CN111816403A - 一种用于消磁的目标位置确定方法及系统 - Google Patents

一种用于消磁的目标位置确定方法及系统 Download PDF

Info

Publication number
CN111816403A
CN111816403A CN202010654741.7A CN202010654741A CN111816403A CN 111816403 A CN111816403 A CN 111816403A CN 202010654741 A CN202010654741 A CN 202010654741A CN 111816403 A CN111816403 A CN 111816403A
Authority
CN
China
Prior art keywords
medium
model
magnetic storage
target
storage medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010654741.7A
Other languages
English (en)
Other versions
CN111816403B (zh
Inventor
罗远哲
刘瑞景
罗晓婷
郑玉洁
陆立军
赵爱民
薛瑞亭
李冠蕊
罗晓萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing China Super Industry Information Security Technology Ltd By Share Ltd
Original Assignee
Beijing China Super Industry Information Security Technology Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing China Super Industry Information Security Technology Ltd By Share Ltd filed Critical Beijing China Super Industry Information Security Technology Ltd By Share Ltd
Priority to CN202010654741.7A priority Critical patent/CN111816403B/zh
Publication of CN111816403A publication Critical patent/CN111816403A/zh
Application granted granted Critical
Publication of CN111816403B publication Critical patent/CN111816403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/006Methods and devices for demagnetising of magnetic bodies, e.g. workpieces, sheet material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Moving Of The Head To Find And Align With The Track (AREA)

Abstract

本发明公开了一种用于消磁的目标位置确定方法及系统。该用于消磁的目标位置确定方法包括:获取目标介质感应信号强度;将目标介质感应信号强度输入至采用机器学习算法确定的介质定位模型中,得到目标磁性存储介质的所处位置;将目标磁性存储介质的所处位置输入至采用机器学习算法确定的消磁线圈选择模型中,得到目标磁性存储介质的线圈选择信息;线圈选择信息包括参与消磁的消磁线圈的编号;基于目标磁性存储介质的线圈选择信息,控制对应编号的消磁线圈产生对目标磁性存储介质消磁所需的强磁场,以实现消磁。本发明能够实现对磁性存储介质的精确消磁。

Description

一种用于消磁的目标位置确定方法及系统
技术领域
本发明涉及磁性介质连续消磁机应用技术领域,特别是涉及一种用于消磁的目标位置确定方法及系统。
背景技术
随着信息化技术的发展,硬盘、软盘、磁盘、磁带等磁性数据存储介质的使用变得非常普遍,为防止这些磁性存储介质中的敏感信息泄露,目前现有的销毁数据的方式主要为物理消磁方式,消磁机采用的便是物理消磁方式销毁存储介质上的数据。消磁机通过产生强大的磁场彻底销毁普通硬盘、软盘、磁盘乃至大型的服务器硬盘(带盘架)、大型数据磁带和录影带等磁性存储介质上的数据,杜绝已删除数据被恢复造成的信息泄漏,能够做到不留痕迹、安全可靠,其是当前军工、政府机关等敏感单位开展保密信息工作的强有力工具。不过在使用消磁机时需要确定即将销毁的磁性存储介质的位置,进而选择并控制相应的消磁线圈产生有效的消磁空间对这些磁性存储介质进行精确消磁。
对磁性存储介质定位可以采用机械式定位方法,如采用定位开关装置,但是该装置使用寿命有限且易出现故障,影响使用。因此,亟需一种更佳的目标位置确定方法,进而实现对磁性存储介质的精确消磁。
发明内容
基于此,有必要提供一种用于消磁的目标位置确定方法及系统,以实现对磁性存储介质的精确消磁。
为实现上述目的,本发明提供了如下方案:
一种用于消磁的目标位置确定方法,包括:
获取目标介质感应信号强度;所述目标介质感应信号强度为目标磁性存储介质的感应信号强度;所述目标磁性存储介质为位置未知的磁性存储介质;
将所述目标介质感应信号强度输入至介质定位模型中,得到所述目标磁性存储介质的所处位置;所述介质定位模型是采用机器学习算法确定的;
将所述目标磁性存储介质的所处位置输入至消磁线圈选择模型中,得到所述目标磁性存储介质的线圈选择信息;所述线圈选择信息包括参与消磁的消磁线圈的编号;所述消磁线圈选择模型是采用机器学习算法确定的;
基于所述目标磁性存储介质的线圈选择信息,控制对应编号的消磁线圈产生对所述目标磁性存储介质消磁所需的强磁场,以实现消磁。
可选的,在所述获取目标介质感应信号强度之后,还包括:采用线性函数归一化法或零均值归一化法对所述目标介质感应信号强度进行预处理;
在所述将所述目标介质感应信号强度输入至介质定位模型中,得到所述目标磁性存储介质的所处位置之后,还包括:采用线性函数归一化法或零均值归一化法对所述目标磁性存储介质的所处位置进行预处理。
可选的,所述介质定位模型的确定方法为:
获取第一样本集;所述第一样本集包括磁性存储训练介质的感应信号强度和对应的位置;所述磁性存储训练介质为位置已知的磁性存储介质;
将所述第一样本集按照设定比例划分为第一训练集和第一验证集;
构建介质定位初始模型;所述介质定位初始模型为全连接神经网络模型;
基于所述第一训练集对所述介质定位初始模型进行训练,调整所述介质定位初始模型中的超参数,得到训练好的定位模型;
基于所述第一验证集对所述训练好的定位模型进行评估,将位置坐标均方误差损失最小时或者位置坐标均方根误差损失最小时对应的训练好的定位模型确定为介质定位模型。
可选的,所述消磁线圈选择模型的确定方法为:
获取第二样本集;所述第二样本集包括磁性存储训练介质的所处位置和磁性存储训练介质的线圈选择信息;所述磁性存储训练介质为位置已知的磁性存储介质;
将所述第二样本集按照设定比例划分为第二训练集和第二验证集;
构建消磁线圈选择初始模型;所述消磁线圈选择初始模型为全连接神经网络模型;
基于所述第二训练集对所述消磁线圈选择初始模型进行训练,调整所述消磁线圈选择初始模型中的超参数,得到训练好的选择模型;
基于所述第二验证集对所述训练好的选择模型进行评估,将消磁准确率最高时对应的训练好的选择模型确定为消磁线圈选择模型。
可选的,所述基于所述第一训练集对所述介质定位初始模型进行训练,调整所述介质定位初始模型中的超参数,得到训练好的定位模型,具体包括:
基于所述第一训练集,采用随机梯度下降法、牛顿法、共轭梯度下降法或最速下降法对所述介质定位初始模型进行训练,调整所述介质定位初始模型中的超参数,得到训练好的定位模型。
可选的,所述基于所述第一验证集对所述训练好的定位模型进行评估,将位置坐标均方误差损失最小时或者位置坐标均方根误差损失最小时对应的训练好的定位模型确定为介质定位模型,具体包括:
基于所述第一验证集,采用留一法或k折交叉验证法对所述训练好的定位模型进行评估,将位置坐标均方误差损失最小时或者位置坐标均方根误差损失最小时对应的训练好的定位模型确定为介质定位模型。
可选的,所述基于所述第二训练集对所述消磁线圈选择初始模型进行训练,调整所述消磁线圈选择初始模型中的超参数,得到训练好的选择模型,具体包括:
基于所述第二训练集,采用随机梯度下降法、牛顿法、共轭梯度下降法或最速下降法对所述消磁线圈选择初始模型进行训练,调整所述消磁线圈选择初始模型中的超参数,得到训练好的选择模型。
可选的,所述基于所述第二验证集对所述训练好的选择模型进行评估,将消磁准确率最高时对应的训练好的选择模型确定为消磁线圈选择模型,具体包括:
基于所述第二验证集,采用留一法或k折交叉验证法对所述训练好的选择模型进行评估,将交叉熵损失最小时或softmax损失最小时对应的训练好的选择模型确定为消磁线圈选择模型。
本发明还提供了一种用于消磁的目标位置确定系统,包括:
数据获取模块,用于获取目标介质感应信号强度;所述目标介质感应信号强度为目标磁性存储介质的感应信号强度;所述目标磁性存储介质为位置未知的磁性存储介质;
位置确定模块,用于将所述目标介质感应信号强度输入至介质定位模型中,得到所述目标磁性存储介质的所处位置;所述介质定位模型是采用机器学习算法确定的;
线圈选择确定模块,用于将所述目标磁性存储介质的所处位置输入至消磁线圈选择模型中,得到所述目标磁性存储介质的线圈选择信息;所述线圈选择信息包括参与消磁的消磁线圈的编号;所述消磁线圈选择模型是采用机器学习算法确定的;
消磁控制模块,用于基于所述目标磁性存储介质的线圈选择信息,控制对应编号的消磁线圈产生对所述目标磁性存储介质消磁所需的强磁场,以实现消磁。
可选的,所述用于消磁的目标位置确定系统,还包括:
第一预处理模块,用于采用线性函数归一化法或零均值归一化法对所述目标介质感应信号强度进行预处理;
第二预处理模块,用于采用线性函数归一化法或零均值归一化法对所述目标磁性存储介质的所处位置进行预处理。
与现有技术相比,本发明的有益效果是:
本发明提出了一种用于消磁的目标位置确定方法及系统,通过发射探测信号,根据接收到的介质感应信号强度采用机器学习算法对磁性存储介质进行定位,与传统方法相比具有较高的定位精度且定位速度较快,也可以避免机械定位装置寿命短的问题。另外采用机器学习算法根据介质位置智能选择消磁线圈,控制单个消磁线圈产生有效消磁空间实现精确消磁,可以避免多消磁线圈用电浪费以及瞬时电压过大对用电的影响。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的用于消磁的目标位置确定方法的流程图;
图2为本发明实施例提供的用于消磁的目标位置确定系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本实施例提供了用于某种由识别线圈阵列和消磁线圈阵列组成的消磁机系统上的对磁性存储介质定位进而达到精确消磁的方法。该方法的大致思路如下:基于机器学习算法对要消磁的磁性存储介质进行定位,而后根据其位置信息再次利用机器学习算法对消磁线圈进行选择,最终控制相应的消磁线圈产生有效的消磁空间对这些磁性存储介质进行精确消磁。
图1为本发明实施例提供的用于消磁的目标位置确定方法的流程图。
参见图1,本实施例的用于消磁的目标位置确定方法,具体包括:
步骤101:获取目标介质感应信号强度。
所述目标介质感应信号强度为目标磁性存储介质的感应信号强度;所述目标磁性存储介质为位置未知的磁性存储介质。
所述步骤101具体为:控制发射电路通过消磁线圈发出探测信号,所述探测信号在磁性存储介质中会产生感应信号强度;识别线圈采集所述感应信号强度;通过接收电路获取目标介质感应信号强度。
步骤102:将所述目标介质感应信号强度输入至介质定位模型中,得到所述目标磁性存储介质的所处位置;所述介质定位模型是采用机器学习算法确定的。
步骤103:将所述目标磁性存储介质的所处位置输入至消磁线圈选择模型中,得到所述目标磁性存储介质的线圈选择信息;所述线圈选择信息包括参与消磁的消磁线圈的编号;所述消磁线圈选择模型是采用机器学习算法确定的。
步骤104:基于所述目标磁性存储介质的线圈选择信息,控制对应编号的消磁线圈产生对所述目标磁性存储介质消磁所需的强磁场,以实现消磁。具体的,通过控制向对应编号的消磁线圈内注入电流从而产生有效的强磁场,进而实现精确消磁。
作为一种可选的实施方式,在步骤101之后步骤102之前,还包括:采用线性函数归一化法(Min-Max Scaling)或零均值归一化法(Z-Score Normalization)对所述目标介质感应信号强度进行预处理。在步骤102之后步骤103之前,还包括:采用线性函数归一化法或零均值归一化法对所述目标磁性存储介质的所处位置进行预处理。
具体的,线性函数归一化方法可以表示为:
Figure BDA0002576327230000061
其中Xnorm为归一化后的目标介质感应信号强度或归一化的目标磁性存储介质的所处位置的坐标,X为原始目标介质感应信号强度或原始目标磁性存储介质的所处位置的坐标,Xmin为原始目标介质感应信号强度的最小值或原始目标磁性存储介质的所处位置的坐标的最小值,Xmax为原始目标介质感应信号强度的最大值或原始目标磁性存储介质的所处位置的坐标的最大值。
零均值归一化方法可以表示为:
Figure BDA0002576327230000062
其中z为归一化后的目标介质感应信号强度或归一化的目标磁性存储介质的所处位置的坐标,μ为原始目标介质感应信号强度的均值或原始目标磁性存储介质的所处位置的均值,σ为原始目标介质感应信号强度的标准差或原始目标磁性存储介质的所处位置的标准差。
作为一种可选的实施方式,所述介质定位模型的确定方法为:
1)获取第一样本集;所述第一样本集包括磁性存储训练介质的感应信号强度和对应的位置;所述磁性存储训练介质为位置已知的磁性存储介质。
2)将所述第一样本集按照设定比例划分为第一训练集和第一验证集。具体的,在划分前对所述第一样本集采用线性函数归一化法或零均值归一化法进行预处理,再将所述第一样本集按照7:3的比例划分为第一训练集和第一验证集。
3)构建介质定位初始模型;所述介质定位初始模型为全连接神经网络模型。此外,也可以通过决策树、贝叶斯或深度学习等机器学习算法构建介质定位初始模型。
4)基于所述第一训练集对所述介质定位初始模型进行训练,调整所述介质定位初始模型中的超参数,得到训练好的定位模型。具体为:
基于所述第一训练集,采用随机梯度下降法、牛顿法、共轭梯度下降法、最速下降法、动量梯度下降算法或Adam算法对所述介质定位初始模型进行训练,调整所述介质定位初始模型中的超参数,得到训练好的定位模型。所述超参数包括学习率和迭代次数等。
5)基于所述第一验证集对所述训练好的定位模型进行评估,将位置坐标均方误差损失(MSE)最小时或者位置坐标均方根误差损失(RMSE)最小时对应的训练好的定位模型确定为介质定位模型。具体为:
基于所述第一验证集,采用留一法或k折交叉验证法对所述训练好的定位模型进行评估,将位置坐标均方误差损失最小时或者位置坐标均方根误差损失最小时对应的训练好的定位模型确定为介质定位模型。
作为一种可选的实施方式,所述消磁线圈选择模型的确定方法为:
1)获取第二样本集;所述第二样本集包括磁性存储训练介质的所处位置和磁性存储训练介质的线圈选择信息;所述磁性存储训练介质为位置已知的磁性存储介质。
2)将所述第二样本集按照设定比例划分为第二训练集和第二验证集。具体的,在划分前对所述第二样本集采用线性函数归一化法或零均值归一化法进行预处理,再将所述第二样本集按照7:3的比例划分为第二训练集和第二验证集。
3)构建消磁线圈选择初始模型;所述消磁线圈选择初始模型为全连接神经网络模型。此外,也可以通过决策树、贝叶斯或深度学习等机器学习算法构建消磁线圈选择初始模型。
4)基于所述第二训练集对所述消磁线圈选择初始模型进行训练,调整所述消磁线圈选择初始模型中的超参数,得到训练好的选择模型。具体为:
基于所述第二训练集,采用随机梯度下降法、牛顿法、共轭梯度下降法、最速下降法、动量梯度下降算法或Adam算法对所述消磁线圈选择初始模型进行训练,调整所述消磁线圈选择初始模型中的超参数,得到训练好的选择模型。
5)基于所述第二验证集对所述训练好的选择模型进行评估,将消磁准确率最高时对应的训练好的选择模型确定为消磁线圈选择模型。具体为:
基于所述第二验证集,采用留一法或k折交叉验证法对所述训练好的选择模型进行评估,将交叉熵损失最小时或softmax损失最小时对应的训练好的选择模型确定为消磁线圈选择模型。
在实际应用中,下面提供了用于消磁的目标位置确定方法的一个更为具体的实现方式。
(1)采集不同位置的介质感应信号强度的样本数据,并采用零均值归一化算法对介质感应信号强度进行预处理,得到特征集合,该特征集合中包括介质感应信号强度以及与其对应的介质位置坐标的样本数据,可采用[I1,I2,I3,…Im,x,y,z]表示,其中Im表示第m个识别线圈接收到的介质感应信号的强度,x,y,z表示介质的位置坐标。
(2)基于全连接神经网络算法创建介质定位模型,选择4层神经网络模型,对于隐藏层节点的个数根据经验公式
Figure BDA0002576327230000081
设置,其中k表示输入层节点数,l表示输出层节点数,对于介质定位模型,输入层节点数为m,输出层节点数为3,故隐藏层节点数为
Figure BDA0002576327230000082
对于隐藏层的激活函数选择ReLu激活函数,输出层的激活函数选择恒等激活函数,损失函数选择均方误差损失函数(MSE):
Figure BDA0002576327230000083
(3)将收集到的不同位置的介质感应信号强度的样本数据,按照7:3的比例划分为训练集和验证集。
(4)利用梯度下降的优化算法以最小化均方误差损失在训练集上训练基于神经网络的介质定位模型,通过调整神经网络算法的超参数,如:学习率、迭代次数等,在验证集上评估此时的介质定位模型。
(5)以验证集上的介质位置坐标的均方误差损失作为评估标准,并将得到的均方误差损失最小所对应的介质定位模型确定为最终的介质定位模型。
(6)在进行实时介质定位时,通过将预处理后的实时介质感应信号强度代入最终的介质定位模型中,得到介质的位置坐标。
本发明还提供了一种用于消磁的目标位置确定系统,图2为本发明实施例提供的用于消磁的目标位置确定系统的结构示意图。
参见图2,本实施例的用于消磁的目标位置确定系统包括:
数据获取模块201,用于获取目标介质感应信号强度;所述目标介质感应信号强度为目标磁性存储介质的感应信号强度;所述目标磁性存储介质为位置未知的磁性存储介质。
位置确定模块202,用于将所述目标介质感应信号强度输入至介质定位模型中,得到所述目标磁性存储介质的所处位置;所述介质定位模型是采用机器学习算法确定的。
线圈选择确定模块203,用于将所述目标磁性存储介质的所处位置输入至消磁线圈选择模型中,得到所述目标磁性存储介质的线圈选择信息;所述线圈选择信息包括参与消磁的消磁线圈的编号;所述消磁线圈选择模型是采用机器学习算法确定的。
消磁控制模块204,用于基于所述目标磁性存储介质的线圈选择信息,控制对应编号的消磁线圈产生对所述目标磁性存储介质消磁所需的强磁场,以实现消磁。
作为一种可选的实施方式,所述用于消磁的目标位置确定系统,还包括:
第一预处理模块,用于采用线性函数归一化法或零均值归一化法对所述目标介质感应信号强度进行预处理。
第二预处理模块,用于采用线性函数归一化法或零均值归一化法对所述目标磁性存储介质的所处位置进行预处理。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种用于消磁的目标位置确定方法,其特征在于,包括:
获取目标介质感应信号强度;所述目标介质感应信号强度为目标磁性存储介质的感应信号强度;所述目标磁性存储介质为位置未知的磁性存储介质;
将所述目标介质感应信号强度输入至介质定位模型中,得到所述目标磁性存储介质的所处位置;所述介质定位模型是采用机器学习算法确定的;
将所述目标磁性存储介质的所处位置输入至消磁线圈选择模型中,得到所述目标磁性存储介质的线圈选择信息;所述线圈选择信息包括参与消磁的消磁线圈的编号;所述消磁线圈选择模型是采用机器学习算法确定的;
基于所述目标磁性存储介质的线圈选择信息,控制对应编号的消磁线圈产生对所述目标磁性存储介质消磁所需的强磁场,以实现消磁。
2.根据权利要求1所述的一种用于消磁的目标位置确定方法,其特征在于,
在所述获取目标介质感应信号强度之后,还包括:采用线性函数归一化法或零均值归一化法对所述目标介质感应信号强度进行预处理;
在所述将所述目标介质感应信号强度输入至介质定位模型中,得到所述目标磁性存储介质的所处位置之后,还包括:采用线性函数归一化法或零均值归一化法对所述目标磁性存储介质的所处位置进行预处理。
3.根据权利要求1所述的一种用于消磁的目标位置确定方法,其特征在于,所述介质定位模型的确定方法为:
获取第一样本集;所述第一样本集包括磁性存储训练介质的感应信号强度和对应的位置;所述磁性存储训练介质为位置已知的磁性存储介质;
将所述第一样本集按照设定比例划分为第一训练集和第一验证集;
构建介质定位初始模型;所述介质定位初始模型为全连接神经网络模型;
基于所述第一训练集对所述介质定位初始模型进行训练,调整所述介质定位初始模型中的超参数,得到训练好的定位模型;
基于所述第一验证集对所述训练好的定位模型进行评估,将位置坐标均方误差损失最小时或者位置坐标均方根误差损失最小时对应的训练好的定位模型确定为介质定位模型。
4.根据权利要求1所述的一种用于消磁的目标位置确定方法,其特征在于,所述消磁线圈选择模型的确定方法为:
获取第二样本集;所述第二样本集包括磁性存储训练介质的所处位置和磁性存储训练介质的线圈选择信息;所述磁性存储训练介质为位置已知的磁性存储介质;
将所述第二样本集按照设定比例划分为第二训练集和第二验证集;
构建消磁线圈选择初始模型;所述消磁线圈选择初始模型为全连接神经网络模型;
基于所述第二训练集对所述消磁线圈选择初始模型进行训练,调整所述消磁线圈选择初始模型中的超参数,得到训练好的选择模型;
基于所述第二验证集对所述训练好的选择模型进行评估,将消磁准确率最高时对应的训练好的选择模型确定为消磁线圈选择模型。
5.根据权利要求3所述的一种用于消磁的目标位置确定方法,其特征在于,所述基于所述第一训练集对所述介质定位初始模型进行训练,调整所述介质定位初始模型中的超参数,得到训练好的定位模型,具体包括:
基于所述第一训练集,采用随机梯度下降法、牛顿法、共轭梯度下降法或最速下降法对所述介质定位初始模型进行训练,调整所述介质定位初始模型中的超参数,得到训练好的定位模型。
6.根据权利要求3所述的一种用于消磁的目标位置确定方法,其特征在于,所述基于所述第一验证集对所述训练好的定位模型进行评估,将位置坐标均方误差损失最小时或者位置坐标均方根误差损失最小时对应的训练好的定位模型确定为介质定位模型,具体包括:
基于所述第一验证集,采用留一法或k折交叉验证法对所述训练好的定位模型进行评估,将位置坐标均方误差损失最小时或者位置坐标均方根误差损失最小时对应的训练好的定位模型确定为介质定位模型。
7.根据权利要求4所述的一种用于消磁的目标位置确定方法,其特征在于,所述基于所述第二训练集对所述消磁线圈选择初始模型进行训练,调整所述消磁线圈选择初始模型中的超参数,得到训练好的选择模型,具体包括:
基于所述第二训练集,采用随机梯度下降法、牛顿法、共轭梯度下降法或最速下降法对所述消磁线圈选择初始模型进行训练,调整所述消磁线圈选择初始模型中的超参数,得到训练好的选择模型。
8.根据权利要求4所述的一种用于消磁的目标位置确定方法,其特征在于,所述基于所述第二验证集对所述训练好的选择模型进行评估,将消磁准确率最高时对应的训练好的选择模型确定为消磁线圈选择模型,具体包括:
基于所述第二验证集,采用留一法或k折交叉验证法对所述训练好的选择模型进行评估,将交叉熵损失最小时或softmax损失最小时对应的训练好的选择模型确定为消磁线圈选择模型。
9.一种用于消磁的目标位置确定系统,其特征在于,包括:
数据获取模块,用于获取目标介质感应信号强度;所述目标介质感应信号强度为目标磁性存储介质的感应信号强度;所述目标磁性存储介质为位置未知的磁性存储介质;
位置确定模块,用于将所述目标介质感应信号强度输入至介质定位模型中,得到所述目标磁性存储介质的所处位置;所述介质定位模型是采用机器学习算法确定的;
线圈选择确定模块,用于将所述目标磁性存储介质的所处位置输入至消磁线圈选择模型中,得到所述目标磁性存储介质的线圈选择信息;所述线圈选择信息包括参与消磁的消磁线圈的编号;所述消磁线圈选择模型是采用机器学习算法确定的;
消磁控制模块,用于基于所述目标磁性存储介质的线圈选择信息,控制对应编号的消磁线圈产生对所述目标磁性存储介质消磁所需的强磁场,以实现消磁。
10.根据权利要求9所述的一种用于消磁的目标位置确定系统,其特征在于,还包括:
第一预处理模块,用于采用线性函数归一化法或零均值归一化法对所述目标介质感应信号强度进行预处理;
第二预处理模块,用于采用线性函数归一化法或零均值归一化法对所述目标磁性存储介质的所处位置进行预处理。
CN202010654741.7A 2020-07-09 2020-07-09 一种用于消磁的目标位置确定方法及系统 Active CN111816403B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010654741.7A CN111816403B (zh) 2020-07-09 2020-07-09 一种用于消磁的目标位置确定方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010654741.7A CN111816403B (zh) 2020-07-09 2020-07-09 一种用于消磁的目标位置确定方法及系统

Publications (2)

Publication Number Publication Date
CN111816403A true CN111816403A (zh) 2020-10-23
CN111816403B CN111816403B (zh) 2021-02-19

Family

ID=72843230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010654741.7A Active CN111816403B (zh) 2020-07-09 2020-07-09 一种用于消磁的目标位置确定方法及系统

Country Status (1)

Country Link
CN (1) CN111816403B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112837705A (zh) * 2021-02-25 2021-05-25 精密电产(北京)科技有限公司 一种磁场可逆变的消磁方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245791A (ja) * 2006-03-14 2007-09-27 Universal Shipbuilding Corp 消磁コイル調定方法、消磁管制方法、消磁管制装置、船舶及び消磁コイル調定プログラム
US20080316669A1 (en) * 2005-03-16 2008-12-25 Lutz May Method and an Array for Magnetizing a Magnetizable Object
CN101420632A (zh) * 2008-11-19 2009-04-29 深圳创维-Rgb电子有限公司 一种检测电视机内消磁的方法、系统及装置
CN103377793A (zh) * 2012-04-30 2013-10-30 波音公司 包括永磁铁和对磁铁选择性磁化和消磁的线圈的夹具组件
CN104361974A (zh) * 2014-11-07 2015-02-18 中国人民解放军海军工程大学 移动式消磁装置
CN106062518A (zh) * 2014-02-28 2016-10-26 伊莱克特里克菲儿汽车公司 确定被磁化的目标与测量系统之间的相对位置的磁传感器
KR101673953B1 (ko) * 2015-10-14 2016-11-08 주식회사 진산테크윈 제로 크로스 사이클 제어 고효율 탈자기 시스템
CN106401881A (zh) * 2015-07-27 2017-02-15 西门子公司 检测或监测磁体的退磁的方法
CN108933015A (zh) * 2018-07-20 2018-12-04 深圳普诺玛商业安全设备有限公司 消磁电路、消磁器和消磁电路的控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080316669A1 (en) * 2005-03-16 2008-12-25 Lutz May Method and an Array for Magnetizing a Magnetizable Object
JP2007245791A (ja) * 2006-03-14 2007-09-27 Universal Shipbuilding Corp 消磁コイル調定方法、消磁管制方法、消磁管制装置、船舶及び消磁コイル調定プログラム
CN101420632A (zh) * 2008-11-19 2009-04-29 深圳创维-Rgb电子有限公司 一种检测电视机内消磁的方法、系统及装置
CN103377793A (zh) * 2012-04-30 2013-10-30 波音公司 包括永磁铁和对磁铁选择性磁化和消磁的线圈的夹具组件
CN106062518A (zh) * 2014-02-28 2016-10-26 伊莱克特里克菲儿汽车公司 确定被磁化的目标与测量系统之间的相对位置的磁传感器
CN104361974A (zh) * 2014-11-07 2015-02-18 中国人民解放军海军工程大学 移动式消磁装置
CN106401881A (zh) * 2015-07-27 2017-02-15 西门子公司 检测或监测磁体的退磁的方法
KR101673953B1 (ko) * 2015-10-14 2016-11-08 주식회사 진산테크윈 제로 크로스 사이클 제어 고효율 탈자기 시스템
CN108933015A (zh) * 2018-07-20 2018-12-04 深圳普诺玛商业安全设备有限公司 消磁电路、消磁器和消磁电路的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
洪泽宏: "采用多种群搜索策略的微粒群算法调整消磁绕组", 《海军工程大学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112837705A (zh) * 2021-02-25 2021-05-25 精密电产(北京)科技有限公司 一种磁场可逆变的消磁方法

Also Published As

Publication number Publication date
CN111816403B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN107784276B (zh) 微震事件识别方法和装置
CN110797052B (zh) 一种基于磁性介质特性的快速消磁方法
Zhang et al. Detection of buried targets via active selection of labeled data: Application to sensing subsurface UXO
KR20030023855A (ko) 자기적 위치 또는 방위 결정시 오차 검출
CN102402675A (zh) Rfid标签的运动追踪技术
CN111816403B (zh) 一种用于消磁的目标位置确定方法及系统
CN108055094A (zh) 一种无人机操作手频谱特征识别与定位方法
GB2595192A (en) Systems and methods for weapon and destructive device detection based on electromagnetic field profile
CN116822623B (zh) 一种生成对抗网络联合训练方法、装置、设备及存储介质
Yu et al. LPPN: A lightweight network for fast phase picking
KR20210066534A (ko) 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법
Galkin et al. Feedback neural networks for ARTIST ionogram processing
CN111816219A (zh) 一种基于目标识别的智能电磁消磁系统及方法
CN111598020A (zh) 基于半监督生成对抗网络的电磁信号识别方法
CN111816404B (zh) 一种消磁方法及系统
CN116894223A (zh) 一种基于自适应对消与ResNet神经网络的机载水下异常检测方法
Anand et al. Real-time magnetic sensor anomaly detection using autoencoder neural networks on the DIII-D tokamak
CN110263196B (zh) 图像检索方法、装置、电子设备及存储介质
CN114330450A (zh) 一种多物理场融合探测识别潜航器的方法及系统
Pradeesh et al. Fast and reliable group attendance marking system using face recognition in classrooms
CN111505576B (zh) 一种针对tdoa定位的传感器选择方法
Martyniuk et al. Method of Finding Cover Signal for Audio Steganalysis Calibrated Methods
CN110021045A (zh) 设备定位方法、装置、定位系统及电子设备
JP2021056928A (ja) 最適解獲得プログラム、最適解獲得方法および情報処理装置
Pasion et al. Joint and cooperative inversion of magnetic and time domain electromagnetic data for the characterization of UXO

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant