcgaaggcgattgcgtcacgacggcggtcgacggacagccaaacgcgacgaaacgccgcgtttcggtctcgggtcttcacgccacctacgacgagggcctcgccttcttgaaggcgcagaacgatgctggcagcccgtcgagcgtcttctcagacctccccgacttgcccacgagtccaaagtcggttccgactaccttgtccagtgtcctggaggacgacagcgacgaaggcgagaccgctcaagcgtctcgcggcgagaacgctgcggaacgccgcgcgacttcgatcatgtggctcggttcctcgtgcggcaactacacccgcgaggaagcggtgcagttcctccgcaacatcgagctgcgcgagggcgataccatgctgatcggcatcgacggctgcgcggacgaacctcgtatcgagactgcctacaacgacccgcaggtgagtctgatgtcctgccaaactgaccagtatgagctgctctgacccttgtttgccgctgatcctccagggcgtcacccgcgcgttcattctcgagggcatcgatgtcgcaggccgcaccctcggcggagacgcggccgaagtgctgcagcagaagaactttgactatgtcaaccgctggaacgccgagctcggaaggcacgaggtgagctgccttccgctgtccagaggagagcagcctgagttgcaccggcagccctgttctgacccgtccccgcgacaccctcgcaggcttacgtccgcgccaacaaagatctcacaatcccgatcacgggcgcagacgacgtcaccgaggtcaagctcgaagagggagagtaagtcccgcacttttgcgcgttgagccggtgccatcacaagagcccttcctgacgtttcctctcgcaccaggctcctcaacattgaagtctcttacaagtacacctatgcggaggcggcggcgctcttccacttggcgggcttccggctcatccagcactggaccgactcgtcgcgctcgcattacctctacctggtcgaaaagccccgcatgtggttcccgtcgacgaccgagagcgctgccaagatgctcggtatcgaggtcgagcccgaggagaaggagaccgactacggtgtcccgactctggaaaagtgggaagaaatgtggcgggcgtgggacggcttgatggtgaggatgccctcgtcggcgaaggaattccgcaagcgatgagtggacgctcacctgaaaccgcttcttctaccagctcgagatcatccccaagtcgctgcacttccagaagccgatcccgctccgccacatcccgctcttctacgtcgggcacatacccgctttccgggatattcacctcgcgaggtacttcaacgagccgctgaccgaaccggcaaagtttgccgacatcttcgagcgcggaatcgatccctgtgtcgacgaccccgagaccgtcacgcactggcactcggaagtcccgaaggacgaagcgtgctggccttctctccaggagattacggcgtacgaagcgtccgttcgcgatcgcgtccgcaaggtgtacgccgaacacgagggcaagtggacgaccaagctcgcccgtgtgctgatgatgacttttgagcacgagatgtgcgtccttcctgcttcgggctgattcggtacccatgtcatcactcgactcactcatcctcttgggtccccttgggccccacaggatgcactgggagacctccgtctacatctgtctccaagccgcgagctcgctcaaccttccgccgggaacggcgattcctgatttccgctcgctggcacgtcaagcaaaacgtgatctgcatcagaacggcggcggacagcgactctccttccccgctcaggaggtcacagtcggtcacgacgacgacgataccatcgacgaccagacgccgtttgaccctgcccgagaatacggctgggatgtcgagcaccctcgccgccagcttcgcgtcgacgcattcgagatcgaggtcctcccgatctcgaacggagagtacaaaacctggcttaccgagacgcagcaactctcgaacaaggcgctcatcccgtcgagctggacggacgagactggcgaactctgcgtgaaaacgttgttcggcttggtccccctcactctcgccgaggagtggcccgtggctgcgagcgcggaacagctcgagaagtttgccaaggtgggtatcctttgctcgagcaagaatagggaccgaagaagactgactcgtaactttctgcactcgacaggccaaaggaggacgcttgccgacgttcggcgagctgtcggcgttcaaccagcacaaccctagctctacgcctctcgccaacatcggcctcgcaaacctgcatccggttgccccttcggtacccgggaaagcgcgtgacggcagccagctcccgatcaccgacggaggcctgtggcaatggacctcgacggtcctcgagccctgggctggttacagcggatcggttctttaccctggttactccagtgacgtgagtcgagtgcgactgtgaatgaagtgagatggggcaactgacattaagcgccctctcttccctctagttcttcgacggcaaacaccacatcgtgctgggcgcgagctacgcgagtcctcgtcgcttggcccgcccttctttcctgaactggtaccagaagaactgtgcgtttctggcgctcttccaaggaccgttgccgccagatccccgtactgacatgctctgccgcagaccctttcatgctcggcggcgctcgtgtggcgtacgatgtgtga。
in the engineered bacteria constructed by the invention, the egt1 gene exists in the form of a gene expression cassette. The terms "egt 1 gene expression cassette", "gene expression cassette" and "expression cassette" are used herein in the same sense and are used interchangeably.
Using NcEGT1, CpEGT1 and RmEGT1 as the target genes, three egt1 gene expression cassettes, Pgpd-NcEGT1-ScCYC1t (SEQ ID NO:1), Pgpd-CpEGT1-ScCYC1t (SEQ ID NO:2) and Pgpd-RmEGT1-ScCYC1t (SEQ ID NO:3) were constructed. XbaI and PmeI restriction sites are respectively designed and added at the head and the tail of the three expression cassettes for subsequent plasmid construction.
The element sequence of the gene expression cassette is sent to Jinzhi biotechnology company of Suzhou to be synthesized, and plasmids of Puc57-Pgpd-NcEGT1-ScCYC1t, Puc57-Pgpd-CpEGT1-ScCYC1t and Puc57-Pgpd-RmEGT1-ScCYC1t are respectively obtained and are used for subsequent restriction enzyme ligation cloning construction.
The ability of Rhodotorula toruloides to produce ergothioneine is increased by expressing the egt1 gene in a suitable host such as certain Rhodotorula toruloides. When the constructed rhodotorula toruloides engineering bacteria are used for producing the ergothioneine through fermentation, a large amount of the ergothioneine can be produced without adding histidine betaine, histidine or cysteine and the like into a culture solution.
The present invention will be described in further detail with reference to specific examples. It should be understood that the following examples are illustrative only and are not intended to limit the scope of the present invention.
The addition amount, content and concentration of various substances are referred to herein, wherein the percentage refers to the mass percentage unless otherwise specified.
Examples
Materials and methods
The whole gene synthesis, primer synthesis and sequencing herein were performed by the national King Only Biotech, Suzhou.
The molecular biological experiments herein include plasmid construction, enzyme digestion, competent cell preparation, transformation, etc., which are mainly performed with reference to molecular cloning, a guide to experiments (third edition), J. SammBruk, D.W. Lassel (America), Huangpetang, et al, scientific Press, Beijing, 2002). For example, the methods for competent cell transformation and competent cell preparation are described in Chapter 1, 96 of molecular cloning, A laboratory Manual (third edition). The specific experimental conditions can be determined by simple experiments if necessary.
Main medium and solution:
LB culture medium: 5g/L yeast extract, 10g/L tryptone, 10g/L sodium chloride. (20 g/L agar powder was additionally added to LB solid medium.)
YEB Medium: beef extract 5g/L, yeast extract 1g/L, peptone 5g/L, sucrose 5g/L, MgSO4·7H2O0.5g/L, pH 7.4. (YEB 15g/L agar powder in solid culture medium.)
YPD medium: 1 wt% of yeast extract, 2 wt% of peptone and 2 wt% of glucose.
Agrobacterium-mediated yeast transformation solution and medium:
MM solution: 3.625g KH2PO4,5.125g K2HPO4,1.250g MgSO4·7H2O,0.375g NaCl,0.165g CaCl2·2H2O,0.0062g FeSO4·7H2O,1.250g(NH4)2SO4Dissolved in ddH2Fixing the volume in O to 1L;
m-100 trace element solution: 30mg H3BO3,70mg MnCl2·4H2O,200mg ZnCl2,20mg Na2MoO4·2H2O,50mg FeCl3·6H2O,200mg CuSO4·5H2O, dissolved in ddH2And (4) adding water to 500ml in O.
M-100 salt solution: 16g KH2PO4,4g Na2SO4,8g KCl,2g MgSO4·7H2O,1g CaCl28ml of M-100 trace element solution dissolved in ddH2The volume in O is up to 1L.
IM liquid medium: 80ml MM solution, 0.36g glucose, 1ml glycerol, dissolved in ddH2And (4) keeping the volume to 200ml in O. Sterilizing, cooling to about 50 deg.C, and adding the following components: 8ml of 1M MES, 4ml of 10mM AS, the final concentrations of MES and AS being 40mM and 200. mu.M, respectively.
IM solid medium: 160ml of MM salt solution, 0.36g of glucose, 2ml of glycerol, dissolved in ddH2And (4) adding 6g of agar powder into the mixture until the volume is up to 400 ml. Sterilizing, cooling to about 50 deg.C, and adding the following components: 16ml of 1M MES, 8ml of 10mM AS, with final concentrations of MES and AS of 40mM and 200. mu.M, respectively.
Ergothioneine detection materials and methods:
ergothioneine standards were purchased from Shanghai chemical Co., Ltd, China medicine (group).
The HPLC detection conditions are as follows: agilent high performance liquid chromatograph 1260 definition II, Etilit ODS-BP chromatographic column, column temperature 40 ℃, mobile phase: a, ammonium dihydrogen phosphate (preparation method, 1.1503g of ammonium dihydrogen phosphate and 400mL of purified water are weighed, the pH value is adjusted to 5.0 by ammonia water, and then 100mL of purified water is added); b: and (3) acetonitrile. And the A and B are 99:1, the flow rate is 1mg/min, the sample injection amount is 10 mu l, and the detection wavelength is 258 nm.
And (3) detecting extracellular products: the fermentation broth was centrifuged at 10000rpm for 4min, the supernatant was collected and filtered through a 2 μm filter, and the sample was subjected to HPLC.
And (3) detecting an intracellular product: centrifuging the zymophyte liquid at 10000rpm for 4min, collecting thalli, weighing 100mg of wet thalli, transferring the thalli to a clean 1.5ml centrifuge tube, adding 1ml of sterile water, whirling, suspending the thalli, then carrying out warm bath at 90 ℃ for 30min, finishing the warm bath, centrifuging at 12000rpm for 10min, taking supernatant, filtering by using a 2 mu m filter, and then carrying out HPLC detection on a sample.
Example 1: original strain screening
According to the retrieved literature reports, food-safe microorganisms capable of producing ergothioneine are screened. A plurality of rhodotorula toruloides strains are purchased from the China general microbiological culture collection center for preliminary screening comparison, and the ergothioneine yield of each strain is evaluated.
And inoculating the purchased strains in a yeast culture medium, and performing shake flask fermentation. The yeast seed culture medium comprises the following components: 20g/L of glucose, 10g/L of yeast powder and 20g/L of peptone.
The Glycerin seeds are inoculated with a seed culture medium and cultured at 30 ℃ and 250rpm for 17h, and can be transferred when the OD600 is more than 16.
Yeast shake flask fermentation medium: 0.5g/L of ammonium sulfate, 10g/L of yeast powder, 10g/L of peptone, 3g/L of glutamic acid, 0.6mg/L of biotin, 0.1g/L of thiamine hydrochloride, 5g/L of magnesium sulfate, 0.278g/L of ferrous sulfate heptahydrate, 0.085g/L of manganese sulfate monohydrate, 25g/L of glucose and 2.5g/L of potassium dihydrogen phosphate.
And (3) shaking flask fermentation: a250 ml triangular flask was used, the liquid loading was 50ml, the inoculation rate was 2%, and the cells were cultured for 72 hours at 30 ℃ on a shaker at 250 rpm.
After shake flask fermentation, intracellular and extracellular ergothioneine yields were assessed after fermentation by each strain. The results are shown in Table 1.
TABLE 1 comparison of the ability of Rhodotorula toruloides to ferment ergothioneine
Rhodotorula toruloides strain Total yield mg/L
Rhodotorula toruloides 2.2424 120
Rhodotorula toruloides 2.1003 230
Rhodotorula toruloides 2.1609 187
Rhodotorula toruloides 2.1389 385
Rhodotorula toruloides 2.499 281
Rhodotorula toruloides 2.278 80
Rhodotorula toruloides 2.107 34
As can be seen from Table 1, the ability of different Rhodotorula toruloides to produce ergothioneine differed, with Rhodotorula toruloides 2.1389 being optimal. In the following examples, the strain was used as a genetically modified starter.
Example 2: construction of plasmid pZPK-PGPD-Hyg-Tnos
The following references can be made to the genetic manipulation of Rhodotorula toruloides: lin, X., et al (2014), "Functional integration of multiple genes of the multiphase Yeast extract," FEMS Yeast Research 14(4):547-555.
Referring to the literature, the complete sequence of plasmid pZPK-PGPD-Hyg-Tnos is determined according to the published sequence, and synthesized by Jinzhi Biotech Ltd, Suzhou to obtain plasmid pZPK-PGPD-Hyg-Tnos (SH205), the structure of which is shown in FIG. 1, and the base sequence of which is SEQ ID NO:4, 8378 bp.
Taking the plasmid as a plasmid skeleton, and carrying out subsequent plasmid construction.
Example 3: construction of EGT1 Gene expression cassette and expression plasmid
For target genes NcEGT1, CpEGT1 and RmEGT1 derived from three microorganisms, pGPD is designed as a promoter to control the expression of the functional gene; the CYC1t terminator from saccharomyces cerevisiae is used for controlling the expression termination of the functional gene; and XbaI enzyme cutting sites (tctaga) and PmeI enzyme cutting sites (gtttaaac) are designed and added at the head and the tail respectively so as to be used for the subsequent plasmid construction. The designed gene expression cassettes were Pgpd-NcEGT1-ScCYC1t (i.e., SEQ ID NO:1), Pgpd-CpEGT1-ScCYC1t (i.e., SEQ ID NO:2) and Pgpd-RmEGT1-ScCYC1t (i.e., SEQ ID NO:3)
The designed gene expression cassette sequence is sent to Suzhou Jinzhi biotechnology company for synthesis, and the gene expression cassette is cloned on Puc57 plasmid to obtain EGT1 gene expression plasmid for subsequent restriction enzyme ligation cloning construction. Corresponding to the names of the gene expression cassettes, the gene expression cassettes are named as Puc57-Pgpd-NcEGT1-ScCYC1t, Puc57-Pgpd-CpEGT1-ScCYC1t and Puc57-Pgpd-RmEGT1-ScCYC1 t.
The Pgpd-NcEGT1-ScCYC1t (i.e., SEQ ID NO:1), Pgpd-CpEGT1-ScCYC1t (i.e., SEQ ID NO:2) and Pgpd-RmEGT1-ScCYC1t (i.e., SEQ ID NO:3) plasmids were obtained, respectively.
Example 4: construction of expression plasmid for ergothioneine functional gene
4.1 after receiving the above-mentioned three plasmids Puc57-Pgpd-NcEGT1-ScCYC1t, Puc57-Pgpd-CpEGT1-ScCYC1t and Puc57-Pgpd-RmEGT1-ScCYC1t, they were digested with XbaI/PmeI restriction enzymes, respectively, and the 3.7kb, 3.6kb and 4.9kb fragments were gel-recovered, respectively.
4.2 backbone plasmid pZPK-PGPD-Hyg-Tnos was digested with XbaI/PmeI, and 8.3kb fragment was recovered. The fragment is respectively connected with enzyme digestion fragments of the 3 gene expression cassettes to obtain three ergothioneine functional gene expression plasmids (also called EGT1 gene transformation plasmids) pZPK-NcEGT1, p ZPK-CpEGT1 and p ZPK-RmEGT1 which are used for transforming a host. The connection method comprises the following steps: using T4 ligase system purchased from NEB company, adding the vector and gene expression cassette into T4 ligase system according to the molar ratio of 1:5, connecting at 16 ℃ for 2h, transforming the ligation product into DH5a escherichia coli, performing clone screening by using kanamycin, and obtaining the three ergothioneine functional gene expression plasmids (also called EGT1 gene transformation plasmid) pZPK-NcEGT1, p ZPK-CpEGT1 and p ZPK-RmEGT1 after colony PCR, plasmid digestion and plasmid sequencing verification.
Example 5: preparation of Agrobacterium tumefaciens engineering bacteria
5.1 preparation of Agrobacterium tumefaciens Strain AGL-1 competence: a single colony of the strain AGL-1 (biosciences, Shanghai Kanglang, Ltd.) was picked from a YEB plate containing 50. mu.g/ml carbenicillin (Carb) into 5ml of YEB liquid medium (containing 50. mu.g/ml Carb), and shake-cultured overnight at 200rpm and 28 ℃. 2ml of the suspension was transferred to 50ml of YEB (containing 50. mu.g/ml Carb), and shake-cultured at 28 ℃ and 200rpm until the OD absorbance at 600nm of the suspension became about 0.5. Taking out bacterial liquid, ice-cooling for 30min, centrifuging at 8000rpm for 5min at 4 deg.C, and collecting thallus. With 10ml ddH2And washing once. The cells were again collected by centrifugation at 8000rpm for 5min at 4 ℃. Discarding the supernatant, adding 2ml of 10% sterile glycerol, and subpackaging 100 μ l each to obtain the Agrobacterium tumefaciens strain AGL-1 competence.
5.2 transformation of the plasmid into Agrobacterium tumefaciens AGL-1: the Agrobacterium is sensitized and placed on ice for 10 min. 1-2. mu.g of the EGT1 gene transformation plasmids pZPK-NcEGT1, pZPK-CpEGT1 and pZPK-RmEGT1 constructed in example 4 were added, gently and uniformly blown by a pipette, transferred to a 0.2cm sterile electric cuvette, placed on ice for 5min, shocked at 2.5kv, added with 1ml of liquid YEB, and cultured at 28 ℃ and 150rpm for 3 h. The cells were collected by centrifugation at 8000rpm for 2 min. After removing the supernatant, the cells were resuspended in 100. mu.l of liquid YEB, spread evenly on YEB plates (containing 50. mu.g/ml Carb and 50. mu.g/ml Kan), and cultured at 28 ℃ for 2-3 days. Transformants were picked and shaken with 3ml of liquid YEB (containing 50. mu.g/ml Carb and 50. mu.g/ml Kan) at 28 ℃ and 220rpm overnight. And (3) verifying a transformant by PCR, and storing a bacterial liquid of the transformant at-80 ℃ (containing 15% of glycerol) to obtain agrobacterium engineering bacteria AGL-1/pZPK-NcEGT1, AGL-1/pZPK-CpEGT1 and AGL-1/pZPK-RmEGT 1.
Example 6: agrobacterium mediated transfection rhodotorula toruloides
6.1 culturing the agrobacterium engineering bacteria: single colonies of the engineered Agrobacterium AGL-1/pZPK-NcEGT1, AGL-1/pZPK-CpEGT1 and AGL-1/pZPK-RmEGT1 constructed in example 5 were inoculated into 4-5ml of LB medium (containing antibiotics Amp and Kan) and cultured overnight at 30 ℃. Determination of OD value, generally required to reach OD600The dilution factor was calculated at 4.2 or more, and the OD was 0.6 when the dilution factor was calculated as a factor (according to the calculation). Taking a certain amount of bacterial liquid in a 1.5ml centrifuge tube, centrifuging at 12000rpm for 30s, settling the bacterial cells, adding sterilized distilled water for suspension, and centrifuging again to settle the bottom. Finally, the bacteria were suspended to an OD of 0.6 using the calculated volume of water. And (5) standby.
6.2 Rhodotorula toruloides host culture: rhodotorula toruloides 2.1389 was inoculated in 4-5ml of YPD medium for overnight culture for about 15-16 h. Determination of OD600Value, calculate dilution fold, should dilute (calculated as a real) fold, dilute OD to 0.6. According to the requirement, taking a certain amount of bacterial liquid in a 1.5ml centrifuge tube, centrifuging at 13000rpm for 30s, settling the bacterial cells, adding sterilized distilled water for suspension, and centrifuging again for settling. Finally, the bacteria were suspended to an OD of 0.6 using the calculated volume of water. And (5) standby.
6.3 plating transfection: mixing the diluted agrobacterium engineering bacteria liquid and yeast bacteria liquid, coating a flat plate: 100ul of each was mixed and spread on an IM plate, and cultured at 24 ℃ for 2-3 days.
6.4 resistance selection: colonies obtained on the IM plates were scraped off using YPD liquid medium, and the bacterial suspension was spread on YPD + hygromycin-resistant plates and cultured at 30 ℃ for 4 days. After a transformant appears, selecting a clone, carrying out streak subculture on a YPD + hygromycin resistance plate, carrying out continuous passage for 3 generations, carrying out genome extraction on the clone with stable continuous passage resistance phenotype, carrying out PCR verification on a specific target sequence, and carrying out phenotype verification to obtain a positive transformant.
Example 7: engineering bacteria shake flask fermentation investigation
The positive transformants obtained in example 6 were investigated by shake flask fermentation according to the procedure of example 1. After shake flask fermentation, intracellular and extracellular ergothioneine yields after fermentation of each engineering bacterium were evaluated. The results are shown in Table 2.
TABLE 2 comparison of the ability of different Rhodotorula toruloides engineering bacteria to produce ergothioneine by shake flask fermentation
Figure BDA0002554464340000131
As can be seen from Table 2, the ability of three different microbially derived EGT1 genes expressed in Rhodotorula toruloides 2.1389 of the same Rhodotorula toruloides was different in their ability to promote ergothioneine production, with NcEGT1 being the most preferred gene, and the expression of different microbially derived EGT1 genes increased ergothioneine production.
Example 8: fermentation investigation of engineering bacteria fermentation tank
On a rhodotorula torvus streak plate, using an inoculating loop to take a test tube of a single colony inoculum culture medium (20 g/L of glucose, 10g/L of peptone, 5g/L of yeast extract, pH7.0), and culturing at 30 ℃ and 230rpm for overnight in a liquid containing 4 ml; the seed was prepared by inoculating the seed culture medium in an amount of 5% v/v in a shake flask, 50ml in a 250ml Erlenmeyer flask, shaking at 30 ℃ and 230rpm overnight. The seed solution was transferred to a fermenter medium (glucose 60g/L, peptone 10g/L, corn steep liquor 10g/L, ferrous sulfate 10mg/L, pH6.5) at an inoculation ratio of 10% v/v.
Stirring speed of a fermentation tank is 400-800 rpm, dissolved oxygen coupling is realized, dissolved oxygen is controlled to be 40%, the temperature is 30 ℃, air flow is 3L/min, ammonia water and histidine are supplemented, pH is controlled to be 6.5, and fermentation can be continued for 120 h. Meanwhile, 500g/L glucose solution is fed at the rate of 20ml/h within 12-24 h; 24h-72h, feeding 500g/L glucose solution at the rate of 10 ml/h; adding 500g/L glucose solution at the rate of 3-5ml/h for 72-96 h; and (3) 24-96h, and feeding 100g/L of corn steep liquor solution at the rate of 5-8 ml/h. And after the fermentation is finished, evaluating the yield of intracellular and extracellular ergothioneine after the fermentation of each engineering bacterium. The results are shown in Table 3.
TABLE 3 comparison of the ability of fermentation tanks of different Rhodotorula toruloides for ergothioneine production
Figure BDA0002554464340000141
As can be seen from Table 3, similar to the shake flask fermentation, the ability of promoting the ergothioneine production by expressing three different microorganism-derived EGT1 genes in the same Rhodotorula torula toruloides 2.1389 is different, and the ergothioneine yield can be improved by expressing the different microorganism-derived EGT1 genes, wherein the NcEGT1 is still optimal, the ergothioneine yield after fermentation is close to 1.5g/L, and the method has an industrial application prospect.
Example 9: engineering bacteria genetic stability assessment
Carrying out streak subculture on the strains including Rhodotorula toruloides 2.1389, Rhodotorula toruloides 2.1389-NcEGT1, Rhodotorula toruloides 2.1389-CpEGT1 and Rhodotorula toruloides 2.1389-RmEGT1, carrying out shake flask fermentation verification on the strains after passage, evaluating the yield and judging the genetic stability of engineering bacteria.
Figure BDA0002554464340000151
The experimental results show that the product yield of the genetic engineering strain constructed by the method is still higher than that of the original strain Rhodotorula toruloides 2.1389 after 6 passages, and the genetic characters of the engineering strain are relatively stable.
Sequence listing
<110> Zhejiang HuaRui Biotechnology Ltd
<120> method for constructing ergothioneine-producing bacteria
<130> SHPI2010310
<150> CN202010194710.8
<151> 2020-03-19
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3667
<212> DNA
<213> Artificial sequence ()
<400> 1
tctagagatc tcttctccgg ctttccgtcc ctcgagtacc gtcgcggcgg ctgttttgca 60
tagcggagta agtcatgcgg tcctgtgcaa gcaagtgtcg tcgagaccgg cgactaaccc 120
cggaggccga gcgggtagtc ctccctgcgc aacaacgcga tttcatcagt gggccgtttc 180
gccagaagtt gtcccactcg cagggtgctc acatgaggat ctgaggcggg atcaggggtc 240
ggatgttctt gatccggcgg tcatcgaggt cgttgctggt cgtcgcacat gtccatcatg 300
acgagttgag tcagtctgtc agtcaggctc tgaagcgggg cggtaggctg cgtggctcac 360
agcgccgtct tgacgttggc ttgaggtgtc tgagtgccgt ctgcgcgcat cttgccctgg 420
atccgagtgt agttggttgg tcaatcagga tcttgcgaaa aagttgcgcg tgcgtgggcg 480
ccacgctcgt tcaagcgctc gttgattcat tcattgcctc caaacagggg ggaaccaggc 540
agcgtaaacc ccgcggagtt gtgcccgtcg ggttgccagc ggaacgtcag ccggacaatc 600
tcgcctcgct cgctcgtcac cctagacgca gaactagaga agcgaatcta ccctggcttg 660
tttgctgagg acgactctgc gccgcgctcc gtcaacgaca ccgctcgcca cctcgctcgt 720
ccagttcacc tctcttcgct caactactac cccaaccgat tcgcttcgct ctagctctac 780
ccgccgcgcg ttcagccagt cgagctacaa gatgccatcc gctgagtcga tgaccccgtc 840
ctccgctttg ggccagctca aagccaccgg ccagcacgtc ctctcgaagc tccagcagca 900
aacttcgaac gccgacatca tcgacattcg ccgcgtcgct gttgagatca acctcaagac 960
cgagatcacc tcgatgttca gaccgaagga cggtccgaga caactcccga ctttgctctt 1020
gtacaatgag cgcggcctcc aattgtttga gcgcattacc tatttggagg agtactacct 1080
cactaatgat gagattaaga tcctcaccaa gcacgctacc gaaatggcct cgtttatccc 1140
gtccggcgcc atgatcatcg agctcggttc gggtaacttg cgcaaggtta acttgctcct 1200
cgaggccctc gataacgctg gtaaggccat cgactactac gctctcgact tgtcgcgcga 1260
ggaattggag cgcactctcg ctcaagtccc gtcgtacaag cacgttaagt gccacggtct 1320
cctcggcacc tacgacgatg gccgcgactg gctcaaggcc ccagagaaca tcaacaaaca 1380
gaagtgcatc ctccacttgg gctcctccat tggcaacttt aaccgctccg acgctgccac 1440
ttttttgaag ggcttcactg acgtcctcgg tccgaacgac aaaatgctca tcggtgtcga 1500
tgcttgcaat gacccggccc gcgtctacca tgcctacaac gacaaagtcg gcatcaccca 1560
cgaattcatc ttgaacggct tgcgcaacgc caacgagatt atcggcgaga ccgcctttat 1620
cgaaggcgac tggagagtca tcggcgaata cgtctacgac gaggagggtg gtcgccacca 1680
agccttctat gccccaactc gcgatactat ggtcatgggc gagctcatca gatcccacga 1740
tcgcatccag atcgagcagt ccctcaagta ctccaaggag gagtccgagc gcctctggtc 1800
gactgctggt ctcgaacaag tctccgaatg gacctacggc aacgaatacg gtctccattt 1860
gctcgccaaa tccagaatgt cgttctccct catcccgtcg gtctatgccc gctcggctct 1920
cccaactctc gacgattggg aagccttgtg ggccacttgg gacgtcgtca ccagacagat 1980
gttgccgcaa gaggaactcc tcgagaagcc gatcaagctc cgcaacgctt gcatcttcta 2040
cctcggccac attccaacct tcctcgacat ccagttgacc aagaccacca aacaagcccc 2100
gtccgagcca gctcacttct gcaagatctt cgagcgcggt atcgacccgg atgtcgataa 2160
tccggagctc tgccacgctc actccgagat cccggacgag tggccaccag tcgaggagat 2220
cctcacctat caagagaccg ttcgctcgcg cttgcgcggt ttgtacgccc acggtattgc 2280
taacatcccg cgcaacgttg gtagagctat ttgggtcggt ttcgagcacg agctcatgca 2340
catcgagacc ctcctctaca tgatgttgca gtcggacaag accctcattc cgacccatat 2400
tccacgcccg gacttcgata agttggcccg caaggctgaa tcggagagag tcccgaacca 2460
gtggttcaag atcccggccc aagagatcac tatcggtctc gacgacccgg aggacggttc 2520
cgacatcaat aaacactacg gctgggataa cgagaagcca ccgcgcagag ttcaagtcgc 2580
cgcctttcaa gcccaaggta gaccaatcac taacgaggag tacgcccaat acttgctcga 2640
gaagaacatc gacaaactcc cagcctcgtg ggctcgcttg gacaatgaga acatctccaa 2700
cggcaccacc aattccgttt ccggtcacca ctccaaccgc acctccaagc agcagctccc 2760
gtcctcgttc ttggagaaaa ccgccgtcag aaccgtttat ggtttggttc cactcaagca 2820
cgccctcgac tggccggtct tcgcttcgta tgacgaactc gctggttgcg ccgcttacat 2880
gggcggtcgc atcccgactt tcgaagagac ccgctccatc tatgcctatg ccgacgccct 2940
caagaaaaag aaggaagctg aacgccagtt gggtcgcacc gtcccagctg ttaacgccca 3000
cctcaccaat aacggcgttg aaatcacccc gccgtcgtcg ccgtcgtccg aaaccccggc 3060
cgaatcctcc tccccgtcgg attcgaacac cactctcatc accactgagg acttgttctc 3120
ggacctcgac ggcgccaacg tcggcttcca taactggcac ccgatgccaa tcacctcgaa 3180
gggtaacact ctcgtcggtc aaggtgagct cggcggtgtc tgggaatgga cctcgtcggt 3240
cctccgcaag tgggagggct tcgagccgat ggagctctat ccgggctaca ctgctgactt 3300
cttcgacgaa aagcacaata tcgtcctcgg cggttcgtgg gctacccacc caagaatcgc 3360
cggccgcaag tcctttgtca actggtacca gcgcaactac ccgtatgctt gggtcggcgc 3420
cagagttgtc agagacctct aaacaggccc cttttccttt gtcgatatat gtaattagtt 3480
atgtcacgct tacattcacg ccctcctccc acatccgctc taaccgaaaa ggaaggagtt 3540
agacaacctg aagtctaggt ccctatttat tttttttaat agttatgtta gtattaagaa 3600
cgttatttat atttcaaatt tttctttttt ttctgtacaa acgcgtgtac gcatgtaacg 3660
tttaaac 3667
<210> 2
<211> 3565
<212> DNA
<213> Artificial sequence ()
<400> 2
tctagagatc tcttctccgg ctttccgtcc ctcgagtacc gtcgcggcgg ctgttttgca 60
tagcggagta agtcatgcgg tcctgtgcaa gcaagtgtcg tcgagaccgg cgactaaccc 120
cggaggccga gcgggtagtc ctccctgcgc aacaacgcga tttcatcagt gggccgtttc 180
gccagaagtt gtcccactcg cagggtgctc acatgaggat ctgaggcggg atcaggggtc 240
ggatgttctt gatccggcgg tcatcgaggt cgttgctggt cgtcgcacat gtccatcatg 300
acgagttgag tcagtctgtc agtcaggctc tgaagcgggg cggtaggctg cgtggctcac 360
agcgccgtct tgacgttggc ttgaggtgtc tgagtgccgt ctgcgcgcat cttgccctgg 420
atccgagtgt agttggttgg tcaatcagga tcttgcgaaa aagttgcgcg tgcgtgggcg 480
ccacgctcgt tcaagcgctc gttgattcat tcattgcctc caaacagggg ggaaccaggc 540
agcgtaaacc ccgcggagtt gtgcccgtcg ggttgccagc ggaacgtcag ccggacaatc 600
tcgcctcgct cgctcgtcac cctagacgca gaactagaga agcgaatcta ccctggcttg 660
tttgctgagg acgactctgc gccgcgctcc gtcaacgaca ccgctcgcca cctcgctcgt 720
ccagttcacc tctcttcgct caactactac cccaaccgat tcgcttcgct ctagctctac 780
ccgccgcgcg ttcagccagt cgagctacaa gatgactgcc gttaagcaaa ttcctgaaag 840
aaaggtgttg atagattcaa atcataagtc tccatcaaaa ccgggtaaac atcctaattc 900
tgtcattgat atcaggtcta ataaggacga tttaaattta cgtcatgccc tagtctcatc 960
ttttaatcca cacgatggaa aacctaggtg gctacctact atgttattgt acgacgaaaa 1020
aggtttacaa ttgtttgaag atataactta cttagatgag tattatttga ctggctacga 1080
aattgaatta ttgaagaaac attcagcaga aattgcagct gctattcctg atggttctat 1140
ggtcatcgaa ttgggctctg gtaatttgag aaagatctgt ttgttgttac aagcctttga 1200
ggattcacat aagtctatcg actactatgc attagattta tcacaaaagg aattagaaag 1260
aactttgagc catgttcctg actttaaata tgtctcttgt catggactgc taggtacata 1320
tgatgatggt gttacatggt tgaaacaacc aggtatagtc aataagacta agtgcatcat 1380
ccatcttggt tcgtctattg ggaattttca tagaaatgaa gctgccgatt tcctgcagac 1440
atttgctgat gtaatgaaac cagacgactc tatggttatt ggtcttgatt catgcggtaa 1500
tccagagatg tctcgcattc aaagattcat tttgaacggc ttatccaatg ctaatagcgt 1560
ttatggcaag gaaatattct atgttccaga ttggagagta attggtgaat atgtttacga 1620
tgatgaaggt ggcagacacc aggcttttat ttcacctttg aaagaagtca ctgctttagg 1680
gtctgttatt aaagcccatg aaagaattaa aattgaacaa tctttgaagt actctaaggc 1740
ctcagctgac gatttatgga gaaatgctgg ctttcgagaa actcaaactt ggacgagaaa 1800
cggtgaatat ggactacata tgttgcaaag agctgatccg cccttctcta aggctccttc 1860
tttgtatgca gctaatactc ttccctctct ttctgattgg agagcattgt ggtgtgcctg 1920
ggatattgtc actagagcta tgttgccaca acaggaattg actgagaaac ctatagagtt 1980
aagacatgcc tacatctttt accttggtca tattcctacc ttcttagaca tccagttaac 2040
caaaacatca gcatgggctc caacctctcc agtttcttat catgccattt tcgagcgcgg 2100
cattgatccc gatgttgata acccagaaaa gtgtcatgat cactcagaga ttccagatga 2160
atggccacca gtcgaagaaa ttattgctta tcaagatagg gtgcgtgtta gattgacaga 2220
actgtataaa cagggtgtgc acacaattac aagaaaggct gctagagcta tctgggtttc 2280
atttgaacat gaagctatgc atttggaaac cttgttgtat atgatgctac aaagtgataa 2340
agtgttgcca cctccacaca ctggcgttcc agactttgaa agaatggcaa ctaaggcttt 2400
cgaagctcgt acgcaaaata tgtggttcga aattccagaa cagactatta gtcttggaac 2460
agatgatcca gaagatgggg atgaagacgt tcattttgga tgggacaacg aaaaaccagt 2520
tagaagagtt aaggttcacg cgttgcaagc tcaaggaaga ccaattacaa atgaggaata 2580
cgcattatat atttaccata ccaactcttc taaactgcca gcatcttgga gttcgtcccc 2640
ttcatcttct ctgtctaacg gcgtgtctca tcccagctcc cataacaagc atattccaac 2700
tgatttgcct cattccttct tgcaaggtaa gtttgttaga accgtatatg gtttgatacc 2760
tttatctttg gcgttggatt ggcctgttca agcttcttat gatgaattag ctgactgtgc 2820
attatggatg ggtggaagaa ttccaacctt agaggaagcc agatcaatct atgcctttgt 2880
tgaatctaaa acgcaaatag caacaggtaa cacattggtc aagaaagttc ctgctgttaa 2940
tggacacttg gttaataacg gagttgagga aactccacca catgaatcct cttcggcagt 3000
tgagaattct ttattcatcg acttagccgg tttgaacgtg ggttttaaaa gttggaatcc 3060
tgaacctgtt acatcttctg gtacgtcttt ggctggacaa tcctctatgg gtggtgtatg 3120
ggagtggacc tcttctgttt taagaccaca tgaagggttc cacccaatgg agttgtatcc 3180
tggttataca gccgatttct ttgatgaaaa acataatatt gttctcggag gatcatgggc 3240
tactcatcca agaatagcgg gtagaaaaag ctttgttaac tggtatcaaa gaaactatcc 3300
gtacgcctgg gctggtgcca gacttgttaa agatgcttga acaggcccct tttcctttgt 3360
cgatatatgt aattagttat gtcacgctta cattcacgcc ctcctcccac atccgctcta 3420
accgaaaagg aaggagttag acaacctgaa gtctaggtcc ctatttattt tttttaatag 3480
ttatgttagt attaagaacg ttatttatat ttcaaatttt tctttttttt ctgtacaaac 3540
gcgtgtacgc atgtaacgtt taaac 3565
<210> 3
<211> 4932
<212> DNA
<213> Artificial sequence ()
<400> 3
tctagagatc tcttctccgg ctttccgtcc ctcgagtacc gtcgcggcgg ctgttttgca 60
tagcggagta agtcatgcgg tcctgtgcaa gcaagtgtcg tcgagaccgg cgactaaccc 120
cggaggccga gcgggtagtc ctccctgcgc aacaacgcga tttcatcagt gggccgtttc 180
gccagaagtt gtcccactcg cagggtgctc acatgaggat ctgaggcggg atcaggggtc 240
ggatgttctt gatccggcgg tcatcgaggt cgttgctggt cgtcgcacat gtccatcatg 300
acgagttgag tcagtctgtc agtcaggctc tgaagcgggg cggtaggctg cgtggctcac 360
agcgccgtct tgacgttggc ttgaggtgtc tgagtgccgt ctgcgcgcat cttgccctgg 420
atccgagtgt agttggttgg tcaatcagga tcttgcgaaa aagttgcgcg tgcgtgggcg 480
ccacgctcgt tcaagcgctc gttgattcat tcattgcctc caaacagggg ggaaccaggc 540
agcgtaaacc ccgcggagtt gtgcccgtcg ggttgccagc ggaacgtcag ccggacaatc 600
tcgcctcgct cgctcgtcac cctagacgca gaactagaga agcgaatcta ccctggcttg 660
tttgctgagg acgactctgc gccgcgctcc gtcaacgaca ccgctcgcca cctcgctcgt 720
ccagttcacc tctcttcgct caactactac cccaaccgat tcgcttcgct ctagctctac 780
ccgccgcgcg ttcagccagt cgagctacaa gatgccagac gccgcctcaa ccgccgctgt 840
tcagcctccg cccttcatcc tcgacctgcg gaaccgctcg ccgccgacct cgccgagcca 900
ggtcgcctcc gatgccgctc gctcgtcctc tccgtcgtcc ctgggcgaat cggagggcac 960
tacctcgacc aatgctaccc ccgaggcccc ctccgatccg ctccgcgagc agatcatcgc 1020
cggcttgatc ggatcgccca agcccaccgt tccaggcaag acggaaaagg atcgcgcgta 1080
tgcgtaccgc cgcacgatcc cgaccatgac actgtacagc gagcgtggcc tgtctatcta 1140
cgaggaaatc accaagacca aggtatgctc ggccctttcc gtccgctttg gttcacgagg 1200
ggccaatgct ttctcagcag gccctcgcgc gccgtcggcc ccacttgccc tacggcgtgc 1260
gggctctcct tcggactagg tggctggcaa gcatcccctt tgcagacgca ctgacctcgt 1320
ctttgcgttt cgattcaggc ctactaccca ttcgaagccg aaaaggagat tctcgaaaag 1380
tatggagacg aaattgcctg ccgcatgttt ggactgccgt cggccttgct cgtcccggac 1440
gacgtagtcc gtggcaaaga cgaccagtac gaaccctctc cggcttcaaa catcggcgcg 1500
aagaaggaga agtggtgagc cggcgttcgg aactataacg gctcctcatc cgcggtacag 1560
gcgctgacgc actgcttaca ggggcgacgt cgctgtcggt ctccacaact acggtgtcaa 1620
cggctctgcg aacctcgcgc agaacaatgt cgtcgccacg cagggcctcg cggtcgagct 1680
tggctcgggc tcgctcgaca agacccgtca tctcctccgc tctatggcca agctgttgca 1740
gtctcgcgac gagggcagct gcccggtctc tcctctgcgc tccattgact acaaagcagt 1800
gcgtttggcg aaacctccgc gagtatagga aatcaatact gacctcccac gtctgccgct 1860
gaacagctcg accttgaagc ggcgtcgctc tactcgacac tgtcctcgct tgcatcggtc 1920
gaaggcgatt gcgtcacgac ggcggtcgac ggacagccaa acgcgacgaa acgccgcgtt 1980
tcggtctcgg gtcttcacgc cacctacgac gagggcctcg ccttcttgaa ggcgcagaac 2040
gatgctggca gcccgtcgag cgtcttctca gacctccccg acttgcccac gagtccaaag 2100
tcggttccga ctaccttgtc cagtgtcctg gaggacgaca gcgacgaagg cgagaccgct 2160
caagcgtctc gcggcgagaa cgctgcggaa cgccgcgcga cttcgatcat gtggctcggt 2220
tcctcgtgcg gcaactacac ccgcgaggaa gcggtgcagt tcctccgcaa catcgagctg 2280
cgcgagggcg ataccatgct gatcggcatc gacggctgcg cggacgaacc tcgtatcgag 2340
actgcctaca acgacccgca ggtgagtctg atgtcctgcc aaactgacca gtatgagctg 2400
ctctgaccct tgtttgccgc tgatcctcca gggcgtcacc cgcgcgttca ttctcgaggg 2460
catcgatgtc gcaggccgca ccctcggcgg agacgcggcc gaagtgctgc agcagaagaa 2520
ctttgactat gtcaaccgct ggaacgccga gctcggaagg cacgaggtga gctgccttcc 2580
gctgtccaga ggagagcagc ctgagttgca ccggcagccc tgttctgacc cgtccccgcg 2640
acaccctcgc aggcttacgt ccgcgccaac aaagatctca caatcccgat cacgggcgca 2700
gacgacgtca ccgaggtcaa gctcgaagag ggagagtaag tcccgcactt ttgcgcgttg 2760
agccggtgcc atcacaagag cccttcctga cgtttcctct cgcaccaggc tcctcaacat 2820
tgaagtctct tacaagtaca cctatgcgga ggcggcggcg ctcttccact tggcgggctt 2880
ccggctcatc cagcactgga ccgactcgtc gcgctcgcat tacctctacc tggtcgaaaa 2940
gccccgcatg tggttcccgt cgacgaccga gagcgctgcc aagatgctcg gtatcgaggt 3000
cgagcccgag gagaaggaga ccgactacgg tgtcccgact ctggaaaagt gggaagaaat 3060
gtggcgggcg tgggacggct tgatggtgag gatgccctcg tcggcgaagg aattccgcaa 3120
gcgatgagtg gacgctcacc tgaaaccgct tcttctacca gctcgagatc atccccaagt 3180
cgctgcactt ccagaagccg atcccgctcc gccacatccc gctcttctac gtcgggcaca 3240
tacccgcttt ccgggatatt cacctcgcga ggtacttcaa cgagccgctg accgaaccgg 3300
caaagtttgc cgacatcttc gagcgcggaa tcgatccctg tgtcgacgac cccgagaccg 3360
tcacgcactg gcactcggaa gtcccgaagg acgaagcgtg ctggccttct ctccaggaga 3420
ttacggcgta cgaagcgtcc gttcgcgatc gcgtccgcaa ggtgtacgcc gaacacgagg 3480
gcaagtggac gaccaagctc gcccgtgtgc tgatgatgac ttttgagcac gagatgtgcg 3540
tccttcctgc ttcgggctga ttcggtaccc atgtcatcac tcgactcact catcctcttg 3600
ggtccccttg ggccccacag gatgcactgg gagacctccg tctacatctg tctccaagcc 3660
gcgagctcgc tcaaccttcc gccgggaacg gcgattcctg atttccgctc gctggcacgt 3720
caagcaaaac gtgatctgca tcagaacggc ggcggacagc gactctcctt ccccgctcag 3780
gaggtcacag tcggtcacga cgacgacgat accatcgacg accagacgcc gtttgaccct 3840
gcccgagaat acggctggga tgtcgagcac cctcgccgcc agcttcgcgt cgacgcattc 3900
gagatcgagg tcctcccgat ctcgaacgga gagtacaaaa cctggcttac cgagacgcag 3960
caactctcga acaaggcgct catcccgtcg agctggacgg acgagactgg cgaactctgc 4020
gtgaaaacgt tgttcggctt ggtccccctc actctcgccg aggagtggcc cgtggctgcg 4080
agcgcggaac agctcgagaa gtttgccaag gtgggtatcc tttgctcgag caagaatagg 4140
gaccgaagaa gactgactcg taactttctg cactcgacag gccaaaggag gacgcttgcc 4200
gacgttcggc gagctgtcgg cgttcaacca gcacaaccct agctctacgc ctctcgccaa 4260
catcggcctc gcaaacctgc atccggttgc cccttcggta cccgggaaag cgcgtgacgg 4320
cagccagctc ccgatcaccg acggaggcct gtggcaatgg acctcgacgg tcctcgagcc 4380
ctgggctggt tacagcggat cggttcttta ccctggttac tccagtgacg tgagtcgagt 4440
gcgactgtga atgaagtgag atggggcaac tgacattaag cgccctctct tccctctagt 4500
tcttcgacgg caaacaccac atcgtgctgg gcgcgagcta cgcgagtcct cgtcgcttgg 4560
cccgcccttc tttcctgaac tggtaccaga agaactgtgc gtttctggcg ctcttccaag 4620
gaccgttgcc gccagatccc cgtactgaca tgctctgccg cagacccttt catgctcggc 4680
ggcgctcgtg tggcgtacga tgtgtgaaca ggcccctttt cctttgtcga tatatgtaat 4740
tagttatgtc acgcttacat tcacgccctc ctcccacatc cgctctaacc gaaaaggaag 4800
gagttagaca acctgaagtc taggtcccta tttatttttt ttaatagtta tgttagtatt 4860
aagaacgtta tttatatttc aaatttttct tttttttctg tacaaacgcg tgtacgcatg 4920
taacgtttaa ac 4932
<210> 4
<211> 8378
<212> DNA
<213> Artificial sequence ()
<400> 4
agtactttga tccaacccct ccgctgctat agtgcagtcg gcttctgacg ttcagtgcag 60
ccgtcttctg aaaacgacat gtcgcacaag tcctaagtta cgcgacaggc tgccgccctg 120
cccttttcct ggcgttttct tgtcgcgtgt tttagtcgca taaagtagaa tacttgcgac 180
tagaaccgga gacattacgc catgaacaag agcgccgccg ctggcctgct gggctatgcc 240
cgcgtcagca ccgacgacca ggacttgacc aaccaacggg ccgaactgca cgcggccggc 300
tgcaccaagc tgttttccga gaagatcacc ggcaccaggc gcgaccgccc ggagctggcc 360
aggatgcttg accacctacg ccctggcgac gttgtgacag tgaccaggct agaccgcctg 420
gcccgcagca cccgcgacct actggacatt gccgagcgca tccaggaggc cggcgcgggc 480
ctgcgtagcc tggcagagcc gtgggccgac accaccacgc cggccggccg catggtgttg 540
accgtgttcg ccggcattgc cgagttcgag cgttccctaa tcatcgaccg cacccggagc 600
gggcgcgagg ccgccaaggc ccgaggcgtg aagtttggcc cccgccctac cctcaccccg 660
gcacagatcg cgcacgcccg cgagctgatc gaccaggaag gccgcaccgt gaaagaggcg 720
gctgcactgc ttggcgtgca tcgctcgacc ctgtaccgcg cacttgagcg cagcgaggaa 780
gtgacgccca ccgaggccag gcggcgcggt gccttccgtg aggacgcatt gaccgaggcc 840
gacgccctgg cggccgccga gaatgaacgc caagaggaac aagcatgaaa ccgcaccagg 900
acggccagga cgaaccgttt ttcattaccg aagagatcga ggcggagatg atcgcggccg 960
ggtacgtgtt cgagccgccc gcgcacgtct caaccgtgcg gctgcatgaa atcctggccg 1020
gtttgtctga tgccaagctg gcggcctggc cggccagctt ggccgctgaa gaaaccgagc 1080
gccgccgtct aaaaaggtga tgtgtatttg agtaaaacag cttgcgtcat gcggtcgctg 1140
cgtatatgat gcgatgagta aataaacaaa tacgcaaggg gaacgcatga aggttatcgc 1200
tgtacttaac cagaaaggcg ggtcaggcaa gacgaccatc gcaacccatc tagcccgcgc 1260
cctgcaactc gccggggccg atgttctgtt agtcgattcc gatccccagg gcagtgcccg 1320
cgattgggcg gccgtgcggg aagatcaacc gctaaccgtt gtcggcatcg accgcccgac 1380
gattgaccgc gacgtgaagg ccatcggccg gcgcgacttc gtagtgatcg acggagcgcc 1440
ccaggcggcg gacttggctg tgtccgcgat caaggcagcc gacttcgtgc tgattccggt 1500
gcagccaagc ccttacgaca tatgggccac cgccgacctg gtggagctgg ttaagcagcg 1560
cattgaggtc acggatggaa ggctacaagc ggcctttgtc gtgtcgcggg cgatcaaagg 1620
cacgcgcatc ggcggtgagg ttgccgaggc gctggccggg tacgagctgc ccattcttga 1680
gtcccgtatc acgcagcgcg tgagctaccc aggcactgcc gccgccggca caaccgttct 1740
tgaatcagaa cccgagggcg acgctgcccg cgaggtccag gcgctggccg ctgaaattaa 1800
atcaaaactc atttgagtta atgaggtaaa gagaaaatga gcaaaagcac aaacacgcta 1860
agtgccggcc gtccgagcgc acgcagcagc aaggctgcaa cgttggccag cctggcagac 1920
acgccagcca tgaagcgggt caactttcag ttgccggcgg aggatcacac caagctgaag 1980
atgtacgcgg tacgccaagg caagaccatt accgagctgc tatctgaata catcgcgcag 2040
ctaccagagt aaatgagcaa atgaataaat gagtagatga attttagcgg ctaaaggagg 2100
cggcatggaa aatcaagaac aaccaggcac cgacgccgtg gaatgcccca tgtgtggagg 2160
aacgggcggt tggccaggcg taagcggctg ggttgtctgc cggccctgca atggcactgg 2220
aacccccaag cccgaggaat cggcgtgacg gtcgcaaacc atccggcccg gtacaaatcg 2280
gcgcggcgct gggtgatgac ctggtggaga agttgaaggc cgcgcaggcc gcccagcggc 2340
aacgcatcga ggcagaagca cgccccggtg aatcgtggca agcggccgct gatcgaatcc 2400
gcaaagaatc ccggcaaccg ccggcagccg gtgcgccgtc gattaggaag ccgcccaagg 2460
gcgacgagca accagatttt ttcgttccga tgctctatga cgtgggcacc cgcgatagtc 2520
gcagcatcat ggacgtggcc gttttccgtc tgtcgaagcg tgaccgacga gctggcgagg 2580
tgatccgcta cgagcttcca gacgggcacg tagaggtttc cgcagggccg gccggcatgg 2640
ccagtgtgtg ggattacgac ctggtactga tggcggtttc ccatctaacc gaatccatga 2700
accgataccg ggaagggaag ggagacaagc ccggccgcgt gttccgtcca cacgttgcgg 2760
acgtactcaa gttctgccgg cgagccgatg gcggaaagca gaaagacgac ctggtagaaa 2820
cctgcattcg gttaaacacc acgcacgttg ccatgcagcg tacgaagaag gccaagaacg 2880
gccgcctggt gacggtatcc gagggtgaag ccttgattag ccgctacaag atcgtaaaga 2940
gcgaaaccgg gcggccggag tacatcgaga tcgagctagc tgattggatg taccgcgaga 3000
tcacagaagg caagaacccg gacgtgctga cggttcaccc cgattacttt ttgatcgatc 3060
ccggcatcgg ccgttttctc taccgcctgg cacgccgcgc cgcaggcaag gcagaagcca 3120
gatggttgtt caagacgatc tacgaacgca gtggcagcgc cggagagttc aagaagttct 3180
gtttcaccgt gcgcaagctg atcgggtcaa atgacctgcc ggagtacgat ttgaaggagg 3240
aggcggggca ggctggcccg atcctagtca tgcgctaccg caacctgatc gagggcgaag 3300
catccgccgg ttcctaatgt acggagcaga tgctagggca aattgcccta gcaggggaaa 3360
aaggtcgaaa aggtctcttt cctgtggata gcacgtacat tgggaaccca aagccgtaca 3420
ttgggaaccg gaacccgtac attgggaacc caaagccgta cattgggaac cggtcacaca 3480
tgtaagtgac tgatataaaa gagaaaaaag gcgatttttc cgcctaaaac tctttaaaac 3540
ttattaaaac tcttaaaacc cgcctggcct gtgcataact gtctggccag cgcacagccg 3600
aagagctgca aaaagcgcct acccttcggt cgctgcgctc cctacgcccc gccgcttcgc 3660
gtcggcctat cgcggccgct ggccgctcaa aaatggctgg cctacggcca ggcaatctac 3720
cagggcgcgg acaagccgcg ccgtcgccac tcgaccgccg gcgcccacat caaggcaccc 3780
tgcctcgcgc gtttcggtga tgacggtgaa aacctctgac acatgcagct cccggagacg 3840
gtcacagctt gtctgtaagc ggatgccggg agcagacaag cccgtcaggg cgcgtcagcg 3900
ggtgttggcg ggtgtcgggg cgcagccatg acccagtcac gtagcgatag cggagtgtat 3960
actggcttaa ctatgcggca tcagagcaga ttgtactgag agtgcaccat atgcggtgtg 4020
aaataccgca cagatgcgta aggagaaaat accgcatcag gcgctcttcc gcttcctcgc 4080
tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg 4140
cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag 4200
gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc 4260
gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag 4320
gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga 4380
ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc 4440
atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg 4500
tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt 4560
ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca 4620
gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca 4680
ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag 4740
ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca 4800
agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg 4860
ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg agccatattc 4920
aacgggaaac gtcttgctct aggccgcgat taaattccaa catggatgct gatttatatg 4980
ggtataaatg ggctcgcgat aatgtcgggc aatcaggtgc gacaatctat cgattgtatg 5040
ggaagcccga tgcgccagag ttgtttctga aacatggcaa aggtagcgtt gccaatgatg 5100
ttacagatga gatggtcaga ctaaactggc tgacggaatt tatgcctctt ccgaccatca 5160
agcattttat ccgtactcct gatgatgcat ggttactcac cactgcgatc cccgggaaaa 5220
cagcattcca ggtattagaa gaatatcctg attcaggtga aaatattgtt gatgcgctgg 5280
cagtgttcct gcgccggttg cattcgattc ctgtttgtaa ttgtcctttt aacagcgatc 5340
gcgtatttcg tctcgctcag gcgcaatcac gaatgaataa cggtttggtt gatgcgagtg 5400
attttgatga cgagcgtaat ggctggcctg ttgaacaagt ctggaaagaa atgcataaac 5460
ttttgccatt ctcaccggat tcagtcgtca ctcatggtga tttctcactt gataacctta 5520
tttttgacga ggggaaatta ataggttgta ttgatgttgg acgagtcgga atcgcagacc 5580
gataccagga tcttgccatc ctatggaact gcctcggtga gttttctcct tcattacaga 5640
aacggctttt tcaaaaatat ggtattgata atcctgatat gaataaattg cagtttcatt 5700
tgatgctcga tgagtttttc taatcacagg cagcaacgct ctgtcatcgt tacaatcaac 5760
atgctaccct ccgcgagatc atccgtgttt caaacccggc agcttagttg ccgttcttcc 5820
gaatagcatc ggtaacatga gcaaagtctg ccgccttaca acggctctcc cgctgacgcc 5880
gtcccggact gatgggctgc ctgtatcgag tggtgatttt gtgccgagct gccggtcggg 5940
gagctgttgg ctggctggtg gcaggatata ttgtggtgta aacaaattga cgcttagaca 6000
acttaataac acattgcgga cgtttttaat gtactgaatt aacgccgaat tgaattcgag 6060
ctcggtaccc gggcgttctc ctcgctccgc aagcattgga atgaaccttg ctctctagtt 6120
ccctcctccg tgacctcgtt tcgtccttta gacggcacga tggaaggaag aaatctctgc 6180
ggacaagcaa atctgctggc tcgccttgta ggtcgcctac cggagcaagc cttgtgccgc 6240
cgggatgcca acgtcgtttt ttgacgtttg caagacgtag aggacgcttc ggacgacgaa 6300
acaagctgtg aggacatgga agtcgtggga ggaacggcgc agagcggcgc cgcgggagca 6360
taaggcaagc gagatagtcc agaaatcgcg gcgccaagta cagtaattta ttggagcagg 6420
caccagaagc gggcagcagt atgcgcaggc ttggggtcga cgagagacga ctccctcata 6480
ctcggttacc tcgagcaata caatcaatcg aagctgcgcg aatctcggct tgtaagggtc 6540
ggaaaggaac ctcggagatg gccacgtcac atcaccaact tatcgatctc agccgacgtc 6600
gcagagaggg cgagcgaagc ggtgaaggag ggaaacaatc cctcgagagc atgatccgtc 6660
tgaatctgca gcgcaggaag ccgtcacacg cccgcctcga gcgcaggtcg ggtccagccg 6720
ggggacgaaa cgcgcgaggg ctgatttcgt gagcgaagga agccgcatcg acaagttcgc 6780
gtccctttgc cctctttccc atcacccgct ctcgctctac ccgctcagaa caacaccaga 6840
tcagtcacaa tgccggagct cacggcgacg tcggtcgaga agttcctcat cgaaaagttc 6900
gactcggtct cggacctcat gcaactctcg gagggagagg aatcgcgcgc gttctcgttc 6960
gacgtcggag gccgcggata cgtcctccgc gtcaactcgt gtgcggacgg attctacaag 7020
gatcggtacg tctaccgcca ttttgcgtcg gcggcgctcc cgatccccga agtcctcgac 7080
atcggagagt tctcggaatc cctcacgtac tgtatctcgc gccgggcgca aggagtcacg 7140
ctccaagatc tcccggagac ggaactcccg gcggtcctcc aaccggtcgc ggaagcgatg 7200
gacgcgatcg cggccgcgga cctctcgcaa acgtcgggat tcggaccgtt tggaccgcaa 7260
ggaatcggac aatacacgac gtggcgcgac ttcatctgtg cgatcgcgga tccccatgtc 7320
taccactggc aaacggtcat ggatgacacg gtctcggcgt cggtcgcgca agcgctcgac 7380
gagctcatgc tctgggcgga ggactgtccg gaggtccgcc acctcgtcca cgcggacttt 7440
ggatcgaaca acgtcctcac ggacaacgga cgcatcacgg cggtcatcga ctggtcggag 7500
gcgatgtttg gagactcgca atacgaggtc gcgaacatct tcttctggcg cccgtggctc 7560
gcgtgcatgg agcaacagac gcgctacttc gagcgccgcc acccggagct cgcgggatcg 7620
ccgcgcctcc gcgcgtacat gctccgcatc ggcctcgacc aactctacca gtcgctcgtc 7680
gacggaaact tcgacgatgc cgcgtgggcc caaggacgct gcgacgcgat tgtccgctcg 7740
ggagcgggaa ccgtgggacg cacgcaaatt gcgcggcgct cggcggccgt ctggacggat 7800
ggatgtgtcg aagtcctcgc ggattcggga aaccggcgcc cgtcgacgcg cccgcgggcg 7860
aaagaacacc accatcacca tcactaggat cgttcaaaca tttggcaata aagtttctta 7920
agattgaatc ctgttgccgg tcttgcgatg attatcatat aatttctgtt gaattacgtt 7980
aagcatgtaa taattaacat gtaatgcatg acgttattta tgagatgggt ttttatgatt 8040
agagtcccgc aattatacat ttaatacgcg atagaaaaca aaatatagcg cgcaaactag 8100
gataaattat cgcgcgcggt gtcatctatg ttactagatc gggcctggat cctctagagt 8160
cgacctgcag catgcaagct tggagcttga gcttggatca gattgtcgtt tcccgccttc 8220
agtttaaact atcagtgttt gacaggatat attggcgggt aaacctaaga gaaaagagcg 8280
tttattagaa taatcggata tttaaaaggg cgtgaaaagg tttatccgtt cgtccatttg 8340
tatgtgcatg ccaaccacag ggttcccctc gggatcaa 8378

Claims (8)

1. An ergothioneine producing strain is characterized in that engineering bacteria constructed by taking Rhodotorula toruloides 2.1389, which is preserved in China general microbiological culture Collection center, as a host comprise egt1 genes selected from the following groups in the genome: the gene NcEGT1 coding for the enzyme egt1 from Neurospora crassa, the gene CpEGT1 coding for the enzyme egt1 from Secale cereale L.and the gene RmEGT1 coding for the enzyme egt1 from Rhodotorula mucilaginosa, the egt1 gene are present in the form of gene expression cassettes, the gene expression cassette NcEGT1 is SEQ ID NO:1, the gene expression cassette CpEGT1 is SEQ ID NO:2, and the gene expression cassette RmEGT1 is SEQ ID NO: 3.
2. The ergothioneine producing strain of claim 1 wherein the egt1 gene is NcEGT 1.
3. The ergothioneine-producing strain as claimed in claim 1, wherein when engineering bacteria are constructed, NcEGT1 gene expression cassette, CpEGT1 gene expression cassette and RmEGT1 gene expression cassette are cloned on pUC57 plasmid respectively to obtain EGT1 gene expression plasmids which are named as Puc57-Pgpd-NcEGT1-ScCYC1t, Puc57-Pgpd-CpEGT1-ScCYC1t and Puc57-Pgpd-RmEGT1-ScCYC1t respectively.
4. The ergothioneine producing strain as recited in claim 3, wherein the EGT1 gene expression plasmid is constructed as an ergothioneine functional gene expression plasmid, said ergothioneine functional gene expression plasmid being constructed by a method comprising:
1) carrying out enzyme digestion on EGT1 gene expression plasmids Puc57-Pgpd-NcEGT1-ScCYC1t, Puc57-Pgpd-CpEGT1-ScCYC1t and Puc57-Pgpd-RmEGT1-ScCYC1t by using restriction enzyme XbaI/PmeI, respectively carrying out gel recovery on 3.7kb, 3.6kb and 4.9kb fragments to obtain an EGT1 gene expression fragment;
2) carrying out enzyme digestion on plasmid pZPK-PGPD-Hyg-Tnos with the nucleotide sequence of SEQ ID NO. 4 by using restriction enzyme XbaI/PmeI, and carrying out gel recovery on an 8.3kb fragment to obtain a plasmid skeleton;
3) connecting the EGT1 gene expression fragment obtained in the step 1) with the plasmid skeleton obtained in the step 2) to obtain an ergothioneine functional gene expression plasmid.
5. A method for constructing the ergothioneine-producing microorganism as claimed in claim 1, wherein the ergothioneine-functional gene expression plasmid as claimed in claim 4 is transformed into Rhodotorula toruloides 2.1389 to obtain a positive clone.
6. The method according to claim 5, wherein the ergothioneine functional gene expression plasmid according to claim 4 is used for Agrobacterium-mediated transfection of Rhodotorula toruloides to obtain positive transformants.
7. The method of claim 6, comprising the steps of:
A. transforming the ergothioneine functional gene expression plasmid as defined in claim 4 into Agrobacterium-infected competent cells to obtain Agrobacterium-engineered bacteria;
B. the agrobacterium engineering bacteria liquid and Rhodotorula toruloides 2.1389 bacteria liquid are mixed for resistance screening, and positive transformants are obtained through phenotype and PCR verification.
8. Use of the ergothioneine-producing bacteria as claimed in claim 1 or 2 in the fermentative production of ergothioneine.
CN202010587928.XA 2020-03-19 2020-06-24 Method for constructing ergothioneine producing strain Active CN111534535B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077815 WO2021185039A1 (en) 2020-03-19 2021-02-25 Method for constructing ergothioneine-producing strain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020101947108 2020-03-19
CN202010194710.8A CN111363760A (en) 2020-03-19 2020-03-19 Method for constructing ergothioneine producing strain

Publications (2)

Publication Number Publication Date
CN111534535A CN111534535A (en) 2020-08-14
CN111534535B true CN111534535B (en) 2022-02-22

Family

ID=71204582

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010194710.8A Pending CN111363760A (en) 2020-03-19 2020-03-19 Method for constructing ergothioneine producing strain
CN202010587928.XA Active CN111534535B (en) 2020-03-19 2020-06-24 Method for constructing ergothioneine producing strain

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202010194710.8A Pending CN111363760A (en) 2020-03-19 2020-03-19 Method for constructing ergothioneine producing strain

Country Status (2)

Country Link
CN (2) CN111363760A (en)
WO (1) WO2021185039A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363760A (en) * 2020-03-19 2020-07-03 浙江华睿生物技术有限公司 Method for constructing ergothioneine producing strain
CN114107326A (en) * 2020-09-01 2022-03-01 中国科学院微生物研究所 Two ergothioneine synthetic proteins and application thereof in ergothioneine synthesis
CN114277042A (en) * 2021-12-29 2022-04-05 内蒙古金达威药业有限公司 Rhodosporidium toruloides recombinant expression strain for high-yield ergothioneine and construction method and application thereof
CN114262702B (en) * 2021-12-31 2023-12-08 西南大学 Application of ergothioneine synthesis gene in reconstructing ergothioneine metabolic pathway in corynebacterium glutamicum and method thereof
CN114854659B (en) * 2022-05-27 2024-03-26 深圳中科欣扬生物科技有限公司 Ergothioneine production process and application thereof
CN114854660B (en) * 2022-05-27 2024-03-26 深圳中科欣扬生物科技有限公司 Genetically engineered bacterium for high-yield ergothioneine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109401988A (en) * 2018-11-27 2019-03-01 大连工业大学 One plant of round rhodosporidium toruloides and its application in production torularhodin
CN110283856A (en) * 2019-04-30 2019-09-27 澳门荣世联商贸有限公司 Application of the high temperature resistant Produced from Pleurotus ostreatus in production erythrothioneine
CN110358719A (en) * 2019-07-23 2019-10-22 江南大学 A kind of engineered strain and its construction method of fermentation synthesis erythrothioneine
CN110607286A (en) * 2019-08-21 2019-12-24 华南农业大学 Application of grifola frondosa ergothioneine genes Gfegt1 and Gfegt2 in synthesis of ergothioneine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390897B2 (en) * 2014-12-22 2022-07-19 National University Corporation Okayama University Method for producing ergothioneine
CN110551697B (en) * 2019-08-26 2021-02-19 华南农业大学 Application of ergothioneine synthetase PEGT1 and PEGT2 of Pleurotus ostreatus in synthesis of ergothioneine
CN111363760A (en) * 2020-03-19 2020-07-03 浙江华睿生物技术有限公司 Method for constructing ergothioneine producing strain

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109401988A (en) * 2018-11-27 2019-03-01 大连工业大学 One plant of round rhodosporidium toruloides and its application in production torularhodin
CN110283856A (en) * 2019-04-30 2019-09-27 澳门荣世联商贸有限公司 Application of the high temperature resistant Produced from Pleurotus ostreatus in production erythrothioneine
CN110358719A (en) * 2019-07-23 2019-10-22 江南大学 A kind of engineered strain and its construction method of fermentation synthesis erythrothioneine
CN110607286A (en) * 2019-08-21 2019-12-24 华南农业大学 Application of grifola frondosa ergothioneine genes Gfegt1 and Gfegt2 in synthesis of ergothioneine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Engineering the Yeast Saccharomyces cerevisiae for the Production of L-(+)-Ergothioneine;Steven A. van der Hoek et al;《Frontiers》;20191031;第7卷;参见摘要、结果以及Supplementary table 1 *
Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides;Xinping Lin et al;《FEMS Yeast Res》;20141231;第14卷;参见摘要、材料与方法 *

Also Published As

Publication number Publication date
CN111534535A (en) 2020-08-14
CN111363760A (en) 2020-07-03
WO2021185039A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
CN111534535B (en) Method for constructing ergothioneine producing strain
CN108486146B (en) Application of LbCpf1-RR mutant in CRISPR/Cpf1 system in plant gene editing
CN108997484B (en) Application of wheat TaWox5 gene in improving wheat transformation efficiency
CN113234738A (en) red grape ABA8ox3 gene overexpression vector and construction method and application thereof
CN112358534B (en) Auxin response factor gene for regulating and controlling length of poplar fiber and application thereof
CN106916828A (en) A kind of growth regulator gene of poplar adjusted and controlled leaf development and its application
CN109022285B (en) Method for improving tolerance capacity of Synechocystis PCC6803 ammonium salt and application thereof
CN111154764B (en) Method for improving disease resistance of rice through genome editing and sgRNA used in method
CN109456990B (en) Method for improving chloroplast genetic transformation efficiency by using genome editing technology
CN108531502A (en) The structure and inoculation method of citrus decline virus infectious clone
CN114672509B (en) Corynebacterium and escherichia coli dual-expression vector with high expression capacity and construction method thereof
CN101709300B (en) Method for quickly constructing artificial mi RNA gene interference vector of paddy
CN110669794B (en) Cell enrichment technology of C.T base substitution by using mutant screening agent resistance gene as report system and application thereof
CN113528561B (en) Recombinant microorganism and method for producing 1, 5-pentanediamine
CN115011539A (en) Recombinant escherichia coli, preparation method and application thereof, and method for degrading plastics
CN112980709B (en) Engineering strain and construction method and application thereof
KR102170566B1 (en) Vector for premature termination of target gene expression and strain containing the same
CN108559759A (en) Ternary shuttle vector and the method for building CLBV infectious clones using it
CN110938650B (en) mRNA variable shearing-luciferase report system and application thereof
CN112980710B (en) Engineering strain, construction method and application thereof
CN110499312B (en) Tags and methods for increasing soluble expression of enzymes
CN110724689B (en) Cas 9-mediated dendrocalamus latiflorus gene editing vector and application
CN112553246A (en) Efficient genome editing vector based on CRISPR-SaCas9 system and application thereof
CN113621531B (en) Yeast engineering bacterium and construction method and application thereof
RU2715314C1 (en) VTvaf17-Act1-Cas9 GENE-THERAPEUTIC DNA VECTOR BASED ON VTvaf17 GENE-THERAPEUTIC DNA VECTOR CARRYING TARGET Cas9 GENE FOR HETEROLOGOUS EXPRESSION OF THIS TARGET GENE IN PLANT CELLS DURING GENOME EDITING OF PLANTS, METHOD OF PRODUCING AND USING GENE-THERAPEUTIC DNA VECTOR, STRAIN OF ESCHERICHIA COLI SCS110-AF/VTvaf17-Act1-Cas9 CARRYING GENE-THERAPEUTIC DNA VECTOR, METHOD FOR PREPARING THEREOF, METHOD FOR INDUSTRIAL PRODUCTION OF GENE-THERAPEUTIC DNA VECTOR

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method for constructing ergot sulfur producing bacteria

Effective date of registration: 20231019

Granted publication date: 20220222

Pledgee: South Taihu New Area sub branch of Huzhou Wuxing Rural Commercial Bank Co.,Ltd.

Pledgor: ZHEJIANG HUARUI BIOTECHNOLOGY CO.,LTD.

Registration number: Y2023980061767

PE01 Entry into force of the registration of the contract for pledge of patent right