CN111825104B - Method for preparing high-silicon Y molecular sieve by seed crystal method - Google Patents

Method for preparing high-silicon Y molecular sieve by seed crystal method Download PDF

Info

Publication number
CN111825104B
CN111825104B CN201910312333.0A CN201910312333A CN111825104B CN 111825104 B CN111825104 B CN 111825104B CN 201910312333 A CN201910312333 A CN 201910312333A CN 111825104 B CN111825104 B CN 111825104B
Authority
CN
China
Prior art keywords
silicon
molecular sieve
aluminum
source
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910312333.0A
Other languages
Chinese (zh)
Other versions
CN111825104A (en
Inventor
田鹏
朱大丽
王林英
刘中民
张建明
刘琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201910312333.0A priority Critical patent/CN111825104B/en
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to AU2019441814A priority patent/AU2019441814B2/en
Priority to PCT/CN2019/106165 priority patent/WO2020211281A1/en
Priority to US17/604,377 priority patent/US20220306481A1/en
Priority to KR1020217033741A priority patent/KR102622825B1/en
Priority to EP19925079.6A priority patent/EP3957603A4/en
Priority to JP2021558687A priority patent/JP7261316B2/en
Publication of CN111825104A publication Critical patent/CN111825104A/en
Application granted granted Critical
Publication of CN111825104B publication Critical patent/CN111825104B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/205Faujasite type, e.g. type X or Y using at least one organic template directing agent; Hexagonal faujasite; Intergrowth products of cubic and hexagonal faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J2029/081Increasing the silica/alumina ratio; Desalumination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

The application discloses a preparation method of a high-silicon Y molecular sieve and the high-silicon Y molecular sieve prepared by the method, belonging to the field of catalyst preparation. The method comprises the following steps: a) mixing raw materials containing an aluminum source, a silicon source, an alkali metal source, a nitrogen-containing heterocyclic template agent R and water to obtain initial gel; b) adding a silicon-aluminum molecular sieve seed crystal with an FAU or EMT structure into the initial gel obtained in the step a), and stirring to obtain a synthetic gel; c) crystallizing the synthesized gel obtained in the step b). The anhydrous chemical composition of the high-silicon Y molecular sieve is kM & mR (Si) x Al y )O 2 The silicon-aluminum-oxide ratio is 7-30. According to the method, the Y molecular sieve with high silica-alumina ratio can be synthesized under the condition of avoiding the post-treatment process with complicated process, high energy consumption and heavy pollution, and the synthesized molecular sieve has good hydrothermal/thermal stability, can be applied to Fluid Catalytic Cracking (FCC) and has good catalytic reaction activity.

Description

Method for preparing high-silicon Y molecular sieve by seed crystal method
Technical Field
The application relates to a preparation method of a high-silicon Y molecular sieve, in particular to a method for synthesizing the high-silicon Y molecular sieve by introducing a nitrogen-containing heterocyclic template agent into a synthesis gel system and adding a silicon-aluminum molecular sieve crystal seed with an FAU or EMT structure, and the high-silicon Y molecular sieve with the FAU structure obtained by the method, belonging to the field of catalyst preparation.
Background
The Y molecular sieve is a silico-aluminum molecular sieve with FAU topology, mainly applied to Fluid Catalytic Cracking (FCC), and is the most used molecular sieve material at present. The framework silica-alumina ratio of the Y molecular sieve plays a decisive role in the catalytic performance, wherein the higher the silica-alumina ratio is, the better the catalytic activity and the stability are. At present, the high-silicon Y molecular sieve used in industry is mainly obtained by chemical/physical dealumination and the like, the post-treatment method has the defects of complicated process, high energy consumption and heavy pollution, and the direct hydrothermal synthesis can effectively avoid the defects and simultaneously maintain the integrity of a crystal structure and the uniformity of aluminum distribution. Therefore, the exploration of direct method for synthesizing the Y molecular sieve with high silica-alumina ratio has very important significance for the catalytic cracking process.
For synthesizing the high-silicon Y molecular sieve by the direct method, people firstly synthesize the high-silicon Y molecular sieve in a non-template system, namely, no organic template is added into reaction gel, and the purpose of improving the silicon-aluminum ratio of the Y molecular sieve is achieved only by adjusting the gel proportion, the crystallization time, the seed crystal or the preparation method of an inorganic guiding agent and the like, but the yield is very low, and the silicon-aluminum ratio is difficult to reach 6.
The use of the organic structure directing agent brings the synthesis of the Y molecular sieve into the brand-new field, and in 1987, the U.S. Pat. No. 4,4,714,601 discloses an ECR-4 FAU polymorph with a silicon-aluminum ratio of more than 6, which is obtained by taking alkyl or hydroxyalkyl quaternary ammonium salt as a template agent and carrying out hydrothermal crystallization at 70-120 ℃ in the presence of seed crystals.
In 1990, US 4,931,267 discloses a FAU polymorph named ECR-32 with a Si/Al ratio greater than 6, which is obtained by hydrothermal crystallization at 90-120 ℃ using tetrapropyl and/or tetrabutyl ammonium hydroxide as a structure directing agent and has high thermal stability.
In 1990, French Delprato et al (Zeolite, 1990,10(6): 546-. Subsequently, U.S. Pat. No. 5, 5,385,717 synthesized Y molecular sieves having a silica to alumina ratio greater than 6 using polyethylene oxide as a template.
Disclosure of Invention
According to one aspect of the application, a preparation method of a high-silicon Y molecular sieve is provided, and the method promotes synthesis of the high-silicon (silicon-aluminum-oxide ratio is 7-30) Y molecular sieve by adding a silicon-aluminum molecular sieve seed crystal into a synthetic gel system and introducing a nitrogen-containing heterocyclic template into the synthetic gel system.
The preparation method of the high-silicon Y molecular sieve is characterized by comprising the following steps of:
a) mixing raw materials containing an aluminum source, a silicon source, an alkali metal source, a nitrogen-containing heterocyclic template agent R and water to obtain initial gel;
b) adding a silicon-aluminum molecular sieve seed crystal with an FAU or EMT structure into the initial gel obtained in the step a), and stirring to obtain a synthetic gel;
c) crystallizing the synthesized gel obtained in the step b) to obtain the high-silicon Y molecular sieve.
Optionally, the silicon source is selected from at least one of methyl orthosilicate, ethyl orthosilicate, silica sol, solid silica gel, silica white and sodium silicate.
Optionally, the aluminum source is selected from at least one of sodium metaaluminate, alumina, aluminum hydroxide, aluminum isopropoxide, aluminum 2-butoxide, aluminum chloride, aluminum sulfate, and aluminum nitrate.
Optionally, the alkali metal source is selected from at least one of sodium hydroxide, potassium hydroxide, and cesium hydroxide.
Optionally, the nitrogen-containing heterocyclic template agent R is selected from at least one of nitrogen-containing heterocyclic compounds and derivatives thereof.
Preferably, the nitrogen-containing heterocyclic template R is selected from the group consisting of pyridine, N-methylpyridine, N-ethylpyridine, N-propylpyridine, N-butylpyridine, N-ethyl-3-butylpyridine, 1-ethyl-2-propylpyridine hydroxide, piperidine, N-dimethylpiperidine, N-dimethyl-3, 5-diethylpiperidine hydroxide, N-dimethyl-3, 5-dipropylpiperidine hydroxide, N-diethyl-2, 6-dimethylpiperidine hydroxide, N-dimethyl-2, 6-diethylpiperidine hydroxide, imidazole, 1-ethyl-3-butylimidazole hydroxide, 1-ethylpyridine hydroxide, N-propylpyridine hydroxide, N-dimethylpiperidine hydroxide, N-dimethyl-3, 5-dipropylpiperidine hydroxide, N-diethyl-2, 6-dimethylpiperidine hydroxide, N-ethylpiperidine hydroxide, N-ethylpyridine hydroxide, N-3-butylimidazole hydroxide, N-dimethylpiperidine hydroxide, N-ethylpyridine hydroxide, N-ethylpiperidine hydroxide, N-ethylpyridine hydroxide, N-dimethylpiperidine hydroxide, N-ethylpiperidine, N-ethylpiperidine hydroxide, N-isopropylpyridine, N-isopropylpyridine, and a salt, a salt thereof, a salt thereof, a salt thereof, a salt, and a salt, and a salt, and a salt, and a salt, or a salt, and a salt, or a salt, and a salt, and a salt, or a salt, and a salt, or a salt, in a salt, and a salt, or a salt, and, 1-ethyl-3-butyl-4-propylimidazole hydroxide, 1-benzyl-3-methylimidazole hydroxide, 1-benzyl-3-ethylimidazole hydroxide, 1-benzyl-3-butylimidazole hydroxide, piperazine, N-methylpiperazine, 1, 4-dipropylpiperazine, 1-methyl-4-ethylpiperazine, and 1-ethyl-4-butyl-5-methylpiperazine.
Alternatively, in step a), the aluminum source, the silicon source, the alkali metal source, the nitrogen-containing heterocyclic templating agent R, and water are mixed in the following molar ratios:
1Al 2 O 3 :(10~200)SiO 2 :(0~30)M 2 O:(1~45)R:(50~6000)H 2 O;
wherein the mole number of the silicon source is SiO 2 Counting; the mole number of the aluminum source is Al 2 O 3 Counting; the mol number of the nitrogen-containing heterocyclic template agent R is calculated by the mol number of the R; the molar number of the alkali metal source is equal to the metal oxide M corresponding to the corresponding alkali metal M 2 And the mole number of O.
Preferably, in step a), the aluminum source, the silicon source, the alkali metal source, the nitrogen-containing heterocyclic templating agent R, and water are mixed in the following molar ratios:
1Al 2 O 3 :(10~200)SiO 2 :(0.1~25)M 2 O:(1~45)R:(50~6000)H 2 O;
wherein the mole number of the silicon source is SiO 2 Counting; the mole number of the aluminum source is Al 2 O 3 Counting; the mole number of the nitrogen-containing heterocyclic template agent R is calculated by the mole number of R per se; the molar number of the alkali metal source is equal to the metal oxide M corresponding to the corresponding alkali metal M 2 And the mole number of O.
Optionally, the silicon-aluminum oxide ratio of the silicon-aluminum molecular sieve seed crystal with the FAU or EMT structure is more than or equal to 2.
Optionally, the silicon-aluminum oxide ratio of the silicon-aluminum molecular sieve seed crystal with the FAU or EMT structure is 2.5-200.
Preferably, the seeds of the silicoaluminophosphate molecular sieve having the FAU or EMT structure have an upper limit for the silica alumina ratio selected from 200, 180, 150, 120, 100, 80, 50, 20, 10, 6, 5 and a lower limit selected from 2, 2.5, 3,5, 10, 20.
Optionally, the aluminosilicate molecular sieve seed crystal with FAU or EMT structure is selected from Na type, NH type 4 At least one of type and H zeolite molecular sieves.
Optionally, in step b), the amount of the silicon source of the silicon-aluminum molecular sieve seed crystal with FAU or EMT structure in the initial gel is SiO 2 5 to 30 wt% of the mass.
Optionally, in step b), the amount (by mass) of seed crystals added is based on the SiO in the initial gel 2 5-20% of the content.
Preferably, step b)Wherein the amount of the aluminosilicate molecular sieve seeds having the FAU or EMT structure added is SiO relative to the silicon source in the initial gel 2 The upper limit of the mass percentage is selected from 30 wt%, 29 wt%, 28 wt%, 27 wt%, 26 wt%, 25 wt%, 24 wt%, 23 wt%, 22 wt%, 21 wt%, 20 wt%, 19 wt%, 18 wt%, 17 wt%, 16 wt%, 15 wt%, 14 wt%, 13 wt%, 12 wt%, 11 wt%, 10 wt%, 9 wt%, 8 wt%, 7 wt%, 6 wt%, and the lower limit is selected from 5 wt%, 6 wt%, 7 wt%, 8 wt%, 9 wt%, 10 wt%, 11 wt%, 12 wt%, 13 wt%, 14 wt%, 15 wt%, 16 wt%, 17 wt%, 18 wt%, 19 wt%, 20 wt%, 21 wt%, 22 wt%, 23 wt%, 24 wt%, 25 wt%, 26 wt%, 27 wt%, 28 wt%, 29 wt%.
Optionally, in the step b), the stirring is performed for 1 to 48 hours.
Preferably, in step b), the upper limit of the stirring time is selected from 48 hours, 44 hours, 40 hours, 36 hours, 32 hours, 28 hours, 24 hours, 20 hours, 16 hours, 12 hours, 8 hours, 4 hours, 2 hours, and the lower limit is selected from 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 16 hours, 20 hours, 24 hours, 28 hours, 32 hours, 36 hours, 40 hours, 44 hours.
In one embodiment, in the step b), the silicoaluminophosphate molecular sieve seed crystal with the FAU or EMT structure is added into the initial gel and stirred for 1-4 hours to obtain the synthetic gel.
Optionally, in step c), the crystallization is performed at 90 to 180 ℃ for 0.1 to 15 days.
Preferably, in step c), the crystallization temperature has an upper limit selected from 180 ℃, 170 ℃, 160 ℃, 150 ℃, 140 ℃, 135 ℃, 130 ℃, 125 ℃, 120 ℃, 115 ℃, 110 ℃, 105 ℃, 100 ℃, 95 ℃ and a lower limit selected from 90 ℃, 95 ℃, 100 ℃, 105 ℃, 110 ℃, 115 ℃, 120 ℃, 125 ℃, 130 ℃, 135 ℃, 145 ℃, 160 ℃.
Preferably, in step c), the upper limit of the crystallization time is selected from 15 days, 14 days, 13 days, 12 days, 11 days, 10 days, 8 days, 6 days, 4 days, 2 days, 1 day, 0.5 day, and 0.3 day, and the lower limit is selected from 0.1 day, 0.2 day, 0.3 day, 0.5 day, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, and 14 days.
Optionally, in step c), the crystallization is performed under autogenous pressure.
In the method, the crystallization mode in step c) may be dynamic crystallization or static crystallization, or may be a combination of two crystallization modes.
Optionally, in step c), the crystallization is performed in a dynamic or static manner.
Optionally, in step c), the crystallization is performed in a combination of dynamic and static, for example, in a first static and then dynamic manner.
In the present application, dynamic crystallization refers to that the slurry in the crystallization kettle is in a non-standing state, and static crystallization refers to that the slurry in the crystallization kettle is in a standing state.
Optionally, in step c), after the crystallization, filtering, washing and drying the solid product to obtain the high-silicon Y molecular sieve.
In the method, the washing, filtering, separating and drying of the obtained Y molecular sieve are all conventional operations, wherein the drying can be carried out by standing at 100-110 ℃ for 12 hours.
In a specific embodiment, the high silicon Y molecular sieve is synthesized as follows:
a1) preparing a synthetic gel: an aluminum source, a silicon source, an alkali metal source (M), a nitrogen-containing heterocyclic template agent R and deionized water in a proportion of 1Al 2 O 3 :(10~200)SiO 2 :(0.1~25)M 2 O:(1~45)R:(50~6000)H 2 Mixing and stirring the mixture evenly at room temperature according to the molar ratio of O to obtain initial gel, adding a certain amount of seed crystal, and stirring for 1-48 hours to obtain synthetic gel;
b1) synthesizing a high-silicon Y molecular sieve: and crystallizing the synthesized gel at the temperature of 90-180 ℃ under the autogenous pressure for 0.2-15 days, filtering and separating a solid product after crystallization is finished, washing the solid product to be neutral by using deionized water, and drying the product to obtain the high-silicon Y molecular sieve.
According to another aspect of the application, the high-silicon Y molecular sieve prepared by the method is provided, the silicon-aluminum oxide ratio of the molecular sieve is up to 7-30, the hydrothermal/thermal stability is good, and the molecular sieve can be used for Fluid Catalytic Cracking (FCC) and has good catalytic reaction activity.
The anhydrous chemical composition of the high-silicon Y molecular sieve is shown as a formula I:
kM·mR·(Si x Al y )O 2 formula I
Wherein M is at least one of alkali metal elements of sodium, potassium and cesium;
r represents a nitrogen-containing heterocyclic template agent;
k represents (Si) per mole x Al y )O 2 The molar number of the corresponding alkali metal element, k is 0-0.2;
m represents (Si) per mole x Al y )O 2 The mole number of the corresponding nitrogen-containing heterocyclic template agent R, wherein m is 0.01-0.2;
x and y represent mole fractions of Si and Al, respectively, 2x/y is 7-30, and x + y is 1.
Optionally, M is Na and/or K, preferably Na.
Optionally, k is 0.01-0.15; m is 0.03-0.15.
Preferably, k is 0.02-0.13; m is 0.04 to 0.12.
Optionally, under the condition that x + y is 1, the upper limit of 2x/y is selected from 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9 or 8, and the lower limit is selected from 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 or 29.
In accordance with yet another aspect of the present application, a catalyst is provided, and the high-silicon Y molecular sieve having FAU topology prepared according to the method described herein is useful in fluid catalytic cracking catalysts as well as supports and catalysts for bifunctional catalysis such as hydrocracking, hydrodesulfurization and the like.
In the context of the present application, the term "silicon to aluminum ratio" means in SiO in a molecular sieve 2 And Al 2 O 3 Calculated silicon to aluminum molar ratio, to "2 x/y" and "silica alumina" as described hereinThe term "has the same meaning.
The beneficial effects that can be produced by the application include but are not limited to:
1) according to the preparation method of the high-silicon Y molecular sieve, the nitrogen-containing heterocyclic template agent is introduced into the synthetic gel, the silicon-aluminum molecular sieve seed crystal is added, the Y molecular sieve with the silicon-aluminum ratio of 7-30 is synthesized, the crystallinity and purity of the synthesized product are high, the hydrothermal/thermal stability is good, and the high-silicon Y molecular sieve can be applied to Fluid Catalytic Cracking (FCC) and has good catalytic reaction activity.
2) The preparation method of the high-silicon Y molecular sieve can avoid the post-treatment process with complicated process, high energy consumption and heavy pollution, and has important significance in the field of actual chemical production.
Drawings
FIG. 1 is an X-ray diffraction (XRD) spectrum of sample X1.
FIG. 2 is a Scanning Electron Microscope (SEM) photograph of sample X1.
FIG. 3 is a silicon nuclear magnetization of sample X1 ( 29 Si-NMR) spectrum.
FIG. 4 is an X-ray diffraction (XRD) spectrum of comparative sample V1.
Detailed Description
As mentioned above, the present application relates to a high-silicon Y molecular sieve with FAU topology and its synthesis method, the anhydrous chemical composition of the molecular sieve is kM.mR (Si) x Al y )O 2 Wherein M is an alkali metal and k represents per mole (Si) x Al y )O 2 Corresponding to the mole number of the alkali metal ions M, R represents a nitrogen-containing heterocyclic template agent, and M represents per mole (Si) x Al y )O 2 The silicon-aluminum oxide ratio (2x/y) is 7-30 corresponding to the mole number of the template agent R; the method synthesizes the high-silicon Y molecular sieve by introducing a nitrogen-containing heterocyclic template agent into a synthetic gel system and adding seed crystals.
The present application will be described in detail with reference to examples, but the present application is not limited to these examples.
Unless otherwise specified, the raw materials and reagents in the examples of the present application were all purchased commercially.
The analytical methods in the examples of the present application are as follows:
x-ray powder diffraction phase analysis (XRD) an X' Pert PRO X-ray diffractometer from pananace, netherlands, Cu target, K α radiation source (λ ═ 0.15418nm), voltage 40kV, current 40mA was used.
The Scanning Electron Microscope (SEM) test adopts a Hitachi SU8020 field emission scanning electron microscope with the accelerating voltage of 2 kV.
The elemental composition was determined using a Philips Magix 2424X-ray fluorescence Analyzer (XRF).
Silicon nuclear magnetism ( 29 Si-NMR) experiments were performed on a Bruker Avance III 600(14.1Tesla) spectrometer using a 7mm dual resonance probe, at 6kHz, using a high power proton decoupling procedure, sampling times of 1024, pi/4 pulse width of 2.5 μ s, sampling delay of 10s, and chemical shift reference of 4, 4-dimethyl-4-propanesulfonic acid (DSS), calibrated to 0 ppm.
Carbon nuclear magnetism 13 C MAS NMR) experiments were performed on a Bruker Avance III 600(14.1Tesla) spectrometer using a 4mm triple resonance probe, rotating at 12kHz, with amantadine as chemical shift reference, corrected to 0 ppm.
Example 1: preparation of sample X1
Preparing a synthetic gel: 0.7g of sodium aluminate (Al) 2 O 3 :48.3wt%,Na 2 O: 36.3 wt%, Shanghai chemical reagent of Chinese medicine (group), 0.20g of sodium hydroxide, 13.74g of N, N-dimethyl-3, 5-dipropylpiperidine (25 wt%) in 1.82g of deionized water, stirring until clear, and adding 13.3g of silica Sol (SiO) dropwise 2 : 30 wt%, Shenyang chemical Co., Ltd.) was stirred for 2 hours, 0.4g of Y zeolite having a silica-alumina oxide ratio of 3 was added as a seed crystal, and stirring was continued for 2 hours.
Synthesizing a high-silicon Y molecular sieve: and transferring the synthesized gel into a stainless steel reaction kettle, carrying out rotation crystallization for 5d at 130 ℃ under autogenous pressure, carrying out solid-liquid separation after crystallization is finished, washing to be neutral, and drying for 12h at 100 ℃ to obtain a sample X1.
The X-ray powder diffraction pattern (XRD) of sample X1 is shown in fig. 1, indicating that the sample is a molecular sieve having the FAU framework structure. Scanning Electron microscopy of sample X1The plate (SEM) is shown in FIG. 2, and shows that the particles of the sample are in the form of small plates with a size of 50nm to 200 nm. Of sample X1 29 Si MAS NMR spectra are shown in FIG. 3, and the calculated framework Si/Al ratio by fitting is consistent with that calculated by XRF, according to XRF and 13 c MAS NMR analysis normalized to give sample X1 with an elemental composition: 0.07 Na0.07R 1 ·(Si 0.86 Al 0.14 )O 2 Wherein R is 1 Is N, N-dimethyl-3, 5-dipropylpiperidine hydroxide.
Example 2: preparation of samples X2-X30
The gel preparation process for samples X2-X30 was the same as that of example 1, except that the raw material type, molar ratio, and seed crystal addition amount (based on the seed crystal mass and SiO in the initial gel) 2 In mass), crystallization conditions, product structure and silicon to aluminum ratio (product silicon to aluminum ratio determined by X-ray fluorescence analyzer (XRF), and sample composition are shown in table 1.
In the preparation of samples X1 to X20, alumino silica molecular sieves having the FAU structure with a silica to alumina ratio of 3, 2.8, 3.5, 40, 5, 6, 7, 92, 10, 3.5, 4,6, 8, 4, 35, 12 and 20, respectively, were used as seed crystals, which were purchased from zephyxin chemical technology co. Samples X21 to X30 were prepared using as seed crystals silica alumina molecular sieves having the EMT structure with silica alumina ratios of 7, 8.5, 7, 8, 10, 21, 32, 8, and 7, respectively, which were purchased from molecular sieves limited, huanan, and encyclopedia.
Comparative example 1: preparation of comparative samples V1-V30
The specific compounding process is the same as the preparation of sample X1 in example 1, except that: there is no seed addition step. The types of raw materials, molar ratios, crystallization conditions and product structures for synthesizing the products are detailed in table 2. The samples obtained were designated as comparative samples V1 to V30.
Example 3: characterization analysis of samples X1-X30 and comparative samples V1-V30
The phases of the samples X1-X30 and the comparative samples V1-V30 were analyzed by X-ray diffraction method.
The results show that the samples X1 to X30 prepared in examples 1 and 2 are all high purity and high crystallinity Y molecular sieves, typically represented by the XRD spectrum of sample X1 in fig. 1, the SEM photograph of sample X1 in fig. 2, and the silicon nuclear magnetic spectrum of sample X1 in fig. 3. The XRD spectrum results of samples X2 to X30 are close to those of fig. 1, i.e., the diffraction peak positions and shapes are substantially the same, and the relative peak intensities fluctuate within ± 5% depending on the variation of synthesis conditions, indicating that samples X1 to X30 have the structural characteristics of Y molecular sieve and are free of heterocrystals, and the silicon-aluminum ratios thereof are much higher than those of conventional Y zeolite. It can be seen that in the synthesis of the high silicon Y molecular sieve according to the present application, the introduction of a nitrogen-containing heterocyclic-type template is the key to the synthesis of the high silicon Y molecular sieve according to the present application.
In Table 2, comparative samples V1 through V30 are amorphous and are typically represented as XRD patterns of comparative sample V1 in FIG. 4. It can be seen that in the synthesis of high silicon Y molecular sieves according to the present application, in addition to the introduction of nitrogen containing heterocyclic type templating agents, the addition of seed crystals is also necessary.
Figure BDA0002031932030000101
Figure BDA0002031932030000111
Figure BDA0002031932030000121
Figure BDA0002031932030000131
Although the present invention has been described with reference to a few preferred embodiments, it should be understood that various changes and modifications can be made without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (15)

1. A preparation method of a high-silicon Y molecular sieve is characterized by comprising the following steps:
a) mixing raw materials containing an aluminum source, a silicon source, an alkali metal source, a nitrogen-containing heterocyclic template agent R and water to obtain initial gel;
b) adding a silicon-aluminum molecular sieve seed crystal with an FAU or EMT structure into the initial gel obtained in the step a), and stirring to obtain a synthetic gel;
c) crystallizing the synthesized gel obtained in the step b) to obtain the high-silicon Y molecular sieve;
the nitrogen-containing heterocyclic template agent R is selected from at least one of piperazine, N-methyl piperazine, 1, 4-dipropyl piperazine, 1-methyl-4-ethyl piperazine and 1-ethyl-4-butyl-5-methyl piperazine;
the adding amount of the silicon-aluminum molecular sieve seed crystal with the FAU or EMT structure is the silicon source in the initial gel, namely SiO 2 5 to 30 wt% of the mass.
2. The method according to claim 1, wherein the silicon source is selected from at least one of methyl orthosilicate, ethyl orthosilicate, silica sol, solid silica gel, white carbon black and sodium silicate;
the aluminum source is at least one selected from sodium metaaluminate, aluminum oxide, aluminum hydroxide, aluminum isopropoxide, aluminum 2-butoxide, aluminum chloride, aluminum sulfate and aluminum nitrate;
the alkali metal source is selected from at least one of sodium hydroxide, potassium hydroxide and cesium hydroxide.
3. The process of claim 1, wherein in step a), the aluminum source, the silicon source, the alkali metal source, the nitrogen-containing heterocyclic templating agent R, and water are mixed in the following molar ratios:
1Al 2 O 3 :(10~200)SiO 2 :(0~30)M 2 O:(1~45)R:(50~6000)H 2 O。
4. the method of claim 1, wherein in step a), the aluminum source, the silicon source, the alkali metal source, the nitrogen-containing heterocyclic templating agent R, and the water are mixed in the following molar ratios:
1Al 2 O 3 :(10~200)SiO 2 :(0.1~25)M 2 O:(1~45)R:(50~6000)H 2 O;
wherein the mole number of the silicon source is SiO 2 Counting; the mol number of the aluminum source is Al 2 O 3 Counting; the mol number of the nitrogen-containing heterocyclic template agent R is calculated by the mol number of the R; the molar number of the alkali metal source is equal to the metal oxide M corresponding to the corresponding alkali metal M 2 And the mole number of O.
5. The method of claim 1, wherein the silicoaluminophosphate molecular sieve seed crystal having the FAU or EMT structure has a silica alumina ratio of 2 or more.
6. The method of claim 1, wherein the silicoaluminophosphate molecular sieve seed crystal having the FAU or EMT structure has a silicoaluminophosphate ratio of 2.5 to 200.
7. The method of claim 1, wherein the seeds of the silicoaluminophosphate molecular sieve having the structure of FAU or EMT are selected from Na, NH 4 At least one of type and H zeolite molecular sieves.
8. The method according to claim 1, wherein the stirring is performed for 1 to 48 hours in the step b).
9. The method as claimed in claim 1, wherein the crystallization is performed at 90 to 180 ℃ for 0.1 to 15 days in step c).
10. The process according to claim 1, wherein in step c) the crystallization is carried out in a dynamic or static manner.
11. The method according to claim 1, wherein in step c) the crystallization is performed in a combination of dynamic and static conditions.
12. The method of any one of claims 1 to 11, wherein the high silicon Y molecular sieve has an anhydrous chemical composition according to formula I:
kM·mR·(Si x Al y )O 2 formula I
Wherein M is at least one of alkali metal elements of sodium, potassium and cesium;
r represents a nitrogen-containing heterocyclic template;
k represents (Si) per mole x Al y )O 2 The molar number of the corresponding alkali metal element, k is 0.0-0.2;
m represents (Si) per mole x Al y )O 2 The mole number of the corresponding nitrogen-containing heterocyclic template agent R, wherein m is 0.01-0.2;
x and y represent the mole fractions of Si and Al, 2x/y is 7-30, and x + y is 1.
13. The method according to claim 12, wherein M is Na and/or K.
14. The method of claim 12, wherein k is 0.01 to 0.15; m is 0.03-0.15.
15. The method of claim 12, wherein k is 0.02 to 0.13; m is 0.04 to 0.12.
CN201910312333.0A 2019-04-18 2019-04-18 Method for preparing high-silicon Y molecular sieve by seed crystal method Active CN111825104B (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201910312333.0A CN111825104B (en) 2019-04-18 2019-04-18 Method for preparing high-silicon Y molecular sieve by seed crystal method
PCT/CN2019/106165 WO2020211281A1 (en) 2019-04-18 2019-09-17 High-silica y molecular sieve having fau topology and preparation method therefor
US17/604,377 US20220306481A1 (en) 2019-04-18 2019-09-17 High-silica y molecular sieve having fau topology and preparation method therefor
KR1020217033741A KR102622825B1 (en) 2019-04-18 2019-09-17 High-silica Y molecular sieve with FAU topological structure and method for producing the same
AU2019441814A AU2019441814B2 (en) 2019-04-18 2019-09-17 High-silica Y molecular sieve having FAU topology and preparation method therefor
EP19925079.6A EP3957603A4 (en) 2019-04-18 2019-09-17 High-silica y molecular sieve having fau topology and preparation method therefor
JP2021558687A JP7261316B2 (en) 2019-04-18 2019-09-17 High silica Y molecular sieve with FAU topology structure and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910312333.0A CN111825104B (en) 2019-04-18 2019-04-18 Method for preparing high-silicon Y molecular sieve by seed crystal method

Publications (2)

Publication Number Publication Date
CN111825104A CN111825104A (en) 2020-10-27
CN111825104B true CN111825104B (en) 2022-08-19

Family

ID=72915499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910312333.0A Active CN111825104B (en) 2019-04-18 2019-04-18 Method for preparing high-silicon Y molecular sieve by seed crystal method

Country Status (1)

Country Link
CN (1) CN111825104B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210363B (en) * 2022-01-18 2022-09-09 天津派森新材料技术有限责任公司 Preparation method of SSZ-16 copper-containing catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733391A (en) * 1971-11-01 1973-05-15 Nl Industries Inc Process of preparing high silica faujasite
CN1145278A (en) * 1996-06-28 1997-03-19 太原工业大学 Synthesis of hypersilicon zeolit and hetero-atom isomorphism substituted derivative
CN102039150A (en) * 2009-10-13 2011-05-04 中国石油化工股份有限公司 Preparation method of binderless Y zeolite catalyst
WO2016110534A1 (en) * 2015-01-08 2016-07-14 IFP Energies Nouvelles Method for preparing a nanometric zeolite y
CN106145155A (en) * 2015-04-23 2016-11-23 中国科学院大连化学物理研究所 A kind of prepare the method for high silica alumina ratio Y type molecular sieve, product and application thereof
CN108408737A (en) * 2018-05-29 2018-08-17 王子韩 A method of quickly preparing Y type molecular sieve
CN108529644A (en) * 2017-03-01 2018-09-14 中国石油天然气集团公司 A kind of NaY molecular sieve and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733391A (en) * 1971-11-01 1973-05-15 Nl Industries Inc Process of preparing high silica faujasite
CN1145278A (en) * 1996-06-28 1997-03-19 太原工业大学 Synthesis of hypersilicon zeolit and hetero-atom isomorphism substituted derivative
CN102039150A (en) * 2009-10-13 2011-05-04 中国石油化工股份有限公司 Preparation method of binderless Y zeolite catalyst
WO2016110534A1 (en) * 2015-01-08 2016-07-14 IFP Energies Nouvelles Method for preparing a nanometric zeolite y
CN106145155A (en) * 2015-04-23 2016-11-23 中国科学院大连化学物理研究所 A kind of prepare the method for high silica alumina ratio Y type molecular sieve, product and application thereof
CN108529644A (en) * 2017-03-01 2018-09-14 中国石油天然气集团公司 A kind of NaY molecular sieve and preparation method thereof
CN108408737A (en) * 2018-05-29 2018-08-17 王子韩 A method of quickly preparing Y type molecular sieve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
以哌啶碱为新型模板剂合成高硅FAU分子筛;王林英 等;《第18届全国分子筛学术大会论文集(下)》;20151031;第4页 *

Also Published As

Publication number Publication date
CN111825104A (en) 2020-10-27

Similar Documents

Publication Publication Date Title
CN106185977B (en) A kind of method of green syt ZSM-5 molecular sieve
US7208137B2 (en) Aluminum-containing zeolite with IFR structure
WO2016029591A1 (en) Method for preparing y-type molecular sieve having high silica-alumina ratio
WO2022104580A1 (en) Mordenite molecular sieve, and preparation method and use therefor
CN112645349A (en) Preparation method and application of mordenite molecular sieve
CN105800634A (en) Nanometer total-silicon beta molecular sieve and preparation method thereof
CN112645351A (en) SCM-30 molecular sieve and preparation method and application thereof
WO2016086361A1 (en) Method for synthesizing nano-zsm-5 zeolite
CN111825104B (en) Method for preparing high-silicon Y molecular sieve by seed crystal method
JP2014043371A (en) Mse type zeolite and method for producing the same
US10287172B2 (en) Preparation method for beta zeolite
US4965059A (en) High silica faujasite aluminosilicate, ECR-4, and a process for making it
CN111825105B (en) Preparation of Y molecular sieve with FAU structure by guide agent method
CN111825102B (en) Dry glue conversion synthesis method of high-silicon Y molecular sieve
Sathupunya et al. Microwave preparation of Li-zeolite directly from alumatrane and silatrane
CN103508466A (en) Synthesis method of MCM (Mobil Composition of Matter)-22 molecular sieve
CN111825103B (en) Fluorine-containing high-silicon Y molecular sieve and preparation method thereof
WO2020211281A1 (en) High-silica y molecular sieve having fau topology and preparation method therefor
CN114506854B (en) Method for synthesizing pure silicon and high silicon SSZ-39 molecular sieve by fluorine-free hydrothermal system
CN111825101B (en) High-silicon Y molecular sieve and preparation method thereof
CN113548676B (en) Preparation method of hydrogen type silicon-aluminum ZSM-48 molecular sieve
WO2019051774A1 (en) Method for preparing y-type molecular sieve with high silicon-to-aluminum ratio
CN111825100B (en) High-silicon Y molecular sieve with FAU topological structure and preparation method thereof
WO2020227886A1 (en) Method for rapidly preparing high crystallinity ecr-1 molecular sieve
CN114516640B (en) Mordenite, preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant