CN111812637B - 具有类型概率的l-rfs混合目标结构建模与估计方法 - Google Patents
具有类型概率的l-rfs混合目标结构建模与估计方法 Download PDFInfo
- Publication number
- CN111812637B CN111812637B CN202010489566.0A CN202010489566A CN111812637B CN 111812637 B CN111812637 B CN 111812637B CN 202010489566 A CN202010489566 A CN 202010489566A CN 111812637 B CN111812637 B CN 111812637B
- Authority
- CN
- China
- Prior art keywords
- target
- targets
- type
- measurement
- probability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000005259 measurement Methods 0.000 claims abstract description 83
- 238000005070 sampling Methods 0.000 claims abstract description 10
- 238000009826 distribution Methods 0.000 claims description 24
- 239000011159 matrix material Substances 0.000 claims description 21
- 230000006870 function Effects 0.000 claims description 12
- 239000013598 vector Substances 0.000 claims description 11
- 238000010606 normalization Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 230000004083 survival effect Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 238000005315 distribution function Methods 0.000 claims description 3
- 230000009191 jumping Effects 0.000 claims description 3
- 230000033001 locomotion Effects 0.000 description 17
- 101001086191 Borrelia burgdorferi Outer surface protein A Proteins 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/66—Radar-tracking systems; Analogous systems
- G01S13/72—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
- G01S13/723—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
- G01S13/726—Multiple target tracking
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/414—Discriminating targets with respect to background clutter
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Optimization (AREA)
- Probability & Statistics with Applications (AREA)
- Evolutionary Biology (AREA)
- Operations Research (AREA)
- Geometry (AREA)
- Bioinformatics & Computational Biology (AREA)
- Algebra (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明提出了一种具有类型概率的L‑RFS混合目标结构建模与估计方法,该方法包括三个方面:混合目标动态建模,混合目标的形状类型分析和混合目标的跟踪估计。首先,结合广义标签多伯努利滤波器建立了混合目标的量测混合模型,并对目标类型进行分析,利用Gibbs采样和BIC准则推导出有限混合模型的参数来对混合目标进行学习跟踪,然后采用等效量测方法来替代扩展目标和群目标所构成的多量测目标产生的量测,对多量测目标形状采用椭圆逼近建模,实现多量测目标形状的估计。该方法可以有效的判断目标类型,并跟踪混合目标。
Description
技术领域
本发明属于传感器技术领域,具体是混合目标跟踪领域,涉及一种具有类型概率的L-RFS(Labeled-Random Finite Set,标签-随机有限集)混合目标结构建模与估计问题算法。
背景技术
在民用和军用等很多领域中,目标跟踪一直都存在着不可缺少的应用意义。由于以前传感技术的限制,传统的目标跟踪跟踪算法都是假设被探测的目标为一个点,即一个目标至多只能产生一个量测。随着现代传感器技术的不断发展,雷达设备可以从扩展目标上不同的散射点接收测试数据,即一个目标在不同时刻都可以产生多个量测,这类目标称为扩展目标。另一种情况是多个目标呈现一定编队飞行或具有相似运动模式时,并展现出一定的群目标的运动特性,则统称为群目标。扩展目标和群目标的跟踪能为我们提供被跟踪目标精确的数目和运动状态。在目标跟踪过程中,往往会多类目标混合在一起,对目标的跟踪产生一定的干扰,导致跟踪效果差。
发明内容
本发明的目的是针对现有技术的不足,提供了一种具有类型概率的L-RFS混合目标结构建模与估计方法。
本发明为了在混合目标(包括点目标、扩展目标、可分辨群目标)跟踪中得到整体最优的跟踪性能,本申请结合广义标签多伯努利滤波器建立了混合目标的量测混合模型,并对目标类型进行分析,利用Gibbs采样和BIC准则推导出有限混合模型的参数来对混合目标进行学习跟踪,然后采用等效量测方法来替代扩展目标和群目标所构成的多量测目标产生的量测,对多量测目标形状采用椭圆逼近建模,实现对混合目标的跟踪。
本发明一种具有类型概率的L-RFS混合目标结构建模与估计方法,具体包括以下步骤:
步骤(1).设定多目标在k时刻的混合状态集合Xk:
多目标在k时刻的混合状态Xk用随机有限集集合表示:
Xk={(xk,1),(xk,2),…,(xk,N(k))}∈F(χ);F(χ)表示状态空间χ的有限集的集合;N(k)为k时刻目标的个数,xk,i表示第i个多目标状态,每个值在状态空间χ上,i=1,2,…,N(k)。
将带标签带类型的混合目标状态表示为:
Xk={(xk,1,l1,t1),(xk,2,l2,t2),…,(xk,n(k),ln(k),tN(k))};标签为离散分布的标签空间,表示正整数集合,αi表示不同;混合目标的类型分量t∈(T0,T1,T2),T0表示点目标,T1表示扩展目标,T2表示可分辨群目标。
由于GLMB滤波算法要求不同目标的标签不同且是唯一的,因此标签约束条件Δ(X)为:
Zk包含了杂波、目标量测和漏检信息;目标量测包括点目标、扩展目标和可分辨群目标的观测值;步骤(3).建立目标有限混合模型:
多量测的观测数据集用以下混合分布函数来描述:
其中,量测集而表示第j个目标k时刻的形心点在xy轴上的位置、速度,rk+1表示k+1时刻的形心点在xy轴上的位置、速度和类型参数是第j个目标k时刻的混合比例权重,ωk+1表示k+1时刻的混合比例权重,j是目标的指示变量,变量个数为mk,j=0表示为杂波量测,是第j个目标k+1时刻的形心点的量测,yk+1表示k+1时刻目标形心点的量测,表示标签l下的第k+1时刻的观测集,yk+1,表示目标形心点的量测集;
量测的似然函数通过如下等式计算:
改写成如下等式:
其中,
步骤(5)在混合目标跟踪工程中,三种类目标混合一起,需要进行分类跟踪,所以需要进行类型判断。
(5-1)对于点目标来说,量测与状态点是一一对应的,即一个目标状态点只能有一个量测。
点目标服从单伯努利分布
其中PD(x)为存活概率,α∈(0,1),量测值越靠近目标值,则该α值越大,且(|Z|-PD)~N(0,0.1)。则认为第i个目标为点目标的概率为:
(5-2)多量测目标:能产生多个量测的目标为多量测目标,即为群目标或者扩展目标。而不同多量测目标的参数具有不同的维数,因此可建立如下类型跳变矩阵。
上式中,元素Pr(j1,j2)表示为第j2种类型目标跳变为第j1种类型目标的跳变概率。但是并不要求该矩阵必须是对称矩阵,即Pr(j1,j2)可以不等于Pr(j2,j1)。
且类型目标跳转到各个目标的概率之和为1,即每个行向量之和为1。用如下约束条件
由于该目标类型是已知的,因此用如下的类型概率向量来描述每个目标的结构类型
其中r为目标拟合后的圆半径;
扩展目标中的量测值服从泊松分布,则:
则对在X轴分布的Δnz,1+Δnz,2+…+Δnz,n做检验;
(5-4)群目标与扩展目标最大的区别就是,在目标跟踪中,一个目标产生多个量测,且量测值都围绕着同一个扩展目标,大部分量测都在一个不可分辨体里。而可分辨群目标是由多个点目标组成,结构固定,是多个子目标产生多个量测,且子目标值与量测值一一对应。群内点目标可分辨,一个不可分辨体是无法包围整个群目标。一般来说,群内点目标的个数与不可分辨体的数量一致。可在不可分辨体下,量测值和不可分辨体的个数来求出
并对多量测下的各类目标概率进行归一化处理,处理如下:
因此该混合目标的类型概率密度如下表示:
(5-5)扩展目标和群目标的类型概率的更新如下:
步骤(6)使用GLMB滤波算法对混合目标进行跟踪,分为预测步和更新步两个部分。
δ-GLMB的公式为:
(6-1)预测步公式为:
在如下公式中,P(T)为类型概率,采用表示新生标签的权重,表示存活标签的权重。新生目标的概率密度用pB(·,l)表示,存活目标密度由先验密度pS(·,l)得到,存活目标的概率密度由f(·|·,l)表示。
(6-2)更新步,可用Gibbs采样迭代学习算法来实现。
其中,θ(i)=θ(i′)>0表示i=i′。在一个固定的(I,ξ)中,在最大权重下,Θ的M个元素用Θ(M)={ξ(1),…,ξ(M)}来表示。表示为截断后的归一化权重,P(T)表示各类型下的概率。其相关得参数定义如下。
在获得目标状态估计基础上,进一步学习出混合目标中多量测目标的形状。
步骤(7)Gibbs采样算法来估计高斯分布的均值协方差和各个高斯分布的权重,并用BIC准则来对该几个高斯分布的拟合真实程度进行评价。
本发明的有益效果:针对滤波条件下点目标,扩展目标,群目标(不可分辨)所构成混合目标的状态估计,目标个数估计,目标形状估计问题,提出了一种具有类型概率的L-RFS混合目标结构建模与估计问题算法。首先,结合广义标签多伯努利滤波器建立了混合目标的量测混合模型,并对目标类型进行分析,利用Gibbs采样和BIC准则推导出有限混合模型的参数来对混合目标进行学习跟踪,然后采用等效量测方法来替代扩展目标和群目标所构成的多量测目标产生的量测,对多量测目标形状采用椭圆逼近建模,实现多量测目标形状的估计。该方法可以有效的跟踪混合目标。
附图说明
图1:混合目标运动轨迹;
图2:混合目标的真实轨迹;
图3:由GLMB滤波算法得到的状态估计;
图4:OSPA距离(10次);
图5:混合目标个数估计(10次)。
具体实施方式:
本发明提出一种具有类型概率的L-RFS混合目标结构建模与估计问题算法,包括以下几个步骤:
步骤(1).多目标在k时刻的状态用以下RFS集合表示
Xk={(xk,1),(xk,2),…,(xk,N(k))}∈F(χ) (1)
其中N(k)为k时刻目标的个数,有N(k)个多目标状态xk,1,xk,2,…xk,N(k),每个值在状态空间χ上,而F(χ)表示χ的有限集的集合。
将带标签带类型的混合目标状态表示如下:
Xk={(xk,1,l1,t1),(xk,2,l2,t2),…,(xk,n(k),ln(k),tN(k))} (2)
由于GLMB滤波算法要求不同目标的标签不同且是唯一的,因此用以下作为标签约束条件:
其中,X的标签集步骤(2)设定系统模型中的观测状态M(k)表示k时刻量测的个数,代表的所有有限子集构成的集合。表示扩展目标在k时刻的量测集,其中表示第M(k)个扩展目标在k时刻产生的量测集。表示可分辨群目标在k时刻的量测集,其中表示第M(k)个可分辨群目标在k时刻产生的量测集。
Zk包含了杂波、目标量测和漏检信息,这里的目标量测包括点目标、扩展目标和可分辨群目标的观测值,总量测集合由目标量测、未知杂波产生的量测、虚警量测组成。
步骤(3)目标有限混合模型
多量测的观测数据集可用以下混合分布函数来描述:
混合比例权重约束条件如下:
贝叶斯估计可描述为:
步骤(4)似然函数。量测的似然函数可通过如下等式计算:
改写成如下等式:
其中,
步骤(5)在混合目标跟踪工程中,三种类目标混合一起,需要进行分类跟踪,所以需要进行类型判断。
(5-1)对于点目标来说,量测与状态点是一一对应的,即一个目标状态点只能有一个量测。
点目标服从单伯努利分布
其中PD(x)为存活概率,α∈(0,1),量测值越靠近目标值,则该α值越大,且(|Z|-PD)~N(0,0.1)。则可认为第i个目标为点目标的概率为:
(5-2)多量测目标:能产生多个量测的目标为多量测目标,即为群目标或者扩展目标。而不同多量测目标的参数具有不同的维数,因此可建立如下类型跳变矩阵。
上式中,元素Pr(j1,j2)表示为第j2种类型目标跳变为第j1种类型目标的跳变概率。但是并不要求该矩阵必须是对称矩阵,即Pr(j1,j2)可以不等于Pr(j2,j1)。
且类型目标跳转到各个目标的概率之和为1,即每个行向量之和为1。可用如下约束条件
由于该目标类型是已知的,因此可用如下的类型概率向量来描述每个目标的结构类型
(5-3)多量测目标观测空间为
zk=Hxk+vk (17)
则对在X轴分布的Δnz,1+Δnz,2+…+Δnz,n做检验
(5-4)群目标与扩展目标最大的区别就是,在目标跟踪中,一个目标产生多个量测,且量测值都围绕着同一个扩展目标,大部分量测都在一个不可分辨体(常数)里。而可分辨群目标是由多个点目标组成,结构固定,是多个子目标产生多个量测,且子目标值与量测值一一对应。群内点目标可分辨,一个不可分辨体是无法包围整个群目标。一般来说,群内点目标的个数与不可分辨体的数量一致。可在不可分辨体下,量测值和不可分辨体的个数来求出
并对多量测下的各类目标概率进行归一化处理,处理如下:
因此该混合目标的类型概率密度如下表示:
(5-5)扩展目标和群目标的类型概率的更新如下:
步骤(6)使用GLMB滤波算法对混合目标进行跟踪,可分为预测步和更新步两个部分。
δ-GLMB的公式为:
(6-1)预测步公式为:
在如下公式中,P(T)为类型概率,采用表示新生标签的权重,表示存活标签的权重。新生目标的概率密度用pB(·,l)表示,存活目标密度由先验密度pS(·,l)得到,存活目标的概率密度由f(·|·,l)表示。
(6-2)更新步,可用Gibbs采样迭代学习算法来实现。
其中,θ(i)=θ(i′)>0表示i=i′。在一个固定的(I,ξ)中,在最大权重下,Θ的M个元素用Θ(M)={ξ(1),…,ξ(M)}来表示。表示为截断后的归一化权重,P(T)表示各类型下的概率。其相关得参数定义如下。
在获得目标状态估计基础上,进一步学习出混合目标中多量测目标的形状。
步骤(7)Gibbs采样算法来估计高斯分布的均值协方差和各个高斯分布的权重,并用BIC准则来对该几个高斯分布的拟合真实程度进行评价。
为了更好的诠释本发明,假设在含有杂波的观测区域内有4个扩展目标,3个单目标,3个群目标(不可分辨)在运动,目标数目时刻变化,目标被检测到的概率为PD=0.8,杂波为均匀分布,杂波强度λc=20,杂波区域S=[-1000,1000]×[-1000,1000]m2。
四个扩展目标强度分别为:λe1=16,λe2=18,λe3=20,λe4=18。扩展目标在2维平面做匀速直线(CV)运动,检测时间为100s.在不同的时间,不同的地点,四个扩展目标分别出生和消亡。
目标的状态方程为:
xk+1,i=Gxk,i+vk,i
其中状态转移矩阵为:
目标的观测方程为:
zk+1,i=Hxk,i+wk,i
其中观测矩阵H=[1000;0010],观测噪声协方差为diag([10;10])×diag([10;10]),i表示第i个目标。四个扩展目标的初始状态分别为:
表1扩展目标运动初始状态和存在时间
表2点目标运动初始状态和存在时间
假设群目标(不可分辨)的个数为3,三个目标在2维平面做匀速直线(CV)运动,检测时间为100s.在不同的时间,不同的地点,四个群目标分别出生和消亡。
当扩展目标中某一个散射点不存在父结点时,则称该散射点为头节点,其运动不受任何结点的影响,头节点状态方程如下:
xk+1=Gkxk+βkwk
当存在父结点时,则称该散射的为子结点,其运动受父结点的影响,其状态方程如下定义:
如上所示,假设群目标散射点个数为M,散射点m∈[1,…,M],bk(i,m)表示散射点m与其父结点之间的补偿向量,bk(i,m)表示结点之间方向、距离信息,状态转移矩阵G,状态噪声矩阵β。
假设权重wk(i,m)为等权重,建立群目标运动模型的主要步骤如下:
先遍历群中的n个节点,然后通过给出的邻接矩阵找出该节点的父节点,对父节点的是否存在进行判断,如果存在,则:
如果不存在,则:
xk+1,m=Gk,ixk.i+βk,mwk,m
表3群目标运动初始状态和存在时间
图1为存在噪声时,该三类目标的散射点在20时刻,60时刻,80时刻,99时刻的建模。
在整个跟踪过程中,假设10个目标中都相互独立,则下图中表示目标运动的真实轨迹,图中不同的曲线分别代表目标的各自运动轨迹,目标运动的起点通过小圆圈来标记,运动终点通过小三角来表示。
图2为混合目标的真实轨迹。
图3为目标的状态估计,不同颜色的轨迹表示不同的目标运动的轨迹估计,第一二个图表分别表示在x,y轴方向上的跟踪轨迹。在第1秒时第一和第二个扩展目标,第一个点目标,和第一个群目标出现;在第20秒时第三个扩展目标,第二个点目标,和第二个群目标出现;在第30秒时第三个群目标出现;在第40秒时第三个点目标出现;在第50秒时第四个扩展目标出现;在第100秒时,就仅存第三第四个扩展目标、第二第三个点目标和第三个群目标。图2中可以看出该算法对多类目标进行了较为不错的跟踪。
通过采用OSPA距离来评估本文给出的算法性能:
由图4可看出,前几次扫描中,OSPA的距离很大,这主要是由于基数误差造成的,这是因为两个过滤器都需要进行多次扫描来建立轨迹。
图5为目标的个数估计,从图中可以看出在GLMB下该多目标估计与实际目标值基本吻合,0-20s时目标个数为4个:在第20s时,扩展目标3,点目标2,群目标2出生,目标个数变为7个:在第30s时,群目标3出生,目标个数变为8个:在第40s时,点目标3出生,目标个数变为9个:在第50s时,扩展目标3,点目标2,群目标2出生,目标个数变为10个:在第60s时点目标1死亡,再到第70s时扩展目标1,群目标1死亡,接着到第80s时扩展目标2,群目标2死亡,最终目标个数变为5个。
Claims (1)
1.具有类型概率的L-RFS混合目标结构建模与估计方法,其特征在于,该方法具体包括以下步骤:
步骤(1).设定多目标在k时刻的混合状态集合Xk:
多目标在k时刻的混合状态Xk用随机有限集集合表示:
Xk={(xk,1),(xk,2),…,(xk,N(k))}∈F(χ);F(χ)表示状态空间χ的有限集的集合;N(k)为k时刻目标的个数,xk,i表示第i个多目标状态,每个值在状态空间χ上,i=1,2,…,N(k);
将带标签带类型的混合目标状态表示为:
Xk={(xk,1,l1,t1),(xk,2,l2,t2),…,(xk,n(k),ln(k),tN(k))};标签 为离散分布的标签空间, 表示正整数集合,αi表示不同;混合目标的类型分量t∈(T0,T1,T2),T0表示点目标,T1表示扩展目标,T2表示可分辨群目标;
由于GLMB滤波算法要求不同目标的标签不同且是唯一的,因此标签约束条件Δ(X)为:
Zk包含了杂波、目标量测和漏检信息;目标量测包括点目标、扩展目标和可分辨群目标的观测值;步骤(3).建立目标有限混合模型:
多量测的观测数据集用以下混合分布函数来描述:
其中,量测集而表示第j个目标k时刻的形心点在xy轴上的位置、速度,rk+1表示k+1时刻的形心点在xy轴上的位置、速度和类型参数 是第j个目标k时刻的混合比例权重,ωk+1表示k+1时刻的混合比例权重,j是目标的指示变量,变量个数为mk,j=0表示为杂波量测,是第j个目标k+1时刻的形心点的量测,yk+1表示k+1时刻目标形心点的量测,表示标签l下的第k+1时刻的观测集,yk+1,表示目标形心点的量测集;
步骤(4)建立似然函数
量测的似然函数通过如下等式计算:
改写成如下等式:
其中,
步骤(5)在混合目标跟踪工程中,三种类目标混合一起,需要进行分类跟踪,所以需要进行类型判断;
(5-1)对于点目标来说,量测与状态点是一一对应的,即一个目标状态点只能有一个量测;
点目标服从单伯努利分布
其中PD(x)为存活概率,α∈(0,1),量测值越靠近目标值,则该α值越大,且(|Z|-PD)~N(0,0.1);则认为第i个目标为点目标的概率为:
(5-2)多量测目标:能产生多个量测的目标为多量测目标,即为群目标或者扩展目标;而不同多量测目标的参数具有不同的维数,因此可建立如下类型跳变矩阵;
上式中,元素Pr(j1,j2)表示为第j2种类型目标跳变为第j1种类型目标的跳变概率;但是并不要求该矩阵必须是对称矩阵,即Pr(j1,j2)可以不等于Pr(j2,j1);
且类型目标跳转到各个目标的概率之和为1,即每个行向量之和为1;用如下约束条件
由于该目标类型是已知的,因此用如下的类型概率向量来描述每个目标的结构类型
其中r为目标拟合后的圆半径;
扩展目标中的量测值服从泊松分布,则:
则对在X轴分布的Δnz,1+Δnz,2+…+Δnz,n做检验;
并对多量测下的各类目标概率进行归一化处理,处理如下:
因此该混合目标的类型概率密度如下表示:
(5-5)扩展目标和群目标的类型概率的更新如下:
步骤(6)使用GLMB滤波算法对混合目标进行跟踪,分为预测步和更新步两个部分;
δ-GLMB的公式为:
(6-1)预测步公式为:
在如下公式中,P(T)为类型概率,采用表示新生标签的权重,表示存活标签的权重;新生目标的概率密度用pB(·,l)表示,存活目标密度由先验密度pS(·,l)得到,存活目标的概率密度由f(·|·,l)表示;
(6-2)更新步,可用Gibbs采样迭代学习算法来实现;
其中,θ:θ(i)=θ(i′)>0表示i=i′;在一个固定的(I,ξ)中,在最大权重下,Θ的M个元素用Θ(M)={ξ(1),…,ξ(M)}来表示;表示为截断后的归一化权重,P(T)表示各类型下的概率;其相关得参数定义如下;
在获得目标状态估计基础上,进一步学习出混合目标中多量测目标的形状;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010489566.0A CN111812637B (zh) | 2020-06-02 | 2020-06-02 | 具有类型概率的l-rfs混合目标结构建模与估计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010489566.0A CN111812637B (zh) | 2020-06-02 | 2020-06-02 | 具有类型概率的l-rfs混合目标结构建模与估计方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111812637A CN111812637A (zh) | 2020-10-23 |
CN111812637B true CN111812637B (zh) | 2022-12-02 |
Family
ID=72848524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010489566.0A Active CN111812637B (zh) | 2020-06-02 | 2020-06-02 | 具有类型概率的l-rfs混合目标结构建模与估计方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111812637B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107102295A (zh) * | 2017-04-13 | 2017-08-29 | 杭州电子科技大学 | 基于glmb滤波的多传感器tdoa无源定位方法 |
CN107677997A (zh) * | 2017-09-28 | 2018-02-09 | 杭州电子科技大学 | 基于GLMB滤波和Gibbs采样的扩展目标跟踪方法 |
CN109508444A (zh) * | 2018-12-18 | 2019-03-22 | 桂林电子科技大学 | 区间量测下交互式多模广义标签多伯努利的快速跟踪方法 |
EP3514571A1 (fr) * | 2018-01-18 | 2019-07-24 | Thales | Procede de pistage d'une cible aerienne, et radar mettant en oeuvre un tel procede |
CN110596643A (zh) * | 2019-08-12 | 2019-12-20 | 杭州电子科技大学 | 一种多声音阵列移动目标检测定位方法 |
CN110992396A (zh) * | 2019-10-18 | 2020-04-10 | 河南科技大学 | 一种基于K-means++聚类算法的多扩展目标跟踪方法 |
CN111007454A (zh) * | 2019-10-28 | 2020-04-14 | 重庆邮电大学 | 一种基于合作目标信息的扩展目标跟踪方法 |
-
2020
- 2020-06-02 CN CN202010489566.0A patent/CN111812637B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107102295A (zh) * | 2017-04-13 | 2017-08-29 | 杭州电子科技大学 | 基于glmb滤波的多传感器tdoa无源定位方法 |
CN107677997A (zh) * | 2017-09-28 | 2018-02-09 | 杭州电子科技大学 | 基于GLMB滤波和Gibbs采样的扩展目标跟踪方法 |
EP3514571A1 (fr) * | 2018-01-18 | 2019-07-24 | Thales | Procede de pistage d'une cible aerienne, et radar mettant en oeuvre un tel procede |
CN109508444A (zh) * | 2018-12-18 | 2019-03-22 | 桂林电子科技大学 | 区间量测下交互式多模广义标签多伯努利的快速跟踪方法 |
CN110596643A (zh) * | 2019-08-12 | 2019-12-20 | 杭州电子科技大学 | 一种多声音阵列移动目标检测定位方法 |
CN110992396A (zh) * | 2019-10-18 | 2020-04-10 | 河南科技大学 | 一种基于K-means++聚类算法的多扩展目标跟踪方法 |
CN111007454A (zh) * | 2019-10-28 | 2020-04-14 | 重庆邮电大学 | 一种基于合作目标信息的扩展目标跟踪方法 |
Non-Patent Citations (2)
Title |
---|
"Computationally Efficient Multi-Agent Multi-Object Tracking With Labeled RandomFinite Set";Suqi Li 等;《IEEE Transactions on Signal Processing》;20190101;第67卷(第1期);第260-275页 * |
"基于广义标签多伯努利滤波的可分辨群目标跟踪算法";朱书军 等;《自动化学报》;20171231;第43卷(第12期);第2178-2189页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111812637A (zh) | 2020-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107677997B (zh) | 基于GLMB滤波和Gibbs采样的扩展目标跟踪方法 | |
Ryu et al. | A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification | |
CN107831490A (zh) | 一种改进的多扩展目标跟踪方法 | |
Gao et al. | Maneuvering target tracking with recurrent neural networks for radar application | |
CN109508444A (zh) | 区间量测下交互式多模广义标签多伯努利的快速跟踪方法 | |
Kotary et al. | A many-objective whale optimization algorithm to perform robust distributed clustering in wireless sensor network | |
CN116520281B (zh) | 一种基于ddpg的扩展目标跟踪优化方法和装置 | |
Zhang et al. | Enhancing Multi-UAV Reconnaissance and Search Through Double Critic DDPG With Belief Probability Maps | |
CN111812637B (zh) | 具有类型概率的l-rfs混合目标结构建模与估计方法 | |
CN113030940B (zh) | 一种转弯机动下的多星凸型扩展目标跟踪方法 | |
Dyvak et al. | Modified method of subtractive clustering for modeling of distribution of harmful vehicles emission concentrations | |
CN115619825A (zh) | 地面多目标跟踪状态及轨迹确定方法 | |
Stringer et al. | Causality-aware machine learning for path correction | |
CN115031794A (zh) | 一种多特征图卷积的新型气固两相流流量测量方法 | |
CN114740467A (zh) | 基于幅度点迹的集群目标跟踪及数量、轮廓动态估计方法 | |
Mahammad | Using AI in Dimensional Metrology | |
Yang et al. | Predicting PPI based on quantum-inspired neural networks | |
CN113238218A (zh) | 基于phd滤波的临近空间高超声速目标跟踪方法 | |
CN112784506A (zh) | 一种基于变结构多模型的再入机动弹道目标跟踪算法 | |
Huang et al. | A mixed target tracking algorithm with type probability using the GLMB filter | |
Li et al. | Extended Target Measurement Set Partition Algorithm Based on KFCM Clustering | |
CN115906413B (zh) | 一种Dirichlet过程混合模型节点自定位方法 | |
CN111241482A (zh) | 面向多参数系统异常工作状态检测的方法和系统 | |
CN117724087B (zh) | 雷达多目标跟踪双标签多伯努利滤波算法 | |
Xu et al. | An Adaptive IMM Algorithm for a PD Radar with Improved Maneuvering Target Tracking Performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |