CN111812637B - 具有类型概率的l-rfs混合目标结构建模与估计方法 - Google Patents

具有类型概率的l-rfs混合目标结构建模与估计方法 Download PDF

Info

Publication number
CN111812637B
CN111812637B CN202010489566.0A CN202010489566A CN111812637B CN 111812637 B CN111812637 B CN 111812637B CN 202010489566 A CN202010489566 A CN 202010489566A CN 111812637 B CN111812637 B CN 111812637B
Authority
CN
China
Prior art keywords
target
targets
type
measurement
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010489566.0A
Other languages
English (en)
Other versions
CN111812637A (zh
Inventor
刘伟峰
黄梓龙
王志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202010489566.0A priority Critical patent/CN111812637B/zh
Publication of CN111812637A publication Critical patent/CN111812637A/zh
Application granted granted Critical
Publication of CN111812637B publication Critical patent/CN111812637B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • G01S13/726Multiple target tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Operations Research (AREA)
  • Geometry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Algebra (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提出了一种具有类型概率的L‑RFS混合目标结构建模与估计方法,该方法包括三个方面:混合目标动态建模,混合目标的形状类型分析和混合目标的跟踪估计。首先,结合广义标签多伯努利滤波器建立了混合目标的量测混合模型,并对目标类型进行分析,利用Gibbs采样和BIC准则推导出有限混合模型的参数来对混合目标进行学习跟踪,然后采用等效量测方法来替代扩展目标和群目标所构成的多量测目标产生的量测,对多量测目标形状采用椭圆逼近建模,实现多量测目标形状的估计。该方法可以有效的判断目标类型,并跟踪混合目标。

