CN111819584A - 用于维护机器群组的系统和方法 - Google Patents
用于维护机器群组的系统和方法 Download PDFInfo
- Publication number
- CN111819584A CN111819584A CN201980017020.0A CN201980017020A CN111819584A CN 111819584 A CN111819584 A CN 111819584A CN 201980017020 A CN201980017020 A CN 201980017020A CN 111819584 A CN111819584 A CN 111819584A
- Authority
- CN
- China
- Prior art keywords
- service
- dictionary
- classification scheme
- component
- recommendation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000012545 processing Methods 0.000 claims abstract description 70
- 230000008439 repair process Effects 0.000 claims abstract description 45
- 230000000694 effects Effects 0.000 claims abstract description 23
- 238000010801 machine learning Methods 0.000 claims description 41
- 239000013598 vector Substances 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 8
- 238000013136 deep learning model Methods 0.000 claims description 5
- 238000005067 remediation Methods 0.000 claims 1
- 238000003384 imaging method Methods 0.000 description 37
- 230000009471 action Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 5
- 238000013179 statistical model Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000002591 computed tomography Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 230000003137 locomotive effect Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000012633 nuclear imaging Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/20—Administration of product repair or maintenance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/274—Converting codes to words; Guess-ahead of partial word inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
- G06F9/30036—Instructions to perform operations on packed data, e.g. vector, tile or matrix operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
- G06F9/5072—Grid computing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/01—Customer relationship services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32226—Computer assisted repair, maintenance of system components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/205—Parsing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/237—Lexical tools
- G06F40/242—Dictionaries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/279—Recognition of textual entities
- G06F40/284—Lexical analysis, e.g. tokenisation or collocates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- General Business, Economics & Management (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Tourism & Hospitality (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Development Economics (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Entrepreneurship & Innovation (AREA)
- Finance (AREA)
- Primary Health Care (AREA)
- Accounting & Taxation (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明公开了一种用于维护机器群组中的机器的方法,该方法包括接收对应于机器的服务请求。该方法还包括获取对应于机器群组的服务架构。服务架构包括服务字典和以树状数据结构组织的多个分类方案。该方法还包括基于服务字典和文本解析技术来处理服务请求以生成描述性字词列表。该方法包括基于描述性字词列表和服务架构来生成推荐。推荐包括在线修复活动、现场修复活动和部件更换活动中的至少一者。该方法还包括基于推荐来对机器的故障状况提供服务。
Description
背景技术
本文所公开的系统和方法整体涉及管理机器群组中的机器的维护,并且更具体地讲,涉及用于有效地处理该机器群组中的机器的服务请求的系统和方法。
机器群组诸如但不限于成像系统、涡轮机和引擎被越来越多地部署在大的地理区域上。在医学领域中,包括诸如磁共振成像(MRI)、计算机断层摄影(CT)、核成像和超声之类的模态的成像系统正越来越多地部署在医院、诊所和医学研究机构中以对受试者进行医学成像。在机车或飞机中部署的引擎需要在不同的环境条件下运行。在发电系统中,风力涡轮机或水力涡轮机被安装以从自然资源获取能量。对于拥有属于机器群组中的机器的厂家,希望利用最小的停机时间来最大化机器的利用率。然而,系统故障和故障中断会中断涉及机器的工作流过程并降低其利用率。大多数制造商力求提供有效的周期性维护例程和响应或呼叫修复服务。尽管预防性维护程序具有完善的能力,但机器有时可能会产生需要不定时诊断和修复的问题。通常,这种问题由管理安装机器的厂家的相关权威机构识别。所识别的问题作为服务请求以一种或多种格式提交,诸如但不限于通过网页的文本描述和通过服务热线的语音呼叫。
通常,针对机器群组中的机器诸如成像系统的服务可能需要部件更换或由现场工程师到现场进行现场检查。现场工程师进行的此类现场检查对于客户和通常安排此类检查的系统制造商或修理厂双方而言可能是昂贵且耗时的。远程诊断和修复通常用于加速系统修复并消除或最小化此类现场检查的需要。然而,现有远程诊断和修复仍然需要中断成像系统的使用并与修理厂联系。另外,在使用远程诊断识别故障时,可能需要手动干预来提交服务请求,启动服务请求处理,并且识别现场检查的需求。目前,专家需要手动扫描与服务请求有关的大量数据,以基于服务请求作出和/或推荐关于服务选项的决策。手动处理服务请求的效率低下,并且会对响应时间产生不利影响。期望在处理服务请求时减少手动开销而不损害准确度和响应时间。
发明内容
根据本说明书的一个方面,公开了一种用于维护机器群组中的机器的方法。该方法包括接收对应于机器的服务请求。服务请求包括对机器中的故障状况的描述。该方法还包括获取对应于机器群组的服务架构。服务架构包括服务字典和以树状数据结构组织的多个分类方案。该方法还包括基于服务字典和文本解析技术来处理服务请求以生成描述性字词列表。该方法包括基于描述性字词列表和服务架构来生成推荐。推荐包括在线修复活动、现场修复活动和部件更换活动中的至少一者。该方法还包括基于推荐来对机器的故障状况提供服务。
根据本说明书的另一个方面,公开了一种用于维护机器群组中的机器的系统。该系统包括被配置为存储包括与机器对应的服务请求的请求数据库的存储器单元。服务请求包括对机器中的故障状况的描述。该存储器单元被进一步配置为存储对应于机器群组的服务架构。服务架构包括服务字典和以树状数据结构组织的多个分类方案。该系统还包括文本处理单元,该文本处理单元通信地耦接到存储器单元并且被配置为基于服务字典和文本解析技术来处理服务请求以生成描述性字词列表。该系统还包括推荐单元,该推荐单元通信地耦接到文本处理单元并且被配置为基于描述性字词列表和服务架构来生成推荐。推荐包括在线修复活动、现场修复活动和部件更换活动中的至少一者。该系统还包括控制器单元,该控制器单元通信地耦接到推荐单元并且被配置为基于推荐来对机器的故障状况提供服务。
附图说明
当参考附图阅读以下详细描述时,将更好地理解本发明实施方案的这些和其他特征和方面,其中附图中相同的符号在所有附图中表示相同的部分,其中:
图1A是根据示例性实施方案的用于维护机器群组中的机器的系统的图解图示;
图1B是根据示例性实施方案的用于维护机器群组中的机器的方法的流程图;
图2是根据示例性实施方案的用于维护机器群组中的机器(诸如图1A的机器)的服务架构的示意图;
图3是根据示例性实施方案的用于维护机器群组中的机器(诸如图1A的机器)的部件聚类的示意图;并且
图4是根据示例性实施方案的用于维护机器群组中的机器(诸如图1A的机器)的标签提取方法的示意图。
具体实施方式
如将在下文中详细描述的,呈现了用于维护机器诸如成像系统的系统和方法。在各种实施方案中,系统和方法被配置为用于有效地处理属于机器群组的机器诸如保健成像系统的服务请求,而不具有或具有最小固有的工作流延迟。
如本文所用,术语“服务请求”是指对与机器(诸如成像系统)相关联的问题或故障的描述。问题或故障可例如由技术人员或用户在例行维护检查期间或机器的使用期间观察到。服务请求可以是由用户经由用户界面提供的文本或音频消息的描述,并且可以自动存储在数据库中。如本文所用,术语“描述性关键字”是指从多个服务请求提取的关键字列表。本文所用的术语“服务架构”是指表示在对机器(诸如成像系统)提供服务时将遵循的服务工作流程的方案。本文所用的术语“字典”是指具有多个描述性关键字和从系统日志提取的对应的故障代码、服务代码、部件代码或它们的组合的数据结构。字典的数据结构包括但不限于表格或链接列表。本文所用的术语“服务字典”特别是指具有服务代码的字典,术语“部件字典”是指具有部件代码的字典。字典还可以是具有对应于描述性关键字中的每个描述性关键字的多个特征的联合字典。
图1A是根据示例性实施方案的用于维护机器群组中的机器的系统100的图解图示。在图示实施方案中,系统100包括生成服务请求的成像系统102,该服务请求被记录在服务请求数据库114中并存储在存储器单元104中。服务请求在服务请求数据库中排队,在服务请求的发起处理中的时间延迟取决于服务请求队列的长度。如果服务请求队列为空,或者如果有足够的服务资源可用,则可在没有任何延迟的情况下发起或实时发起服务。存储器单元104还包括服务架构116,该服务架构被配置为启用服务请求的处理以生成用于提供服务的推荐。服务请求包括对成像系统102中的问题或故障状况的描述。虽然图示实施方案对应于成像系统,但本文所公开的实施方案适用于其他系统和设备。此外,这些系统和设备可安装在地理上分布的位置中。系统100还包括文本处理单元106,该文本处理单元通信地耦接到存储器单元104并且被配置为从服务请求生成描述性字词列表。文本处理单元106被配置为使用文本处理技术以预先指定的语言解析自然语言文本。用于处理所述服务请求的文本解析技术能够自动发起所述服务请求的处理。该系统还包括推荐单元108,该推荐单元通信地耦接到文本处理单元106并且被配置为基于服务架构和服务请求来生成推荐。系统还包括控制器单元110,该控制器单元通信地耦接到推荐单元108并且被配置为基于推荐来生成一个或多个控制动作。控制器单元110可指示远程服务人员执行一个或多个动作以校正成像系统102的故障状况。控制器单元110可提供推荐以指示现场服务人员更换成像系统102的一个或多个部件,或者执行对成像系统102的故障状况进行校正所需的一个或多个动作。在一个示例中,由该推荐指定校正故障所需的一个或多个动作以及要更换的一个或多个部件。在一个实施方案中,系统100还包括机器学习单元112,该机器学习单元通信地耦接到存储器单元104、文本处理单元106和控制器单元110并被配置为生成服务架构。服务架构可存储在存储器单元104中以供推荐单元108使用。这里可以指出的是,文本处理单元106、推荐单元108和控制器单元110可与成像系统102位于同一位置或者位于远离成像系统102的远程位置中。现场服务人员需要具有对成像系统102的物理访问权限,并且可从相对于现场服务人员的位置远程定位的控制器单元110接收推荐。
在一个实施方案中,存储器单元104包括被配置为存储多个服务请求的请求数据库114。请求数据库114包括对应于一个或多个成像系统(诸如成像系统102)的多个服务请求。虽然系统100的图示实施方案与成像系统102相关,但是系统100还可用于维护其他类型的机器,诸如对应于机车(或飞机)引擎群组的引擎,以及风力涡轮机群组中的涡轮机。当机器为成像系统102时,非限制性示例可包括成像系统,诸如但不限于磁共振(MR)扫描仪、计算机断层摄影(CT)扫描仪和超声扫描仪。在出现故障操作的情况下,服务请求通常由成像系统102的用户记录。然而,在一些实施方案中,服务请求也可由机器基于启发法自动生成。多个服务请求可由请求数据库114在不同时间点接收,并且可由一个或多个地理位置收集。在一个实施方案中,多个服务请求中的每一个服务请求包括对用户面临的故障或问题的描述。该描述可以一种或多种规定的自然语言提供。此外,多个服务请求中的每个服务请求具有相关联的时间戳,该时间戳表示服务请求被发起、提交或传输到请求数据库114的时间。在另选实施方案中,服务请求可包括描述成像系统102的问题/故障的一个或多个预定义的句子。可以注意到,要用于记录服务请求的规定语言可以由文本处理单元106中提供的一个或多个语言译器处理。服务请求的描述包括表示成像系统102中的故障状况的描述性字词列表。
存储器单元104还包括历史数据库118,该历史数据库被配置为存储多个系统日志、以及对应于成像系统102的先前时间点的多个历史服务请求和服务日志记录。历史数据库118包括历史服务请求和多个对应的历史推荐。历史推荐是指对应于多个历史服务请求的最佳推荐。历史推荐和历史服务请求可涉及一般的成像系统,并且可能不特定于该特定成像系统,诸如成像系统102。系统日志包括时间戳值、一个或多个消息代码、故障代码和对应的消息描述、成像系统102在其操作期间例行记录的相关系统事件。历史服务请求是指在过去记录并且在服务日志记录中具有对应条目的服务请求。服务日志记录可包括服务请求标识符、在服务期间采取的动作、更换的部件以及与解决服务请求相关的其他细节。
存储器单元104还被配置为存储服务架构116,该服务架构被配置为由推荐单元108启用对服务请求的处理。在一个实施方案中,服务架构116包括服务字典、部件字典和以树状数据结构组织的多个分类方案。在一个实施方案中,服务字典包括多个描述性关键字和从系统日志提取的对应的多个消息代码。从服务请求提取的描述性关键字表示服务请求中的特征。服务字典是一种联合字典,其在描述性字词列表和从日志历史提取的消息代码列表之间具有关联。此外,部件字典包括多个描述性关键字和对应的多个部件簇。多个部件簇中的每一个包括部件列表中列出的两个或更多个类似部件。使用一种或多种部件聚类技术生成所述多个部件簇。部件字典是一种联合字典,其在簇描述和部件簇名称列表之间具有关联。部件簇可由簇代码表示,并且表示与描述性关键字相关联的属性。
一般来讲,服务请求架构可包括多级分层树。具体地讲,服务架构116包括以树状数据结构组织的分层分类方案。该服务架构的该多级分层树数据结构包括多个级别,其中每个级别由多个节点和多个节点中的一个或多个处的多个分支表示。此外,服务架构包括对应于多个节点的多个分类方案。多个节点中的每一个包括分类方案和多个数学规则。此外,每个节点包括一个或多个推荐。在一个示例中,服务架构包括具有五个节点的二级分层树。在另一个实施方案中,服务架构可包括具有七个节点的二级分层树。在某些实施方案中,可以选择树的一个或多个节点以基于服务请求的特异性和服务架构的结构来处理。在根节点处发起对服务请求的处理,并且该处理从根节点进行到设置在除根节点之外的其他级别处的后续节点。在某些实施方案中,所述树中的多个节点中的一个或多个可例如按顺序方式处理。在一个实施方案中,处理每个级别处的一个节点。在一个实施方案中,使用第一分类方案在根节点处处理服务请求以确定第一层级下的服务选项。可以注意到,第一层级包括两个或更多个服务选项。在根节点处对服务请求的处理可使用软件或在操作者的监控下自动执行。第一层级的每个服务选项可包括一个或多个动作和推荐。此外,也可在第一层级中的每个节点处指定分类方案以将树直接遍历到下一个层级。
一般来讲,服务请求架构的多级分层树可包括每个节点处的多标签推荐。多标签推荐可包括由机器学习单元112使用历史日志记录数据确定的多个规则。多标签推荐建议帮助服务人员校正成像系统102的已识别故障的多个推荐中的一个推荐。具体地讲,多标签推荐可包括指定服务动作的服务代码、指定待更换的一个或多个部件的部件代码、指定在服务期间待执行的一个或多个动作的动作代码。
文本处理单元106被配置为接收由用户记录的服务请求。文本处理单元106被配置为将句子解析为描述故障状况的描述性字词列表。文本处理单元106被配置为从服务请求描述中移除特殊字符、专有名词和日期。此外,文本处理单元106被配置为从服务请求中滤出描述性字词。此外,文本处理单元106被配置为基于服务字典的描述性字词列表来创建第一二元向量。对于每个服务请求,基于服务字典确定第一二元向量。第一二元向量表示在服务字典中存在描述性字词。
在一个实施方案中,文本处理单元106被配置为处理从历史数据库118提取的历史服务请求。具体地讲,文本处理单元106被配置为基于服务字典来生成对应于多个历史服务请求的多个第一二元向量。文本处理单元106还被配置为处理历史服务请求以基于部件字典来创建第二二元向量。第二二元向量表示部件更换状况、部件名称与服务请求的关联、服务请求中指定的部件或它们的组合。第二二元向量表示描述性字词与部件簇的关联。具体地讲,文本处理单元106可被配置为基于部件字典来生成对应于多个历史服务请求的多个第二二元向量。在一个实施方案中,文本处理单元106由机器学习单元112控制以生成多个第一二元向量和多个第二二元向量。
推荐单元108通信地耦接到文本处理单元106,并且被配置为基于第一二元向量、第二二元向量和深度学习模型在多个分类方案中选择分类方案。在一个实施方案中,推荐单元108包括深度学习模型。推荐单元108被配置为通过基于服务架构遍历分类方案来生成推荐。推荐包括在线修复活动、现场修复活动和部件更换活动中的至少一者。在一个实施方案中,对于在线修复活动,服务人员可能不需要访问安装成像系统102的位点。具体地讲,可以对成像系统102远程执行在线修复活动。在一个实施方案中,在服务架构具有两个级别的情况下,推荐单元108被配置为使用第一机器学习模型处理服务请求向量以确定第一推荐。第一机器学习模型是被配置为生成远程服务选项和调度选项的二元分类器。当第一推荐为远程服务选项时,推荐单元108被进一步配置为生成一个或多个远程服务动作以校正故障状况。当第一推荐是调度选项时,推荐单元108被进一步配置为使用第二机器学习模型来处理服务请求以生成第二推荐。第二机器学习模型是被配置为生成部件更换选项或修复选项的二元分类器。当第二推荐是部件更换选项时,推荐单元108被配置为基于第三机器学习模型生成部件列表。当第二推荐是修复选项时,推荐单元108被进一步配置为使用第三机器学习模型生成多个选项中的一个选项。第三机器学习模型是被配置为生成多个修复选项中的一者的多标签分类器。
在一个实施方案中,机器学习单元112被配置为基于历史数据库118生成服务架构。具体地,机器学习单元112被配置为检索多个历史服务请求和对应于所检索的历史服务请求的系统日志。机器学习单元112还被配置为利用针对每个检索到的历史服务请求而更换的零件和采取的行动的记录来服务日志。机器学习单元112还被配置为访问部件列表,该部件列表具有来自存储器单元104的部件的详尽列表和它们的描述。机器学习单元112被进一步配置为生成服务字典、部件字典和用于处理服务请求以生成推荐的多个分类方案。
在一个实施方案中,机器学习单元112被配置为控制文本处理单元106以发起对检索的历史服务请求的解析从而生成历史描述性关键字列表。此外,机器学习单元112被配置为控制文本处理单元106以发起对与历史服务请求相对应的历史系统日志的解析,从而生成历史消息代码列表。机器学习单元112被进一步配置为建立多个历史描述性关键字与多个历史消息代码之间的关联以生成服务字典。
在一个实施方案中,机器学习单元112被配置为控制文本处理单元106以从部件列表中选择性地解析部件描述,从而生成部件描述性关键字列表。机器学习单元112被进一步配置为控制文本处理单元106以解析服务日志以生成共存或相关部件的列表。术语“共存部件”是指在成像系统服务期间同时更换或频繁修复的两个或更多个部件。术语“相关部件”是指结合操作的两个或更多个部件。机器学习单元112被进一步配置为基于部件描述性关键字列表和共存部件列表来生成多个部件簇。机器学习单元112还被配置为生成在多个部件簇和部件描述性关键字之间建立关联的部件字典。每个部件簇包括来自部件列表的类似部件。在一个实施方案中,使用部件聚类技术创建部件簇。具体地讲,部件聚类技术可基于存在于其部件描述中的常见描述性词语来识别类似部件。在另一个实施方案中,当部件在服务期间被频繁一起更换时,部件聚类技术可将它们分组到一个单个簇中。在又一个实施方案中,聚类技术可基于列出这些部件的消息代码的相似性来识别类似部件。通过基于表示部件之间的相似性的一个或多个度量将类似部件分组到每个部件簇中来创建多个部件簇。
机器学习单元112被进一步配置为控制文本处理单元106以基于服务字典和部件字典生成与多个历史服务请求相对应的多个第一二元向量和多个第二二元向量。机器学习单元112被配置为生成要由推荐单元使用的一个或多个机器学习模型。此外,机器学习单元112被配置为基于多个第一二元向量、多个第二二元向量和对应的历史推荐来生成表示多个分类方案的多个机器学习模型。在一个实施方案中,可以基于多个第一二元向量和多个第二二元向量来训练机器学习模型,诸如神经网络模型,以生成对应的历史推荐。在一个实施方案中,机器学习单元112被配置为在离线模式下操作,并且使用存储在历史数据库中的多个服务请求来生成服务字典、部件字典和多个分类模型。在一些此类实施方案中,机器学习单元可被配置为处理服务请求以基于服务字典和部件字典中的每一个创建非二元向量。
图1B是根据示例性实施方案的用于维护机器群组中的机器诸如成像系统的方法150的流程图。方法150包括在步骤152处接收对应于机器的服务请求。在一个实施方案中,服务请求包括对机器中的故障状况的描述。服务请求还包括时间戳,其表示报告(或记录)问题时的时间点。该方法150还包括在步骤154处获取对应于机器群组的服务架构。服务架构包括服务字典和以树状数据结构组织的多个分类方案。在一个实施方案中,服务字典包括多个描述性关键字和多个消息代码,并且指示所述多个描述性关键字和所述多个消息代码之间的一一对应关系。该方法150还包括如步骤156所示的基于服务字典和文本解析技术来处理服务请求以生成描述性字词列表。文本处理包括从服务请求移除特殊字符、专有名词和日期以生成描述性字词列表。此外,文本处理技术包括基于服务字典和对应于服务请求的描述性字词列表来创建第一二元向量。第一二元向量表示在服务字典中存在描述性字词。
在步骤158处,该方法包括基于描述性字词列表和服务架构来生成推荐。具体地讲,步骤158包括基于第一二元向量和深度学习模型来在多个分类方案中选择分类方案。此外,步骤158还包括使用所选择的分类方案处理描述性字词。推荐包括在线修复活动、现场修复活动和部件更换活动中的至少一者。该方法还包括在步骤160处基于所生成的推荐来对机器的故障状况提供服务。
在一个实施方案中,步骤154还包括基于具有多个历史服务请求的历史数据库来生成服务架构。具体地,生成服务架构涉及使用多个历史服务请求和对应的系统日志生成服务字典。此外,生成服务架构还包括基于部件簇列表来生成部件字典。使用应用于部件列表的一种或多种聚类技术来确定部件簇。服务架构的生成还包括使用多个历史服务请求、服务字典和部件字典来训练机器学习模型。在步骤154处生成与多个分类方案相对应的多个机器学习模型。
用于处理服务请求的文本解析技术使得能够自动处理并在提交故障描述的同时提供使用自然语言的灵活性。服务架构的分层性质使实施和解释变得容易。使用机器学习模型有助于生成故障的多标签分类,从而在必要时允许多于一个推荐。维护系统适应在正确推荐和错误推荐之间实现平衡所必需的系统参数的调整。维护系统被配置为在没有操作者干预的情况下通过利用历史数据来学习机器学习模型。
有利的是,自动处理减少了处理开销并显著改善了生产力成本。专家从机械扫描大量数据中解脱出来,并且能够专注于需要他们技能的更具生产力的成本。由维护系统生成的推荐可供用户使用,并且可以避免或最小化不必要的部件更换。改善的响应时间以优化的服务合同成本提高了客户满意度。
图2是根据示例性实施方案的表示用于维护机器的示例性服务架构的示意图。该示意图示出了多级分层树状数据结构,也称为“树”,并且通常由附图标号200表示。树200包括以多个级别组织的多个节点,其中每个节点包括对应的分类方案。节点表示服务请求、用于处理服务请求的分类方案和/或推荐。分类方案被配置为生成对应于多个服务选项的推荐。具体地,每个节点指定要对服务请求执行的多个处理步骤以生成一个或多个推荐。在多个节点中的每一个处指定的多个处理步骤由推荐单元108执行。此外,推荐单元108从表示服务请求202的根节点开始遍历树200,直到树200的第二级别中的叶节点210、212。在图示实施方案中,树200被示出为包括以三个级别组织的五个节点204、206、208、210、212。第一级别包括根节点204,第一级别包括节点206、208,并且第二级别包括节点210、212。尽管在图示实施方案中考虑五个节点和三个级别,但在本说明书的范围内设想了高于或低于五个节点和三个级别。如图所示,树200包括由用户记录的服务请求202。通过被配置为生成第一推荐的第一分类方案204来处理服务请求202。如果服务请求可由远程服务解决,则第一推荐是“远程服务”206动作以由服务人员远程校正故障状况。如果服务请求需要现场服务,则第一推荐是将服务请求传输给现场服务人员的“调度”208决策。远程服务206包括通过被配置为生成第二推荐的第二分类方案处理服务请求。第二分类是多标签分类方案,第二推荐包括基于服务请求确定的多个场外修复推荐中的一个或多个。
在调度208推荐的情况下,服务请求通过第三分类方案处理以生成第三推荐。第三分类方案是二元分类方案,其被配置为提供部件更换选项和修复选项中的一者。如果通过一个或多个修复动作解决服务请求是合理的,则第三推荐对应于“修复”动作212。如果需要部件更换,则第三推荐对应于“利用部件更换进行修复”决策210。
在一个实施方案中,利用部件更换进行修复决策210包括利用第四分类方案处理服务请求,该第四分类方案被配置为生成第四推荐。第四分类方案是多标签分类方案,其被配置为提供与部件更换有关的推荐。在一个实施方案中,第四推荐包括要更换以校正成像系统102故障的部件列表。此外,在一些实施方案中,修复动作212包括通过第五分类方案处理服务请求,该第五分类方案被配置为生成第五推荐。第五分类方案是多标签分类方案,其被配置为提供现场修复推荐列表。第五推荐可以包括要由现场工程师遵循以纠正问题的逐步说明。可以注意到,第一分类方案、第二分类方案是二元分类方案。第三分类方案、第四分类方案和第五分类方案是多标签分类方案。在一个实施方案中,推荐单元108可在遍历树时生成多个推荐以解决单个服务请求。例如,推荐单元108可使用第一分类方案204生成第一推荐,以通过远程服务解决服务请求的一个方面。推荐单元108可生成由远程服务动作206生成的指定远程服务步骤的第二推荐。推荐单元108还可生成在调度决策208之后生成的第三推荐,以通过更换一个或多个部件来解决服务请求的另一个方面。第三推荐还可建议通过现场修复动作解决服务请求的又一方面。推荐单元108还被配置为生成由部件更换决策210生成的指定要更换的部件的第四推荐。推荐单元108还可生成第五推荐,该第五推荐由包括修复动作列表的规范的修复动作212生成。
图3是根据示例性实施方案的表示用于维护机器群组中的机器的部件聚类的示意图300。图1A的文本处理单元106可包括图3的示意图300中所示的各种文本处理框302至316。在一个实施方案中,文本处理单元106被配置为通过从多个服务请求确定部件名称来生成多个部件簇中的部件簇。具体地讲,如框302所示,考虑先前解决的多个服务请求以及更换或修复的对应部件列表。同样也考虑了与服务请求和部件列表相对应的多个消息代码。
此外,文本处理单元(诸如图1A的文本处理单元106)被配置为针对部件名称中的每个部件名称确定词频-逆文档频率(tf-idf)参数,如框304所示。文本挖掘语境中的术语“tf-idf”是“词频–逆文档频率”的缩写,并且表示文本中的术语(或字词)在若干文档或记录中的度量。文本中字词的“词频”是指文本语料库中字词的出现频率,并且对应于字词的“文档频率”是指文档(或记录)中字词的出现频率。术语tf-idf通过用词频偏移文档频率来结合词频和文档频率。术语“具有噪声的基于密度的空间聚类算法”也被称为“DBSCAN”,是被配置为参考预先指定的度量对密集堆积在一起的数据点的子集进行分组的数据聚类技术。
框304的文本处理还可包括识别服务请求中的共存部件,消息代码的相似性和服务请求中部件的出现频率。可在框302中生成一个或多个度量,诸如部件代码和/或消息代码的tf-idf参数。在一个实施方案中,文本处理单元106被进一步配置为识别对应于服务请求的共存部件,如框306所示。基于共存部件来识别多个关联规则。多个关联度量,例如但不限于针对多个关联规则中的每个关联规则确定的支持度值、置信度值和提升度值。术语“置信度值”是指当前件出现时,立即随之而来的后件的出现率百分比。术语“关联规则”是指概念、实体以及此类前件和后件的关联。术语“支持度值”是指关联的出现率百分比。术语“提升度值”是指关联出现率相对于预期出现率的偏差。在框312中,文本处理单元106被进一步配置为基于置信度值和提升度值来对多个共存部件进行聚类。
在一个实施方案中,使用距离度量诸如但不限于余弦相似性度量来确定一对服务请求之间的距离。对应于该对服务请求中的两个服务请求的tf-idf参数可用于确定两个服务请求之间的距离度量。确定对应于多对服务请求的多个距离值。可在框308中基于多个服务请求来确定一对部件之间的多个距离值。在框310中,基于多对服务请求、对应于多对服务请求的多个距离值、以及与多对服务请求中的每一对相关联的部件来使用聚类技术识别类似部件。在一个实施方案中,DBSCAN技术用于生成类似部件的簇。
在另一个实施方案中,框304处的文本处理可用于生成多对消息代码之间的多个距离值,如框310所示。所述多个距离值中的每个距离值表示所述配对部件之间的相似性。在框316中,基于多个距离值来对与消息代码相关联的部件进行聚类。
图4是根据示例性实施方案的表示用于维护机器群组中的机器的标签提取方法的示意图400。标签提取方法用于从现场人员执行的一个或多个现场修复动作的描述中提取多个标签。标签还用于标测具有有限动作代码列表的现场修复动作。在一个实施方案中,基于生成统计模型生成多个标签。在另一个实施方案中,基于判别统计模型生成多个标签。生成统计模型包括字词和主题的联合概率,并且判别统计模型(discriminatorystatistical model)包括与字词相关的主题的条件概率。在一个实施方案中,使用隐含狄利克雷分布(LDA)模型确定贝叶斯框架中的多个标签,如框402所示。LDA模型使用由实数向量参数化的主题和字词的狄利克雷分布。在另一个实施方案中,语言模型用于通过提取例如名词与动词之间的关联来确定多个标签,如框404所示。语言模型是单词序列上的联合概率分布。具体地讲,语言模型使用在n-gram上的概率分布,n-gram是n个字词的连续序列,是给定文本。在另选实施方案中,多个标签也可基于框406中的先进的深度学习技术来生成。
所公开的实施方案使得能够自动处理服务请求,从而减少响应时间并提高机器诸如成像系统的服务效率。采用具有多个分类方案的服务架构在处理服务请求时减少了手动开销,而不会损害准确度。
应当理解,根据任何特定实施方案,不一定能够实现上述所有此类目标或优点。因此,例如,本领域技术人员将认识到,可能以实现或改进如本文所教导的一个优点或一组优点而未必实现如本文可能教导或建议的其他目标或优点的方式来体现或进行本文描述的系统和技术。
虽然已结合仅有限数目的实施方案详细描述了本技术,但应当容易理解,本说明书不限于此类所公开的实施方案。相反,可对本技术进行修改,以结合此前未描述的但与本权利要求的实质和范围相称的任何数量的变型、更改、替换或等同的布置。另外,虽然已经描述了本技术的各种实施方案,但应当理解,本说明书的方面可仅包括所描述的实施方案中的一些。因此,本说明书不应被视为受前述说明的限制,而是只受所附权利要求书的范围的限制。
Claims (21)
1.一种用于维护机器群组中的机器的方法,所述方法包括:
接收对应于机器的服务请求,其中所述服务请求包括对所述机器中的故障状况的描述;
获取对应于所述机器群组的服务架构,其中所述服务架构包括服务字典和以树状数据结构组织的多个分类方案;
基于所述服务字典和文本解析技术来处理所述服务请求以生成描述性字词列表;
基于所述描述性字词列表和所述服务架构来生成推荐,其中所述推荐包括在线修复活动、现场修复活动和部件更换活动中的至少一者;以及
基于所述推荐来对所述机器的所述故障状况提供服务。
2.根据权利要求1所述的方法,其中所述服务字典包括多个描述性关键字和从系统日志中提取的对应的多个消息代码。
3.根据权利要求1所述的方法,其中处理所述服务请求包括:
从所述服务请求移除特殊字符、专有名词和日期以生成所述描述性字词列表;以及
基于所述服务字典和对应于所述服务请求的描述性字词列表来创建第一二元向量,其中所述第一二元向量表示在所述服务字典中存在所述描述性字词列表中的描述性字词。
4.根据权利要求3所述的方法,其中生成所述推荐包括:
基于所述第一二元向量和深度学习模型来在所述多个分类方案中选择分类方案;以及
基于所述第一二元向量来评估对应于所述分类方案的机器学习模型。
5.根据权利要求1所述的方法,其中所述服务架构还包括部件字典,所述部件字典包括多个部件簇名称和对应的多个部件簇描述。
6.根据权利要求5所述的方法,其中获取所述服务架构包括:
检索对应于所述机器群组的日志记录数据,其中所述日志记录数据包括多个历史服务请求、对应于所述多个历史服务请求中的每个历史服务请求的多个推荐、包括多个消息代码的系统日志以及包括部件描述的部件列表;
基于所述多个历史服务请求、所述多个推荐和所述系统日志来确定所述服务字典;
基于所述多个历史服务请求、所述多个推荐和所述部件列表来确定所述部件字典;以及
基于所述日志记录数据、所述服务字典和所述部件字典来确定所述多个分类方案。
7.根据权利要求6所述的方法,其中确定所述服务字典包括:
使用文本处理技术从所述多个历史服务请求中确定多个描述性关键字;
从所述系统日志中提取对应于所述多个历史服务请求的多个消息代码;以及
将所述多个消息代码与所述服务字典中的所述多个描述性关键字相关联。
8.根据权利要求6所述的方法,其中确定所述部件字典包括:
确定对应于多个历史服务请求的部件名称;
为所述部件名称中的每一个确定词频-逆文档频率参数;
使用余弦相似性度量确定一对服务请求之间的距离;
基于具有噪声的基于密度的空间聚类算法技术来对多个部件名称进行聚类。
9.根据权利要求8所述的方法,其中生成所述部件字典包括基于置信度值和提升度值来根据关联规则对多个共存部件进行聚类。
10.根据权利要求6所述的方法,其中获取所述服务架构包括:
基于所述日志记录数据、所述服务字典和所述部件字典来在所述多个分类方案中确定第一分类方案和第二分类方案,其中所述第一分类方案是被配置为提供远程服务选项和现场服务选项中的一者的二元分类方案,并且其中所述第二分类方案是被配置为提供待执行的多个场外修复推荐的多标签分类方案。
11.根据权利要求10所述的方法,其中获取所述服务架构包括基于所述日志记录数据、所述服务字典和所述部件字典来在所述多个分类方案中确定第三分类方案、第四分类方案和第五分类方案,其中所述第三分类方案是被配置为提供部件更换选项和修复选项中的一者的二元分类方案,其中所述第四分类方案是被配置为提供待更换的部件列表的多标签分类方案,并且其中所述第五分类方案是被配置为提供现场修复推荐列表的多标签分类方案。
12.一种用于维护机器群组中的机器的系统,所述系统包括:
存储器单元,所述存储器单元被配置为:
存储请求数据库,所述请求数据库包括对应于所述机器的服务请求,其中所述服务请求包括对所述机器中的故障状况的描述;以及
存储对应于所述机器群组的服务架构,其中所述服务架构包括服务字典和以树状数据结构组织的多个分类方案;
文本处理单元,所述文本处理单元通信地耦接到所述存储器单元并且被配置为基于所述服务字典和文本解析技术来处理所述服务请求以生成描述性字词列表;
推荐单元,所述推荐单元通信地耦接到所述文本处理单元并且被配置为基于所述描述性字词列表和所述服务架构来生成推荐,其中所述推荐包括在线修复活动、现场修复活动和部件更换活动中的至少一者;和
控制器单元,所述控制器单元通信地耦接到所述推荐单元并且被配置为基于所述推荐来对所述机器的所述故障状况提供服务。
13.根据权利要求12所述的系统,其中所述服务字典包括多个描述性关键字和从系统日志中提取的对应的多个消息代码。
14.根据权利要求12所述的系统,其中所述文本处理单元被进一步配置为:
从所述服务请求移除特殊字符、专有名词和日期以生成描述性字词列表;以及
基于所述服务字典和对应于服务请求的描述性字词列表来创建第一二元向量,其中所述第一二元向量表示在所述服务字典中存在描述性字词。
15.根据权利要求14所述的系统,其中所述推荐单元被进一步配置为:
基于所述第一二元向量和深度学习模型,在所述多个分类方案中选择分类方案;以及
基于所述第一二元向量来评估对应于所述分类方案的机器学习模型。
16.根据权利要求12所述的系统,其中所述存储器单元被进一步配置为存储部件字典,所述部件字典包括多个部件簇名称和对应的多个部件簇描述。
17.根据权利要求16所述的系统,还包括:
存储在存储器单元中的历史数据库,其中所述历史数据库包括对应于所述机器群组的日志记录数据,其中所述日志记录数据包括多个历史服务请求、对应于所述多个历史服务请求中的每个历史服务请求的多个推荐、包括多个消息代码的系统日志以及包括部件描述的部件列表;
机器学习单元,所述机器学习单元通信地耦接到所述存储器单元并且被配置为:
基于所述多个历史服务请求、所述多个推荐和所述系统日志来确定所述服务字典;
基于所述多个历史服务请求、所述多个推荐和所述部件列表来确定所述部件字典;以及
基于所述日志记录数据、所述服务字典和所述部件字典来确定所述多个分类方案。
18.根据权利要求17所述的系统,其中所述机器学习单元被进一步配置为:
确定对应于多个服务请求的部件名称;
为所述部件名称中的每一个确定词频-逆文档频率参数;
使用余弦相似性度量确定一对服务请求之间的距离;
基于具有噪声的基于密度的空间聚类算法来对多个部件名称进行聚类。
19.根据权利要求18所述的系统,其中所述机器学习单元被进一步配置为基于置信度值和提升度值来根据关联规则对多个共存部件进行聚类。
20.根据权利要求19所述的系统,其中所述机器学习单元被配置为在所述多个分类方案中确定第一分类方案和第二分类方案,其中所述第一分类方案是被配置为提供远程服务选项和现场服务选项中的一者的二元分类方案,并且其中所述第二分类方案是被配置为提供待执行的多个场外修复推荐的多标签分类方案。
21.根据权利要求20所述的系统,其中所述机器学习单元被进一步配置为在所述多个分类方案中确定第三分类方案、第四分类方案和第五分类方案,其中所述第三分类方案是被配置为提供部件更换选项和修复选项中的一者的二元分类方案,并且其中所述第四分类方案是被配置为提供待更换的部件列表的多标签分类方案,并且其中所述第五分类方案是被配置为提供现场修复推荐列表的多标签分类方案。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201841007877 | 2018-03-02 | ||
IN201841007877 | 2018-03-02 | ||
PCT/US2019/020076 WO2019169147A1 (en) | 2018-03-02 | 2019-02-28 | System and method for maintenance of a fleet of machines |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111819584A true CN111819584A (zh) | 2020-10-23 |
Family
ID=67805924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980017020.0A Pending CN111819584A (zh) | 2018-03-02 | 2019-02-28 | 用于维护机器群组的系统和方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11842149B2 (zh) |
EP (1) | EP3759662A4 (zh) |
CN (1) | CN111819584A (zh) |
WO (1) | WO2019169147A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113950707A (zh) * | 2019-06-10 | 2022-01-18 | 皇家飞利浦有限公司 | 基于异源子系统分析来预测零件更换依赖的系统和方法 |
US11763091B2 (en) * | 2020-02-25 | 2023-09-19 | Palo Alto Networks, Inc. | Automated content tagging with latent dirichlet allocation of contextual word embeddings |
EP4186069A1 (en) * | 2020-07-23 | 2023-05-31 | Koninklijke Philips N.V. | System and method for improved spare part search for maintenance services using topic modelling |
US11503055B2 (en) * | 2020-09-21 | 2022-11-15 | International Business Machines Corporation | Identifying siem event types |
CN114792089A (zh) * | 2021-01-26 | 2022-07-26 | 伊姆西Ip控股有限责任公司 | 用于管理计算机系统的方法、设备和程序产品 |
US12026680B2 (en) * | 2021-09-01 | 2024-07-02 | Caterpillar Inc. | System and method for inferring machine failure, estimating when the machine will be repaired, and computing an optimal solution |
EP4372623A1 (en) * | 2022-11-15 | 2024-05-22 | Koninklijke Philips N.V. | Resolving problems with medical devices |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6507831B1 (en) * | 1999-11-16 | 2003-01-14 | General Electric Company | Automated creation of a diagnostic tool for the servicing of equipment from free form text dispatches |
US20060288260A1 (en) * | 2005-06-17 | 2006-12-21 | Guoxian Xiao | System and method for production system performance prediction |
CN102223252A (zh) * | 2011-06-15 | 2011-10-19 | 中国联合网络通信集团有限公司 | 物联网终端故障处理方法、物联网平台及系统 |
US20120011073A1 (en) * | 2010-07-08 | 2012-01-12 | Gm Global Technology Operations, Inc. | Knowledge Extraction Methodology for Unstructured Data Using Ontology-Based Text Mining |
CN103477366A (zh) * | 2011-02-21 | 2013-12-25 | 实耐宝公司 | 用于诊断服务中设备的方法和设备 |
CN106201805A (zh) * | 2016-07-28 | 2016-12-07 | 北京百度网讯科技有限公司 | 用于检测服务器故障的方法和装置 |
CN106851032A (zh) * | 2016-12-31 | 2017-06-13 | 国家电网公司客户服务中心 | 一种提高座席应用系统异常一次解决率的方法 |
CN107179957A (zh) * | 2016-03-10 | 2017-09-19 | 阿里巴巴集团控股有限公司 | 物理机故障分类处理方法、装置和虚拟机恢复方法、系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6959235B1 (en) * | 1999-10-28 | 2005-10-25 | General Electric Company | Diagnosis and repair system and method |
JP2002132987A (ja) | 2000-10-19 | 2002-05-10 | Nec Corp | インターネットを利用した集中保守管理システム及び方法 |
US7209860B2 (en) * | 2003-07-07 | 2007-04-24 | Snap-On Incorporated | Distributed expert diagnostic service and system |
US20110161721A1 (en) * | 2009-12-30 | 2011-06-30 | Dominic Fulginiti | Method and system for achieving a remote control help session on a computing device |
US9361637B2 (en) * | 2010-03-05 | 2016-06-07 | Sears Brands, L.L.C. | System and method for providing diagnostic services |
US20130086208A1 (en) | 2011-09-30 | 2013-04-04 | Aljex Software, Inc. | Distributed Monitoring And Control System |
-
2019
- 2019-02-28 US US16/976,099 patent/US11842149B2/en active Active
- 2019-02-28 CN CN201980017020.0A patent/CN111819584A/zh active Pending
- 2019-02-28 EP EP19760158.6A patent/EP3759662A4/en active Pending
- 2019-02-28 WO PCT/US2019/020076 patent/WO2019169147A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6507831B1 (en) * | 1999-11-16 | 2003-01-14 | General Electric Company | Automated creation of a diagnostic tool for the servicing of equipment from free form text dispatches |
US20060288260A1 (en) * | 2005-06-17 | 2006-12-21 | Guoxian Xiao | System and method for production system performance prediction |
US20120011073A1 (en) * | 2010-07-08 | 2012-01-12 | Gm Global Technology Operations, Inc. | Knowledge Extraction Methodology for Unstructured Data Using Ontology-Based Text Mining |
CN103477366A (zh) * | 2011-02-21 | 2013-12-25 | 实耐宝公司 | 用于诊断服务中设备的方法和设备 |
CN102223252A (zh) * | 2011-06-15 | 2011-10-19 | 中国联合网络通信集团有限公司 | 物联网终端故障处理方法、物联网平台及系统 |
CN107179957A (zh) * | 2016-03-10 | 2017-09-19 | 阿里巴巴集团控股有限公司 | 物理机故障分类处理方法、装置和虚拟机恢复方法、系统 |
CN106201805A (zh) * | 2016-07-28 | 2016-12-07 | 北京百度网讯科技有限公司 | 用于检测服务器故障的方法和装置 |
CN106851032A (zh) * | 2016-12-31 | 2017-06-13 | 国家电网公司客户服务中心 | 一种提高座席应用系统异常一次解决率的方法 |
Non-Patent Citations (3)
Title |
---|
MARK DEVANEY ET AL.: "PREVENTING FAILURES BY MINING MAINTENANCE LOGS WITH CASE-BASED REASONING", 59TH MEETING OF THE SOCIETY FOR MACHINERY FAILURE PREVENTION TECHNOLOGY (MFPT-59), 1 January 2005 (2005-01-01), pages 1 - 10, XP055536324 * |
崔锐;李保君;陈绵康;夏冠群;张元江;鲍俊成;周娜;: "医疗设备维修管理系统的设计与应用", 医疗卫生装备, no. 09, 15 September 2017 (2017-09-15) * |
张敬苒;: "某企业信息系统在线故障报修平台的设计与实现", 长春大学学报, no. 12, 30 December 2012 (2012-12-30), pages 1480 - 1487 * |
Also Published As
Publication number | Publication date |
---|---|
WO2019169147A1 (en) | 2019-09-06 |
EP3759662A1 (en) | 2021-01-06 |
US20200410163A1 (en) | 2020-12-31 |
US11842149B2 (en) | 2023-12-12 |
EP3759662A4 (en) | 2021-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11842149B2 (en) | System and method for maintenance of a fleet of machines | |
EP3379429A1 (en) | A method for retrieving a recommendation from a knowledge database of a ticketing system | |
US20060106796A1 (en) | Knowledge stores for interactive diagnostics | |
US11520810B2 (en) | Subject matter expert knowledge mapping using dynamic clustering | |
US20200365262A1 (en) | Self-correcting method for annotation of data pool using feedback mechanism | |
US20180315023A1 (en) | Subject matter knowledge mapping | |
US12055902B2 (en) | Failure mode analytics | |
US7949444B2 (en) | Aviation field service report natural language processing | |
US11586986B2 (en) | Orchestrator for machine learning pipeline | |
US11823793B2 (en) | Parts co-replacement recommendation system for field servicing of medical imaging systems | |
US11822578B2 (en) | Matching machine generated data entries to pattern clusters | |
US9569327B2 (en) | System and method for labeling alert messages from devices for automated management | |
US12026475B2 (en) | Predicting service issues | |
WO2022101234A1 (en) | System and method for automated or semi-automated identification of malfunction area(s) for maintenance cases | |
CN116134394A (zh) | 用于使用主题建模来改进对维护服务的备件搜索的系统和方法 | |
CN117435379A (zh) | 业务故障确定方法、业务故障确定模型的训练方法及装置 | |
Ahmed et al. | Knowledge-based intelligent system for IT incident DevOps | |
JP2023136144A (ja) | 情報提供システム、情報提供方法およびプログラム | |
US20200293565A1 (en) | Repair action label generation system | |
Govindasamy et al. | Data reduction for bug triage using effective prediction of reduction order techniques | |
US20240345551A1 (en) | Building management system with natural language model-based data structure generation | |
WO2024179790A1 (en) | Improved maintenance service action recommendations using service data and medical device log files | |
WO2023144078A1 (en) | Performing a maintenance operation on a medical imaging system | |
AU2021203456A1 (en) | Computer-Implemented Method of Providing Maintenance Instructions for Servicing Equipment | |
CN118215971A (zh) | 用于从异构信息源提取诊断和解决流程的系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |