CN111811319A - Small-size transmission control box - Google Patents

Small-size transmission control box Download PDF

Info

Publication number
CN111811319A
CN111811319A CN202010552667.8A CN202010552667A CN111811319A CN 111811319 A CN111811319 A CN 111811319A CN 202010552667 A CN202010552667 A CN 202010552667A CN 111811319 A CN111811319 A CN 111811319A
Authority
CN
China
Prior art keywords
data
control box
circuit
missile
fpga
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010552667.8A
Other languages
Chinese (zh)
Inventor
姚康生
王凡
王武
邹敏怀
马威
熊攀
付洪飞
石林
罗云
杨龙军
余友好
张红余
章祎
熊静
童琴
刘红皊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Hongdu Aviation Industry Group Co Ltd
Original Assignee
Jiangxi Hongdu Aviation Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Hongdu Aviation Industry Group Co Ltd filed Critical Jiangxi Hongdu Aviation Industry Group Co Ltd
Priority to CN202010552667.8A priority Critical patent/CN111811319A/en
Publication of CN111811319A publication Critical patent/CN111811319A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41FAPPARATUS FOR LAUNCHING PROJECTILES OR MISSILES FROM BARRELS, e.g. CANNONS; LAUNCHERS FOR ROCKETS OR TORPEDOES; HARPOON GUNS
    • F41F1/00Launching apparatus for projecting projectiles or missiles from barrels, e.g. cannons; Harpoon guns
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

A small-sized launch control box is characterized in that a power panel is arranged between a bottom plate and a middle plate, a core panel is arranged in the middle plate, an electric connector used for realizing up-to-up signal cross-linking with an airplane and down-to-down signal cross-linking with a missile is arranged on one side of the middle plate, and a double-coaxial contact piece is split into three core wires in the electric connector; the function board is arranged between the middle board and the cover board and is positioned above the core board, and meanwhile, the function board has the function of mutually converting 1553B and RS422 data; the core board comprises a DSP circuit and an FPGA circuit which are connected with each other; the missile launcher has a small volume, can be installed in the missile launcher, can convert 1553B and RS422 data into each other, has the functions of analyzing and recombining the data, further realizes data forwarding among different buses, has a launch control function, and can realize launching of missiles.

Description

Small-size transmission control box
Technical Field
The invention relates to the technical field of launch control, in particular to a small launch control box.
Background
The missile 1553B communication interface conforms to the GJB1188A specification, a GJB599 III series electric connector is selected, the 1553B communication interface needs two double-coaxial contact pieces, and in order to complete communication with a missile, a launching control box needs two double-coaxial contact pieces in the lower interface, but the electric connector is usually large in size, so that the size of the launching control box cannot be miniaturized.
The traditional RS422-1553B launching control box generally comprises an upper interface and a lower interface, wherein the upper interface is generally connected with a launching vehicle or an airplane, the lower interface is connected with a missile, and the launching control box connected with the launching vehicle is generally arranged in a launching box and has small volume constraint. The launch control box connected with the airplane is generally installed in the hair-guiding frame, and the available space in the hair-guiding frame is small, so that the launch control box with the two interfaces cannot be installed in the hair-guiding frame.
Disclosure of Invention
The technical problem to be solved by the present invention is to provide a small-sized launch control box to solve the above-mentioned problems in the background art.
The technical problem solved by the invention is realized by adopting the following technical scheme:
a small-sized launch control box comprises a bottom plate, a middle plate, a cover plate, a power panel, a core panel, a function panel and an electric connector, wherein the power panel is arranged between the bottom plate and the middle plate; the function board is arranged between the middle board and the cover board and is positioned above the core board, and meanwhile, the function board has the function of mutually converting the data of 1553B and RS 422; the core board comprises a DSP circuit and an FPGA circuit which are connected with each other.
In the invention, the power panel comprises a secondary power conversion module, a surge peak suppression module and a filtering module.
In the present invention, the core board further includes a power supply output control circuit.
In the invention, the DSP circuit is connected with the FPGA circuit through an EMIF interface.
In the invention, the function board comprises a three-time power supply conversion circuit, a 1553B circuit, an RS422 circuit, a 232 circuit and a discrete magnitude processing circuit.
In the invention, the three core wires split from the double coaxial contact pieces are a plus wire, a minus wire and a shielding wire.
In the invention, an FPGA data storage unit is arranged in the FPGA circuit.
In the invention, a memory is arranged in the DSP circuit.
In the invention, the operation flow of the emission control box is as follows:
1) data reception
The FPGA circuit receives data of the slave aircraft/missile and stores the data in the FPGA data storage unit, the DSP circuit reads the data in the FPGA data storage unit into a memory in the DSP circuit through an EMIF interface, and an application layer calls an API function to obtain the data according to the requirement;
2) data transmission
The application layer calls an API function to send, stores a data result obtained through calculation into a memory inside the DSP circuit and sends the data result to the FPGA circuit through an EMIF interface, the FPGA circuit temporarily stores received data in an FPGA data storage unit, and a controller of the FPGA circuit sends the temporarily stored data to an airplane or a guided missile;
the aircraft supplies power to the launching control box through the electric connector, the launching control box receives a control command issued by the aircraft after self-checking is normal, and the launching control box supplies power to the missile after receiving the power supply command; the launching control box receives the state information of the missile by using the 1553B communication port, analyzes and recombines the data into RS422 communication data, updates the state information of the missile, and forwards the state information of the missile to the airplane; the launching control box receives an instruction issued by the airplane by using the RS422 communication port, analyzes and recombines the data into 1553B communication data after receiving the data transmitted by the RS422 communication port, so that the 1553B communication protocol between the launching control box and the guided missile is met, and the guided missile forwards the control instruction according to the control logic after the launching control box is packaged; when the missile fails, the launching control box forwards the missile fault to the airplane, and the airplane manually cuts off the power supply of the launching control box according to the control logic after receiving the missile fault information.
Has the advantages that:
1) the hair guide rack is small in size and can be arranged in the hair guide rack;
2) the 1553B and RS422 data can be mutually converted, and the data can be analyzed and recombined, so that data forwarding among different buses is realized;
3) the missile launching system has the launching control function and can realize the launching of missiles.
Drawings
Fig. 1 is a schematic structural diagram of a preferred embodiment of the present invention.
Fig. 2 is a schematic diagram of a preferred embodiment of the present invention.
FIG. 3 is a schematic diagram of the connection according to the preferred embodiment of the present invention.
Detailed Description
In order to make the technical means, the creation characteristics, the achievement purposes and the effects of the invention easy to understand, the invention is further explained below by combining the specific drawings.
Referring to fig. 1 to 3, a small-sized launch control box includes a bottom plate 1, a middle plate 2, a cover plate 3, a power supply plate 4, a core plate 5, a function plate 6 and an electrical connector 7, wherein the power supply plate 4 is installed between the bottom plate 1 and the middle plate 2, the core plate 5 is installed in the middle plate 2, the electrical connector 7 is arranged on one side of the middle plate 2, and the function plate 6 is installed between the middle plate 2 and the cover plate 3 and is located above the core plate 5;
the power panel 4 comprises a secondary power conversion module, a surge peak suppression module and a filtering module;
the core board 5 comprises a DSP circuit, an FPGA circuit and a power supply output control circuit;
the function board 6 comprises a tertiary power supply conversion circuit, a 1553B circuit, an RS422 circuit, a 232 circuit and a discrete magnitude processing circuit;
the electric connector 7 is used for realizing signal cross-linking of an upper part and an airplane 8 and signal cross-linking of a lower part and a missile 11, the airplane 8 is connected with a launching control box 10 and the missile 11 which are installed on a missile guide frame 9 through a cable 12, and when the electric connector 7 is designed, the double-coaxial contact element is split into three core wires, namely a plus wire, a minus wire and a shielding wire, for example, MuxA is split into MuxA +, MuxA and MuxA-GND, so that a GJB599 III series electric connector with the double-coaxial contact element is not required to be selected, and the signal of the electric connector 7 selected in the embodiment is J29A-51 ZKW.
In this embodiment, the workflow is as follows:
1) data reception
The FPGA circuit receives data of the slave aircraft/missile and stores the data in the FPGA data storage unit, the DSP circuit reads the data in the FPGA data storage unit into a memory in the DSP circuit through an EMIF interface, and an application layer calls an API function to obtain the data according to the requirement;
2) data transmission
The application layer calls an API function to send, stores a data result obtained through calculation into a memory inside the DSP circuit and sends the data result to the FPGA circuit through an EMIF interface, the FPGA circuit temporarily stores received data in an FPGA data storage unit, and a controller of the FPGA circuit sends the temporarily stored data to an airplane or a guided missile;
the aircraft supplies power to the launching control box through the electric connector 7, the launching control box receives a control instruction issued by the aircraft after self-checking is normal, and the launching control box supplies power to the missile after receiving the power supply instruction; the launching control box receives the state information of the missile by using the 1553B communication port, analyzes and recombines the data into RS422 communication data, updates the state information of the missile, and forwards the state information of the missile to the airplane; the launching control box receives an instruction issued by the airplane by using the RS422 communication port, analyzes and recombines the data into 1553B communication data after receiving the data transmitted by the RS422 communication port, so that the 1553B communication protocol between the launching control box and the guided missile is met, and the guided missile forwards the control instruction according to the control logic after the launching control box is packaged; when the missile fails, the launching control box forwards the missile fault to the airplane, and the airplane manually cuts off the power supply of the launching control box according to the control logic after receiving the missile fault information.
In the embodiment, the DSP circuit has a main frequency of 200 MHz; a memory: FLASH ROM: 1M 16 bit; SDRAM: 8M 32 bit;
power supply: DC 28V;
communication of the electrical connector 7: the 1 path is RS422, the baud rate is adjustable, and the 1553B bus BC node has one path, the baud rate and 1 Mbps; AD: 2-path, resolution 12 bits; DO:3, providing an output of no less than 28V/10A per lane; and 3 paths of DI.

Claims (9)

1. A small-sized launch control box comprises a bottom plate, a middle plate, a cover plate, a power supply plate, a core plate, a function plate and an electric connector, and is characterized in that the power supply plate is arranged between the bottom plate and the middle plate, the core plate is arranged in the middle plate, the electric connector used for realizing up-to-up signal crosslinking with an airplane and down-to-down signal crosslinking with a missile is arranged on one side of the middle plate, and a double-coaxial contact piece is split into three core wires in the electric connector; the function board is arranged between the middle board and the cover board and is positioned above the core board, and meanwhile, the function board has the function of mutually converting the data of 1553B and RS 422; the core board comprises a DSP circuit and an FPGA circuit which are connected with each other.
2. The compact launch control box of claim 1 wherein said power strip comprises a secondary power conversion module, a surge spike suppression module and a filtering module.
3. The compact launch control pod of claim 1 wherein the core board further comprises a power supply output control circuit.
4. The compact transmit control box of claim 1, wherein the DSP circuitry and the FPGA circuitry are connected via an EMIF interface.
5. The compact emission control box of claim 1, wherein the function board comprises a cubic power conversion circuit, a 1553B circuit, an RS422 circuit, a 232 circuit and a discrete quantity processing circuit.
6. The compact emission control box of claim 1, wherein said three cores split from said dual coaxial contacts are + wire, -wire and shield wire.
7. The compact emission control box of claim 1, wherein the FPGA circuit is provided with an FPGA data storage unit.
8. The compact emission control pod of claim 1, wherein the DSP circuitry has a memory disposed therein.
9. The compact launch control box according to any one of claims 1 to 8, wherein the launch control box operates as follows:
1) data reception
The FPGA circuit receives data of the slave aircraft/missile and stores the data in the FPGA data storage unit, the DSP circuit reads the data in the FPGA data storage unit into a memory in the DSP circuit through an EMIF interface, and an application layer calls an API function to obtain the data according to the requirement;
2) data transmission
The application layer calls an API function to send, stores a data result obtained through calculation into a memory inside the DSP circuit and sends the data result to the FPGA circuit through an EMIF interface, the FPGA circuit temporarily stores received data in an FPGA data storage unit, and a controller of the FPGA circuit sends the temporarily stored data to an airplane or a guided missile;
the aircraft supplies power to the launching control box through the electric connector, the launching control box receives a control command issued by the aircraft after self-checking is normal, and the launching control box supplies power to the missile after receiving the power supply command; the launching control box receives the state information of the missile by using the 1553B communication port, analyzes and recombines the data into RS422 communication data, updates the state information of the missile, and forwards the state information of the missile to the airplane; the launching control box receives an instruction issued by the airplane by using the RS422 communication port, analyzes and recombines the data into 1553B communication data after receiving the data transmitted by the RS422 communication port, so that the 1553B communication protocol between the launching control box and the guided missile is met, and the guided missile forwards the control instruction according to the control logic after the launching control box is packaged; when the missile fails, the launching control box forwards the missile fault to the airplane, and the airplane manually cuts off the power supply of the launching control box according to the control logic after receiving the missile fault information.
CN202010552667.8A 2020-06-17 2020-06-17 Small-size transmission control box Pending CN111811319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010552667.8A CN111811319A (en) 2020-06-17 2020-06-17 Small-size transmission control box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010552667.8A CN111811319A (en) 2020-06-17 2020-06-17 Small-size transmission control box

Publications (1)

Publication Number Publication Date
CN111811319A true CN111811319A (en) 2020-10-23

Family

ID=72845875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010552667.8A Pending CN111811319A (en) 2020-06-17 2020-06-17 Small-size transmission control box

Country Status (1)

Country Link
CN (1) CN111811319A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799795A (en) * 2009-12-30 2010-08-11 北京龙芯中科技术服务中心有限公司 1553B bus monitor and bus system with same
CN202748785U (en) * 2012-06-20 2013-02-20 北京神州飞航科技有限责任公司 Double-channel 1553B and RS422 converting card
TW201351820A (en) * 2012-06-13 2013-12-16 Acer Inc Electrical connecting device
CN106571180A (en) * 2016-10-21 2017-04-19 杭州乐荣电线电器有限公司 High-speed and low-loss mixed medium dual coaxial differential transmission signal wire structure
CN207925743U (en) * 2017-08-09 2018-09-28 中国航空工业集团公司西安飞行自动控制研究所 a kind of integrated electric connector
CN111077818A (en) * 2019-12-05 2020-04-28 江西洪都航空工业集团有限责任公司 Control box for aircraft data forwarding and transmitting control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799795A (en) * 2009-12-30 2010-08-11 北京龙芯中科技术服务中心有限公司 1553B bus monitor and bus system with same
TW201351820A (en) * 2012-06-13 2013-12-16 Acer Inc Electrical connecting device
CN202748785U (en) * 2012-06-20 2013-02-20 北京神州飞航科技有限责任公司 Double-channel 1553B and RS422 converting card
CN106571180A (en) * 2016-10-21 2017-04-19 杭州乐荣电线电器有限公司 High-speed and low-loss mixed medium dual coaxial differential transmission signal wire structure
CN207925743U (en) * 2017-08-09 2018-09-28 中国航空工业集团公司西安飞行自动控制研究所 a kind of integrated electric connector
CN111077818A (en) * 2019-12-05 2020-04-28 江西洪都航空工业集团有限责任公司 Control box for aircraft data forwarding and transmitting control

Similar Documents

Publication Publication Date Title
US10135523B2 (en) Hitless rearrangement of a satellite-hosted switch via propagated synchronization
CN106537790B (en) High-frequency model
CN208707970U (en) One kind being used for the wireless isolated transmission module of explosion hazard area intrinsic safety information
CN104488197A (en) Circuit arrangement for a mobile communications unit of a motor vehicle, motor vehicle and method for operating a circuit arrangement
EP3061191A1 (en) Antenna detection with non-volatile memory powered by dc over coaxial cable
CN111077818B (en) Control box for aircraft data forwarding and transmitting control
US10509453B2 (en) Electronic communications device, particularly Power-over-Ethernet terminal, as well as add-on board
CN111811319A (en) Small-size transmission control box
JP2011034970A (en) Digital communication cable, data harness, and system connecting analog component to the same
CN210053412U (en) Carrier-based station automatic configuration system
CN211124034U (en) Multi-path acquisition card and server with same
CN206363306U (en) A kind of terminal and its serial communication circuit
CN201590834U (en) Online coupler equipped with 1553B bus selector switch
CN211827246U (en) USB interface converter for vehicle machine and vehicle machine
CN102307199A (en) Multimedia transmission and processing apparatus
CN107517053A (en) A kind of half-duplex is anti-to disturb infrared serial interface circuit certainly
CN110677745B (en) Power distribution apparatus, system and method
CN107360024B (en) 1553B bus coupler with switchable channels
CN105206898B (en) Microwave telecommunication devices and microwave telecommunication system
CN105515611A (en) APF (active power filter) communication system
CN205336272U (en) APF communication system
CN210466375U (en) 4Mbps1553B bus communication board card with PXI specification
US10996263B2 (en) Frontend module and frontend for a radio frequency test device, and method for operating a frontend module
US11652274B1 (en) Millimeter wave wireless connector chip, wireless connector and signal transmission system
CN111182276A (en) Multi-path high-speed serial port transparent transmission optical transceiver and equipment based on FPGA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201023

RJ01 Rejection of invention patent application after publication