Description

具有类型概率的L-RFS混合目标结构建模与估计方法
技术领域
本发明属于传感器技术领域,具体是混合目标跟踪领域,涉及一种具有类型概率的L-RFS(Labeled-Random Finite Set,标签-随机有限集)混合目标结构建模与估计问题算法。
背景技术
在民用和军用等很多领域中,目标跟踪一直都存在着不可缺少的应用意义。由于以前传感技术的限制,传统的目标跟踪跟踪算法都是假设被探测的目标为一个点,即一个目标至多只能产生一个量测。随着现代传感器技术的不断发展,雷达设备可以从扩展目标上不同的散射点接收测试数据,即一个目标在不同时刻都可以产生多个量测,这类目标称为扩展目标。另一种情况是多个目标呈现一定编队飞行或具有相似运动模式时,并展现出一定的群目标的运动特性,则统称为群目标。扩展目标和群目标的跟踪能为我们提供被跟踪目标精确的数目和运动状态。在目标跟踪过程中,往往会多类目标混合在一起,对目标的跟踪产生一定的干扰,导致跟踪效果差。
发明内容
本发明的目的是针对现有技术的不足,提供了一种具有类型概率的L-RFS混合目标结构建模与估计方法。
本发明为了在混合目标(包括点目标、扩展目标、可分辨群目标)跟踪中得到整体最优的跟踪性能,本申请结合广义标签多伯努利滤波器建立了混合目标的量测混合模型,并对目标类型进行分析,利用Gibbs采样和BIC准则推导出有限混合模型的参数来对混合目标进行学习跟踪,然后采用等效量测方法来替代扩展目标和群目标所构成的多量测目标产生的量测,对多量测目标形状采用椭圆逼近建模,实现对混合目标的跟踪。
本发明一种具有类型概率的L-RFS混合目标结构建模与估计方法,具体包括以下步骤:
步骤(1).设定多目标在k时刻的混合状态集合Xk
多目标在k时刻的混合状态Xk用随机有限集集合表示:
Xk={(xk,1),(xk,2),…,(xk,N(k))}∈F(χ);F(χ)表示状态空间χ的有限集的集合;N(k)为k时刻目标的个数,xk,i表示第i个多目标状态,每个值在状态空间χ上,i=1,2,…,N(k)。
将带标签带类型的混合目标状态表示为:
Xk={(xk,1,l1,t1),(xk,2,l2,t2),…,(xk,n(k),ln(k),tN(k))};标签
Figure BDA0002520409190000021
为离散分布的标签空间,
Figure BDA0002520409190000022
表示正整数集合,αi表示不同;混合目标的类型分量t∈(T0,T1,T2),T0表示点目标,T1表示扩展目标,T2表示可分辨群目标。
由于GLMB滤波算法要求不同目标的标签不同且是唯一的,因此标签约束条件Δ(X)为:
Figure BDA0002520409190000023
其中,X的标签集
Figure BDA0002520409190000024
Figure BDA0002520409190000025
表示x的的标签集,x表示(x,l,t);步骤(2).设定k时刻系统模型中的观测状态集合Zk
Figure BDA0002520409190000026
M(k)表示k时刻量测的个数,Zk,j表示第j个观测状态,j=1,2,…,M(k);
Figure BDA0002520409190000027
表示状态空间
Figure BDA0002520409190000028
的所有有限子集构成的集合。
扩展目标在k时刻的量测集
Figure BDA0002520409190000029
其中
Figure BDA00025204091900000210
表示第M'(k)个扩展目标在k时刻产生的量测集;
可分辨群目标在k时刻的量测集
Figure BDA00025204091900000211
其中
Figure BDA00025204091900000212
表示第M″(k)个可分辨群目标在k时刻产生的量测集。
Zk包含了杂波、目标量测和漏检信息;目标量测包括点目标、扩展目标和可分辨群目标的观测值;步骤(3).建立目标有限混合模型:
多量测的观测数据集用以下混合分布函数来描述:
Figure BDA00025204091900000213
其中,量测集
Figure BDA00025204091900000214
Figure BDA00025204091900000215
表示第j个目标k时刻的形心点在xy轴上的位置、速度,rk+1表示k+1时刻的形心点在xy轴上的位置、速度和类型参数
Figure BDA0002520409190000031
是第j个目标k时刻的混合比例权重,ωk+1表示k+1时刻的混合比例权重,j是目标的指示变量,变量个数为mk,j=0表示为杂波量测,
Figure BDA0002520409190000032
是第j个目标k+1时刻的形心点的量测,yk+1表示k+1时刻目标形心点的量测,
Figure BDA0002520409190000033
表示标签l下的第k+1时刻的观测集,yk+1,表示目标形心点的量测集;
混合比例权重约束条件为:
Figure BDA0002520409190000034
贝叶斯估计描述为:
Figure BDA0002520409190000035
Figure BDA0002520409190000036
为后验分布;
Figure BDA0002520409190000037
为似然函数,
Figure BDA0002520409190000038
为先验分布,C-1是归一化常数,
Figure BDA0002520409190000039
步骤(4)建立似然函数
量测的似然函数通过如下等式计算:
Figure BDA00025204091900000310
其中
Figure BDA00025204091900000311
改写成如下等式:
Figure BDA00025204091900000312
其中缺失变量
Figure BDA00025204091900000313
并满足以下约束条件:
Figure BDA00025204091900000314
缺失变量
Figure BDA00025204091900000315
由条件均值
Figure BDA00025204091900000316
估计给出:
Figure BDA00025204091900000317
其中,
Figure BDA00025204091900000318
步骤(5)在混合目标跟踪工程中,三种类目标混合一起,需要进行分类跟踪,所以需要进行类型判断。
(5-1)对于点目标来说,量测与状态点是一一对应的,即一个目标状态点只能有一个量测。
点目标服从单伯努利分布
Figure BDA0002520409190000041
其中PD(x)为存活概率,α∈(0,1),量测值越靠近目标值,则该α值越大,且(|Z|-PD)~N(0,0.1)。则认为第i个目标为点目标的概率为:
Figure BDA0002520409190000042
(5-2)多量测目标:能产生多个量测的目标为多量测目标,即为群目标或者扩展目标。而不同多量测目标的参数具有不同的维数,因此可建立如下类型跳变矩阵。
Figure BDA0002520409190000043
上式中,元素Pr(j1,j2)表示为第j2种类型目标跳变为第j1种类型目标的跳变概率。但是并不要求该矩阵必须是对称矩阵,即Pr(j1,j2)可以不等于Pr(j2,j1)。
且类型目标跳转到各个目标的概率之和为1,即每个行向量之和为1。用如下约束条件
Figure BDA0002520409190000044
由于该目标类型是已知的,因此用如下的类型概率向量来描述每个目标的结构类型
Figure BDA0002520409190000045
其中,上标i表示第i个目标,下标k表示第k步,下标tj表示第tj个类型目标,
Figure BDA0002520409190000046
表示属于第tj个结构类型的概率。则每个目标的类型概率向量中具有最大概率值对应的分量就是多量测目标所属类型。
(5-3)多量测目标观测空间通过
Figure BDA0002520409190000047
协方差得到协方差矩阵,并通过eig函数求出该矩阵的特征值和特征向量,并算出该目标的形状的长轴a和短轴b,并通过3σ标准差作为衡量扩展目标的标准;
即:
Figure BDA0002520409190000048
其中r为目标拟合后的圆半径;
扩展目标中的量测值服从泊松分布,则:
Figure BDA0002520409190000051
则对在X轴分布的Δnz,1+Δnz,2+…+Δnz,n做检验;
即,
Figure BDA0002520409190000052
则在3σ标准差下,求出满足扩展目标分布的类型概率密度
Figure BDA0002520409190000053
其中Δnz为中间变量。
(5-4)群目标与扩展目标最大的区别就是,在目标跟踪中,一个目标产生多个量测,且量测值都围绕着同一个扩展目标,大部分量测都在一个不可分辨体里。而可分辨群目标是由多个点目标组成,结构固定,是多个子目标产生多个量测,且子目标值与量测值一一对应。群内点目标可分辨,一个不可分辨体是无法包围整个群目标。一般来说,群内点目标的个数与不可分辨体的数量一致。可在不可分辨体下,量测值和不可分辨体的个数来求出
Figure BDA0002520409190000054
并对多量测下的各类目标概率进行归一化处理,处理如下:
Figure BDA0002520409190000055
因此该混合目标的类型概率密度如下表示:
Figure BDA0002520409190000056
其中,
Figure BDA0002520409190000057
再通过max准则检测出该目标类型。
(5-5)扩展目标和群目标的类型概率的更新如下:
Figure BDA0002520409190000058
Figure BDA0002520409190000059
其中,强度函数
Figure BDA00025204091900000510
公式如下:
Figure BDA0002520409190000061
每次计算完更新概率
Figure BDA0002520409190000062
后,需要对各类目标概率进行归一化处理,然后再循环进行预测更新过程。
步骤(6)使用GLMB滤波算法对混合目标进行跟踪,分为预测步和更新步两个部分。
δ-GLMB的公式为:
Figure BDA0002520409190000063
(6-1)预测步公式为:
Figure BDA0002520409190000064
在如下公式中,P(T)为类型概率,采用
Figure BDA0002520409190000065
表示新生标签
Figure BDA0002520409190000066
的权重,
Figure BDA0002520409190000067
表示存活标签
Figure BDA0002520409190000068
的权重。新生目标的概率密度用pB(·,l)表示,存活目标密度
Figure BDA0002520409190000069
由先验密度pS(·,l)得到,存活目标的概率密度由f(·|·,l)表示。
Figure BDA00025204091900000610
Figure BDA00025204091900000611
Figure BDA00025204091900000612
Figure BDA00025204091900000613
Figure BDA00025204091900000614
Figure BDA00025204091900000615
Figure BDA00025204091900000616
(6-2)更新步,可用Gibbs采样迭代学习算法来实现。
Figure BDA00025204091900000617
其中,
Figure BDA00025204091900000618
θ(i)=θ(i′)>0表示i=i′。在一个固定的(I,ξ)中,在最大权重
Figure BDA0002520409190000071
下,Θ的M个元素用Θ(M)={ξ(1),…,ξ(M)}来表示。
Figure BDA0002520409190000072
表示为截断后的归一化权重,P(T)表示各类型下的概率。其相关得参数定义如下。
Figure BDA0002520409190000073
Figure BDA0002520409190000074
Figure BDA0002520409190000075
Figure BDA0002520409190000076
在获得目标状态估计基础上,进一步学习出混合目标中多量测目标的形状。
步骤(7)Gibbs采样算法来估计高斯分布的均值协方差和各个高斯分布的权重,并用BIC准则来对该几个高斯分布的拟合真实程度进行评价。
Figure BDA0002520409190000077
Figure BDA0002520409190000081
通过上述算法,输出得到权重,均值,协方差和BIC值,采用第nk个混合目标的等效量测
Figure BDA0002520409190000082
替代该混合目标量测,对多量测目标形状采用椭圆逼近建模,通过Gibbs参数学习算法不断学习出多量测目标的形状。
本发明的有益效果:针对滤波条件下点目标,扩展目标,群目标(不可分辨)所构成混合目标的状态估计,目标个数估计,目标形状估计问题,提出了一种具有类型概率的L-RFS混合目标结构建模与估计问题算法。首先,结合广义标签多伯努利滤波器建立了混合目标的量测混合模型,并对目标类型进行分析,利用Gibbs采样和BIC准则推导出有限混合模型的参数来对混合目标进行学习跟踪,然后采用等效量测方法来替代扩展目标和群目标所构成的多量测目标产生的量测,对多量测目标形状采用椭圆逼近建模,实现多量测目标形状的估计。该方法可以有效的跟踪混合目标。
附图说明
图1:混合目标运动轨迹;
图2:混合目标的真实轨迹;
图3:由GLMB滤波算法得到的状态估计;
图4:OSPA距离(10次);
图5:混合目标个数估计(10次)。
具体实施方式:
本发明提出一种具有类型概率的L-RFS混合目标结构建模与估计问题算法,包括以下几个步骤:
步骤(1).多目标在k时刻的状态用以下RFS集合表示
Xk={(xk,1),(xk,2),…,(xk,N(k))}∈F(χ) (1)
其中N(k)为k时刻目标的个数,有N(k)个多目标状态xk,1,xk,2,…xk,N(k),每个值在状态空间χ上,而F(χ)表示χ的有限集的集合。
将带标签带类型的混合目标状态表示如下:
Xk={(xk,1,l1,t1),(xk,2,l2,t2),…,(xk,n(k),ln(k),tN(k))} (2)
其中离散分布的标签空间
Figure BDA0002520409190000091
其中
Figure BDA0002520409190000092
表示正整数集合,αi代表不同,标签
Figure BDA0002520409190000093
t表示混合目标的类型分量,t∈(T0,T1,T2),T0表示点目标,T1表示扩展目标,T2表示可分辨群目标;
由于GLMB滤波算法要求不同目标的标签不同且是唯一的,因此用以下作为标签约束条件:
Figure BDA0002520409190000094
其中,X的标签集
Figure BDA0002520409190000095
步骤(2)设定系统模型中的观测状态
Figure BDA0002520409190000096
M(k)表示k时刻量测的个数,
Figure BDA0002520409190000097
代表
Figure BDA0002520409190000098
的所有有限子集构成的集合。
Figure BDA0002520409190000099
表示扩展目标在k时刻的量测集,
Figure BDA00025204091900000910
其中
Figure BDA00025204091900000911
表示第M(k)个扩展目标在k时刻产生的量测集。
Figure BDA00025204091900000912
表示可分辨群目标在k时刻的量测集,
Figure BDA00025204091900000913
其中
Figure BDA00025204091900000914
表示第M(k)个可分辨群目标在k时刻产生的量测集。
Zk包含了杂波、目标量测和漏检信息,这里的目标量测包括点目标、扩展目标和可分辨群目标的观测值,总量测集合由目标量测、未知杂波产生的量测、虚警量测组成。
步骤(3)目标有限混合模型
多量测的观测数据集可用以下混合分布函数来描述:
Figure BDA0002520409190000101
其中,量测集
Figure BDA0002520409190000102
nk是k时刻总的量测个数,
Figure BDA0002520409190000103
Figure BDA0002520409190000104
表示目标的形心点在xy轴上的位置和速度,
Figure BDA0002520409190000105
是类型参数。
Figure BDA0002520409190000106
是混合比例权重,j是目标的指示变量,变量个数为mk,j=0表示为杂波量测,
Figure BDA0002520409190000107
是目标形心点的量测。
混合比例权重约束条件如下:
Figure BDA0002520409190000108
贝叶斯估计可描述为:
Figure BDA0002520409190000109
其中,
Figure BDA00025204091900001010
z1:k:={z1,…zk},
Figure BDA00025204091900001011
是后验分布,C-1是归一化常数。
Figure BDA00025204091900001012
为似然函数,
Figure BDA00025204091900001013
为先验分布。
步骤(4)似然函数。量测的似然函数可通过如下等式计算:
Figure BDA00025204091900001014
其中
Figure BDA00025204091900001015
改写成如下等式:
Figure BDA00025204091900001016
其中缺失变量
Figure BDA00025204091900001017
并满足以下约束条件:
Figure BDA00025204091900001018
缺失变量
Figure BDA00025204091900001019
可由条件均值
Figure BDA00025204091900001020
估计给出:
Figure BDA0002520409190000111
其中,
Figure BDA0002520409190000112
步骤(5)在混合目标跟踪工程中,三种类目标混合一起,需要进行分类跟踪,所以需要进行类型判断。
(5-1)对于点目标来说,量测与状态点是一一对应的,即一个目标状态点只能有一个量测。
点目标服从单伯努利分布
Figure BDA0002520409190000113
其中PD(x)为存活概率,α∈(0,1),量测值越靠近目标值,则该α值越大,且(|Z|-PD)~N(0,0.1)。则可认为第i个目标为点目标的概率为:
Figure BDA0002520409190000114
(5-2)多量测目标:能产生多个量测的目标为多量测目标,即为群目标或者扩展目标。而不同多量测目标的参数具有不同的维数,因此可建立如下类型跳变矩阵。
Figure BDA0002520409190000115
上式中,元素Pr(j1,j2)表示为第j2种类型目标跳变为第j1种类型目标的跳变概率。但是并不要求该矩阵必须是对称矩阵,即Pr(j1,j2)可以不等于Pr(j2,j1)。
且类型目标跳转到各个目标的概率之和为1,即每个行向量之和为1。可用如下约束条件
Figure BDA0002520409190000116
由于该目标类型是已知的,因此可用如下的类型概率向量来描述每个目标的结构类型
Figure BDA0002520409190000117
其中,上标i表示第i个目标,下标k表示第k步,下标tj表示第tj个类型目标,
Figure BDA0002520409190000121
表示属于第tj个结构类型的概率。则每个目标的类型概率向量中具有最大概率值对应的分量就是多量测目标所属类型。
(5-3)多量测目标观测空间为
zk=Hxk+vk (17)
则可通过
Figure BDA0002520409190000122
协方差得到协方差矩阵,并通过eig函数求出该矩阵的特征值和特征向量,并算出该目标的形状的长轴a和短轴b,并通过3σ标准差作为衡量扩展目标的标准。
即:
Figure BDA0002520409190000123
扩展目标中的量测值服从泊松分布,则:
Figure BDA0002520409190000124
则对在X轴分布的Δnz,1+Δnz,2+…+Δnz,n做检验
即,
Figure BDA0002520409190000125
则在3σ标准差下,求出满足扩展目标分布的类型概率密度
Figure BDA0002520409190000126
(5-4)群目标与扩展目标最大的区别就是,在目标跟踪中,一个目标产生多个量测,且量测值都围绕着同一个扩展目标,大部分量测都在一个不可分辨体(常数)里。而可分辨群目标是由多个点目标组成,结构固定,是多个子目标产生多个量测,且子目标值与量测值一一对应。群内点目标可分辨,一个不可分辨体是无法包围整个群目标。一般来说,群内点目标的个数与不可分辨体的数量一致。可在不可分辨体下,量测值和不可分辨体的个数来求出
Figure BDA0002520409190000127
并对多量测下的各类目标概率进行归一化处理,处理如下:
Figure BDA0002520409190000128
因此该混合目标的类型概率密度如下表示:
Figure BDA0002520409190000129
其中,
Figure BDA0002520409190000131
再通过max准则检测出该目标类型。
(5-5)扩展目标和群目标的类型概率的更新如下:
Figure BDA0002520409190000132
Figure BDA0002520409190000133
其中,强度函数
Figure BDA0002520409190000134
公式如下:
Figure BDA0002520409190000135
每次计算完更新概率
Figure BDA0002520409190000136
后,需要对各类目标(矩阵行向量)概率进行归一化处理,然后再循环进行预测更新过程。
步骤(6)使用GLMB滤波算法对混合目标进行跟踪,可分为预测步和更新步两个部分。
δ-GLMB的公式为:
Figure BDA0002520409190000137
(6-1)预测步公式为:
Figure BDA0002520409190000138
在如下公式中,P(T)为类型概率,采用
Figure BDA0002520409190000139
表示新生标签
Figure BDA00025204091900001310
的权重,
Figure BDA00025204091900001311
表示存活标签
Figure BDA00025204091900001312
的权重。新生目标的概率密度用pB(·,l)表示,存活目标密度
Figure BDA00025204091900001313
由先验密度pS(·,l)得到,存活目标的概率密度由f(·|·,l)表示。
Figure BDA00025204091900001314
Figure BDA00025204091900001315
Figure BDA00025204091900001316
Figure BDA0002520409190000141
Figure BDA0002520409190000142
Figure BDA0002520409190000143
Figure BDA0002520409190000144
(6-2)更新步,可用Gibbs采样迭代学习算法来实现。
Figure BDA0002520409190000145
其中,
Figure BDA0002520409190000146
θ(i)=θ(i′)>0表示i=i′。在一个固定的(I,ξ)中,在最大权重
Figure BDA0002520409190000147
下,Θ的M个元素用Θ(M)={ξ(1),…,ξ(M)}来表示。
Figure BDA0002520409190000148
表示为截断后的归一化权重,P(T)表示各类型下的概率。其相关得参数定义如下。
Figure BDA0002520409190000149
Figure BDA00025204091900001410
Figure BDA00025204091900001411
Figure BDA00025204091900001412
在获得目标状态估计基础上,进一步学习出混合目标中多量测目标的形状。
步骤(7)Gibbs采样算法来估计高斯分布的均值协方差和各个高斯分布的权重,并用BIC准则来对该几个高斯分布的拟合真实程度进行评价。
Figure BDA00025204091900001413
Figure BDA0002520409190000151
通过上述算法,输出得到权重,均值均值,协方差和BIC值,采用第nk个混合目标的等效量测
Figure BDA0002520409190000152
替代该混合目标量测,对多量测目标形状采用椭圆逼近建模,通过Gibbs参数学习算法不断学习出多量测目标的形状。
为了更好的诠释本发明,假设在含有杂波的观测区域内有4个扩展目标,3个单目标,3个群目标(不可分辨)在运动,目标数目时刻变化,目标被检测到的概率为PD=0.8,杂波为均匀分布,杂波强度λc=20,杂波区域S=[-1000,1000]×[-1000,1000]m2
四个扩展目标强度分别为:λe1=16,λe2=18,λe3=20,λe4=18。扩展目标在2维平面做匀速直线(CV)运动,检测时间为100s.在不同的时间,不同的地点,四个扩展目标分别出生和消亡。
目标的状态方程为:
xk+1,i=Gxk,i+vk,i
其中状态转移矩阵为:
Figure BDA0002520409190000161
其中T=1s表示采样时间,
Figure BDA0002520409190000162
分别表示x和y方向上的位置和速度。
目标的观测方程为:
zk+1,i=Hxk,i+wk,i
其中观测矩阵H=[1000;0010],观测噪声协方差为diag([10;10])×diag([10;10]),i表示第i个目标。四个扩展目标的初始状态分别为:
表1扩展目标运动初始状态和存在时间
Figure BDA0002520409190000163
表2点目标运动初始状态和存在时间
Figure BDA0002520409190000164
假设群目标(不可分辨)的个数为3,三个目标在2维平面做匀速直线(CV)运动,检测时间为100s.在不同的时间,不同的地点,四个群目标分别出生和消亡。
当扩展目标中某一个散射点不存在父结点时,则称该散射点为头节点,其运动不受任何结点的影响,头节点状态方程如下:
xk+1=Gkxkkwk
当存在父结点时,则称该散射的为子结点,其运动受父结点的影响,其状态方程如下定义:
Figure BDA0002520409190000171
Figure BDA0002520409190000172
如上所示,假设群目标散射点个数为M,散射点m∈[1,…,M],bk(i,m)表示散射点m与其父结点之间的补偿向量,bk(i,m)表示结点之间方向、距离信息,状态转移矩阵G,状态噪声矩阵β。
假设权重wk(i,m)为等权重,建立群目标运动模型的主要步骤如下:
先遍历群中的n个节点,然后通过给出的邻接矩阵找出该节点的父节点,对父节点的是否存在进行判断,如果存在,则:
Figure BDA0002520409190000173
其中,上式中
Figure BDA0002520409190000174
表示散射点m的第j个父节点。
如果不存在,则:
xk+1,m=Gk,ixk.ik,mwk,m
表3群目标运动初始状态和存在时间
Figure BDA0002520409190000175
图1为存在噪声时,该三类目标的散射点在20时刻,60时刻,80时刻,99时刻的建模。
在整个跟踪过程中,假设10个目标中都相互独立,则下图中表示目标运动的真实轨迹,图中不同的曲线分别代表目标的各自运动轨迹,目标运动的起点通过小圆圈来标记,运动终点通过小三角来表示。
图2为混合目标的真实轨迹。
图3为目标的状态估计,不同颜色的轨迹表示不同的目标运动的轨迹估计,第一二个图表分别表示在x,y轴方向上的跟踪轨迹。在第1秒时第一和第二个扩展目标,第一个点目标,和第一个群目标出现;在第20秒时第三个扩展目标,第二个点目标,和第二个群目标出现;在第30秒时第三个群目标出现;在第40秒时第三个点目标出现;在第50秒时第四个扩展目标出现;在第100秒时,就仅存第三第四个扩展目标、第二第三个点目标和第三个群目标。图2中可以看出该算法对多类目标进行了较为不错的跟踪。
通过采用OSPA距离来评估本文给出的算法性能:
Figure BDA0002520409190000181
其中,X和
Figure BDA0002520409190000182
分别为真实状态集和估计状态集,个数分别为m和n。∏n表示为从1到n的阶乘,且前置条件为1≤p≤∞和
Figure BDA0002520409190000183
c>0。图4给出了GLMB算法的十次蒙特卡洛仿真得出的OSPA结果。
由图4可看出,前几次扫描中,OSPA的距离很大,这主要是由于基数误差造成的,这是因为两个过滤器都需要进行多次扫描来建立轨迹。
图5为目标的个数估计,从图中可以看出在GLMB下该多目标估计与实际目标值基本吻合,0-20s时目标个数为4个:在第20s时,扩展目标3,点目标2,群目标2出生,目标个数变为7个:在第30s时,群目标3出生,目标个数变为8个:在第40s时,点目标3出生,目标个数变为9个:在第50s时,扩展目标3,点目标2,群目标2出生,目标个数变为10个:在第60s时点目标1死亡,再到第70s时扩展目标1,群目标1死亡,接着到第80s时扩展目标2,群目标2死亡,最终目标个数变为5个。

Claims (1)

1.具有类型概率的L-RFS混合目标结构建模与估计方法,其特征在于,该方法具体包括以下步骤:
步骤(1).设定多目标在k时刻的混合状态集合Xk
多目标在k时刻的混合状态Xk用随机有限集集合表示:
Xk={(xk,1),(xk,2),…,(xk,N(k))}∈F(χ);F(χ)表示状态空间χ的有限集的集合;N(k)为k时刻目标的个数,xk,i表示第i个多目标状态,每个值在状态空间χ上,i=1,2,…,N(k);
将带标签带类型的混合目标状态表示为:
Xk={(xk,1,l1,t1),(xk,2,l2,t2),…,(xk,n(k),ln(k),tN(k))};标签
Figure FDA0002520409180000011
Figure FDA0002520409180000012
为离散分布的标签空间,
Figure FDA0002520409180000013
Figure FDA0002520409180000014
表示正整数集合,αi表示不同;混合目标的类型分量t∈(T0,T1,T2),T0表示点目标,T1表示扩展目标,T2表示可分辨群目标;
由于GLMB滤波算法要求不同目标的标签不同且是唯一的,因此标签约束条件Δ(X)为:
Figure FDA0002520409180000015
其中,X的标签集
Figure FDA0002520409180000016
Figure FDA0002520409180000017
Figure FDA0002520409180000018
表示x的标签集,x表示(x,l,t);步骤(2).设定k时刻系统模型中的观测状态集合Zk
Figure FDA0002520409180000019
M(k)表示k时刻量测的个数,Zk,j表示第j个观测状态,j=1,2,…,M(k);
Figure FDA00025204091800000110
表示状态空间
Figure FDA00025204091800000111
的所有有限子集构成的集合;
扩展目标在k时刻的量测集
Figure FDA00025204091800000112
其中
Figure FDA00025204091800000113
表示第M'(k)个扩展目标在k时刻产生的量测集;
可分辨群目标在k时刻的量测集
Figure FDA00025204091800000114
其中
Figure FDA00025204091800000115
表示第M”(k)个可分辨群目标在k时刻产生的量测集;
Zk包含了杂波、目标量测和漏检信息;目标量测包括点目标、扩展目标和可分辨群目标的观测值;步骤(3).建立目标有限混合模型:
多量测的观测数据集用以下混合分布函数来描述:
Figure FDA0002520409180000021
其中,量测集
Figure FDA0002520409180000022
Figure FDA0002520409180000023
表示第j个目标k时刻的形心点在xy轴上的位置、速度,rk+1表示k+1时刻的形心点在xy轴上的位置、速度和类型参数
Figure FDA0002520409180000024
Figure FDA0002520409180000025
是第j个目标k时刻的混合比例权重,ωk+1表示k+1时刻的混合比例权重,j是目标的指示变量,变量个数为mk,j=0表示为杂波量测,
Figure FDA0002520409180000026
是第j个目标k+1时刻的形心点的量测,yk+1表示k+1时刻目标形心点的量测,
Figure FDA0002520409180000027
表示标签l下的第k+1时刻的观测集,yk+1,表示目标形心点的量测集;
混合比例权重约束条件为:
Figure FDA0002520409180000028
贝叶斯估计描述为:
Figure FDA0002520409180000029
Figure FDA00025204091800000210
为后验分布;
Figure FDA00025204091800000211
为似然函数,
Figure FDA00025204091800000212
为先验分布,C-1是归一化常数,
Figure FDA00025204091800000213
z1:k:={z1,…zk};
步骤(4)建立似然函数
量测的似然函数通过如下等式计算:
Figure FDA00025204091800000214
其中
Figure FDA00025204091800000215
改写成如下等式:
Figure FDA00025204091800000216
其中缺失变量
Figure FDA00025204091800000217
并满足以下约束条件:
Figure FDA00025204091800000218
缺失变量
Figure FDA0002520409180000031
由条件均值
Figure FDA0002520409180000032
估计给出:
Figure FDA0002520409180000033
其中,
Figure FDA0002520409180000034
步骤(5)在混合目标跟踪工程中,三种类目标混合一起,需要进行分类跟踪,所以需要进行类型判断;
(5-1)对于点目标来说,量测与状态点是一一对应的,即一个目标状态点只能有一个量测;
点目标服从单伯努利分布
Figure FDA0002520409180000035
其中PD(x)为存活概率,α∈(0,1),量测值越靠近目标值,则该α值越大,且(|Z|-PD)~N(0,0.1);则认为第i个目标为点目标的概率为:
Figure FDA0002520409180000036
(5-2)多量测目标:能产生多个量测的目标为多量测目标,即为群目标或者扩展目标;而不同多量测目标的参数具有不同的维数,因此可建立如下类型跳变矩阵;
Figure FDA0002520409180000037
上式中,元素Pr(j1,j2)表示为第j2种类型目标跳变为第j1种类型目标的跳变概率;但是并不要求该矩阵必须是对称矩阵,即Pr(j1,j2)可以不等于Pr(j2,j1);
且类型目标跳转到各个目标的概率之和为1,即每个行向量之和为1;用如下约束条件
Figure FDA0002520409180000038
由于该目标类型是已知的,因此用如下的类型概率向量来描述每个目标的结构类型
Figure FDA0002520409180000041
其中,上标i表示第i个目标,下标k表示第k步,下标tj表示第tj个类型目标,
Figure FDA0002520409180000042
表示属于第tj个结构类型的概率;则每个目标的类型概率向量中具有最大概率值对应的分量就是多量测目标所属类型;
(5-3)多量测目标观测空间通过
Figure FDA0002520409180000043
协方差得到协方差矩阵,并通过eig函数求出该矩阵的特征值和特征向量,并算出该目标的形状的长轴a和短轴b,并通过3σ标准差作为衡量扩展目标的标准;
即:
Figure FDA0002520409180000044
其中r为目标拟合后的圆半径;
扩展目标中的量测值服从泊松分布,则:
Figure FDA0002520409180000045
则对在X轴分布的Δnz,1+Δnz,2+…+Δnz,n做检验;
即,
Figure FDA0002520409180000046
则在3σ标准差下,求出满足扩展目标分布的类型概率密度
Figure FDA0002520409180000047
其中Δnz为中间变量;
(5-4)在不可分辨体下,量测值和不可分辨体的个数来求出
Figure FDA0002520409180000048
并对多量测下的各类目标概率进行归一化处理,处理如下:
Figure FDA0002520409180000049
因此该混合目标的类型概率密度如下表示:
Figure FDA00025204091800000410
其中,
Figure FDA00025204091800000411
再通过max准则检测出该目标类型;
(5-5)扩展目标和群目标的类型概率的更新如下:
Figure FDA00025204091800000412
Figure FDA0002520409180000051
其中,强度函数
Figure FDA0002520409180000052
公式如下:
Figure FDA0002520409180000053
每次计算完更新概率
Figure FDA0002520409180000054
后,需要对各类目标概率进行归一化处理,然后再循环进行预测更新过程;
步骤(6)使用GLMB滤波算法对混合目标进行跟踪,分为预测步和更新步两个部分;
δ-GLMB的公式为:
Figure FDA0002520409180000055
(6-1)预测步公式为:
Figure FDA0002520409180000056
在如下公式中,P(T)为类型概率,采用
Figure FDA0002520409180000057
表示新生标签
Figure FDA0002520409180000058
的权重,
Figure FDA0002520409180000059
表示存活标签
Figure FDA00025204091800000510
的权重;新生目标的概率密度用pB(·,l)表示,存活目标密度
Figure FDA00025204091800000511
由先验密度pS(·,l)得到,存活目标的概率密度由f(·|·,l)表示;
Figure FDA00025204091800000512
Figure FDA00025204091800000513
Figure FDA00025204091800000514
Figure FDA00025204091800000515
Figure FDA00025204091800000516
Figure FDA00025204091800000517
Figure FDA0002520409180000061
(6-2)更新步,可用Gibbs采样迭代学习算法来实现;
Figure FDA0002520409180000062
其中,θ:
Figure FDA0002520409180000063
θ(i)=θ(i′)>0表示i=i′;在一个固定的(I,ξ)中,在最大权重
Figure FDA00025204091800000610
下,Θ的M个元素用Θ(M)={ξ(1),…,ξ(M)}来表示;
Figure FDA0002520409180000064
表示为截断后的归一化权重,P(T)表示各类型下的概率;其相关得参数定义如下;
Figure FDA0002520409180000065
Figure FDA0002520409180000066
Figure FDA0002520409180000069
Figure FDA0002520409180000067
在获得目标状态估计基础上,进一步学习出混合目标中多量测目标的形状;
步骤(7)Gibbs采样算法来估计高斯分布的均值协方差和各个高斯分布的权重,并用BIC准则来对几个高斯分布的拟合真实程度进行评价;输出得到权重,均值,协方差和BIC值,采用第nk个混合目标的等效量测
Figure FDA0002520409180000068
替代该混合目标量测,对多量测目标形状采用椭圆逼近建模,通过Gibbs参数学习算法不断学习出多量测目标的形状。
CN202010489566.0A 2020-06-02 2020-06-02 具有类型概率的l-rfs混合目标结构建模与估计方法 Active CN111812637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010489566.0A CN111812637B (zh) 2020-06-02 2020-06-02 具有类型概率的l-rfs混合目标结构建模与估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010489566.0A CN111812637B (zh) 2020-06-02 2020-06-02 具有类型概率的l-rfs混合目标结构建模与估计方法

Publications (2)

Publication Number Publication Date
CN111812637A CN111812637A (zh) 2020-10-23
CN111812637B true CN111812637B (zh) 2022-12-02

Family

ID=72848524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010489566.0A Active CN111812637B (zh) 2020-06-02 2020-06-02 具有类型概率的l-rfs混合目标结构建模与估计方法

Country Status (1)

Country Link
CN (1) CN111812637B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102295A (zh) * 2017-04-13 2017-08-29 杭州电子科技大学 基于glmb滤波的多传感器tdoa无源定位方法
CN107677997A (zh) * 2017-09-28 2018-02-09 杭州电子科技大学 基于GLMB滤波和Gibbs采样的扩展目标跟踪方法
CN109508444A (zh) * 2018-12-18 2019-03-22 桂林电子科技大学 区间量测下交互式多模广义标签多伯努利的快速跟踪方法
EP3514571A1 (fr) * 2018-01-18 2019-07-24 Thales Procede de pistage d'une cible aerienne, et radar mettant en oeuvre un tel procede
CN110596643A (zh) * 2019-08-12 2019-12-20 杭州电子科技大学 一种多声音阵列移动目标检测定位方法
CN110992396A (zh) * 2019-10-18 2020-04-10 河南科技大学 一种基于K-means++聚类算法的多扩展目标跟踪方法
CN111007454A (zh) * 2019-10-28 2020-04-14 重庆邮电大学 一种基于合作目标信息的扩展目标跟踪方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102295A (zh) * 2017-04-13 2017-08-29 杭州电子科技大学 基于glmb滤波的多传感器tdoa无源定位方法
CN107677997A (zh) * 2017-09-28 2018-02-09 杭州电子科技大学 基于GLMB滤波和Gibbs采样的扩展目标跟踪方法
EP3514571A1 (fr) * 2018-01-18 2019-07-24 Thales Procede de pistage d'une cible aerienne, et radar mettant en oeuvre un tel procede
CN109508444A (zh) * 2018-12-18 2019-03-22 桂林电子科技大学 区间量测下交互式多模广义标签多伯努利的快速跟踪方法
CN110596643A (zh) * 2019-08-12 2019-12-20 杭州电子科技大学 一种多声音阵列移动目标检测定位方法
CN110992396A (zh) * 2019-10-18 2020-04-10 河南科技大学 一种基于K-means++聚类算法的多扩展目标跟踪方法
CN111007454A (zh) * 2019-10-28 2020-04-14 重庆邮电大学 一种基于合作目标信息的扩展目标跟踪方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Computationally Efficient Multi-Agent Multi-Object Tracking With Labeled RandomFinite Set";Suqi Li 等;《IEEE Transactions on Signal Processing》;20190101;第67卷(第1期);第260-275页 *
"基于广义标签多伯努利滤波的可分辨群目标跟踪算法";朱书军 等;《自动化学报》;20171231;第43卷(第12期);第2178-2189页 *

Also Published As

Publication number Publication date
CN111812637A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN107677997B (zh) 基于GLMB滤波和Gibbs采样的扩展目标跟踪方法
Ryu et al. A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification
CN107831490A (zh) 一种改进的多扩展目标跟踪方法
Gao et al. Maneuvering target tracking with recurrent neural networks for radar application
CN109508444A (zh) 区间量测下交互式多模广义标签多伯努利的快速跟踪方法
Kotary et al. A many-objective whale optimization algorithm to perform robust distributed clustering in wireless sensor network
CN116520281B (zh) 一种基于ddpg的扩展目标跟踪优化方法和装置
Zhang et al. Enhancing Multi-UAV Reconnaissance and Search Through Double Critic DDPG With Belief Probability Maps
CN111812637B (zh) 具有类型概率的l-rfs混合目标结构建模与估计方法
CN113030940B (zh) 一种转弯机动下的多星凸型扩展目标跟踪方法
Dyvak et al. Modified method of subtractive clustering for modeling of distribution of harmful vehicles emission concentrations
CN115619825A (zh) 地面多目标跟踪状态及轨迹确定方法
Stringer et al. Causality-aware machine learning for path correction
CN115031794A (zh) 一种多特征图卷积的新型气固两相流流量测量方法
CN114740467A (zh) 基于幅度点迹的集群目标跟踪及数量、轮廓动态估计方法
Mahammad Using AI in Dimensional Metrology
Yang et al. Predicting PPI based on quantum-inspired neural networks
CN113238218A (zh) 基于phd滤波的临近空间高超声速目标跟踪方法
CN112784506A (zh) 一种基于变结构多模型的再入机动弹道目标跟踪算法
Huang et al. A mixed target tracking algorithm with type probability using the GLMB filter
Li et al. Extended Target Measurement Set Partition Algorithm Based on KFCM Clustering
CN115906413B (zh) 一种Dirichlet过程混合模型节点自定位方法
CN111241482A (zh) 面向多参数系统异常工作状态检测的方法和系统
CN117724087B (zh) 雷达多目标跟踪双标签多伯努利滤波算法
Xu et al. An Adaptive IMM Algorithm for a PD Radar with Improved Maneuvering Target Tracking Performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant