CN111810267A - 一种基于铝燃料的综合能源系统及其工作方法 - Google Patents

一种基于铝燃料的综合能源系统及其工作方法 Download PDF

Info

Publication number
CN111810267A
CN111810267A CN202010798065.0A CN202010798065A CN111810267A CN 111810267 A CN111810267 A CN 111810267A CN 202010798065 A CN202010798065 A CN 202010798065A CN 111810267 A CN111810267 A CN 111810267A
Authority
CN
China
Prior art keywords
heat exchanger
aluminum
gas
fuel
temperature heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010798065.0A
Other languages
English (en)
Inventor
白文刚
张纯
乔永强
张旭伟
顾正萌
李红智
姚明宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202010798065.0A priority Critical patent/CN111810267A/zh
Publication of CN111810267A publication Critical patent/CN111810267A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/42Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation
    • C01F7/428Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation by oxidation in an aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Geology (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种基于铝燃料的综合能源系统及其工作方法,该系统包括铝燃料制备及燃烧子系统、蒸汽朗肯循环发电子系统和氢气分离子系统;本发明通过将基于铝燃料储能、铝燃烧发电、蒸汽朗肯循环和制氢等进行有效地耦合,具有储能密度高、储能周期长可实现永久储存、燃料循环再生无消耗、可实现电力、氢气多联产和便于开展全球能源贸易等优点。

Description

一种基于铝燃料的综合能源系统及其工作方法
技术领域
本发明属于绿色发电和先进储能技术领域,具体涉及一种基于铝燃料的综合能源系统及其工作方法。
背景技术
随着全球大气污染和气候变暖形势的日趋严峻,传统的以化石能源为主的发电系统将面临前所未有的压力和挑战。从世界范围来看,各国都在努力提高自身电力结构中可再生能源发电的比例。未来,世界能源领域的发展趋势必然是可再生能源逐步替代化石能源。然而,可再生能源由于自身的间歇性、不稳定性和不确定性等特点,严重阻碍了可再生能源发电的发展。未来要实现可再生能源替代化石能源,必须依赖大规模和长周期储能技术的发展和支撑。
目前,储能技术领域的研究十分活跃,各种储能技术迅猛发展,如抽水蓄能、压缩空气储能、锂电池储能、超级电容器储能、飞轮储能、储氢等。然而,现有的储能技术难以同时满足储能密度大、可移动性、自耗损失小和全球能源贸易的要求。因此,需要开发一种新的储能技术,从而使可再生能源发电在全世界范围内向更深、更广方向发展。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种基于铝燃料的综合能源系统及其工作方法,该系统将基于铝燃料储能、铝燃烧发电、蒸汽朗肯循环和制氢等进行有效地耦合,具有储能密度高、储能周期长可实现永久储存、燃料循环再生无消耗、可实现电力、氢气多联产和便于开展全球能源贸易等优点。
为达到上述目的,本发明采用如下技术方案:
一种基于铝燃料的综合能源系统,包括铝燃料制备及燃烧子系统、蒸汽朗肯循环发电子系统和氢气分离子系统;
所述铝燃料制备及燃烧子系统包括气固分离装置6、氧化铝电解装置1、电网中富余的可再生能源电力供应2、制粉系统3和燃烧室4;所述气固分离装置6的固体物质氧化铝出口通过输送管路与氧化铝电解装置1的氧化铝物料进口相连接,氧化铝电解装置1的另一个物料进口与助熔剂冰晶石输送管路相连接,氧化铝电解装置1的电源与电网中富余的可再生能源电力供应2相连接,氧化铝电解装置1的阴极连通制粉系统3的燃料进口,制粉系统3的燃料出口与燃烧室4的燃料进口相连接,燃烧室4的助燃剂进口与助燃剂水输送管路相连接,在燃烧室4中,铝粉与水发生燃烧反应,反应方程式为2Al+3H2O=Al2O3+3H2;
所述蒸汽朗肯循环发电子系统包括给水泵10、低温换热器11、燃烧室4、高温换热器5、蒸汽轮机7、发电机8和冷凝器9;新补充的动力循环工质水与冷凝器9冷凝回收得到的凝结水混合后与给水泵10的工质进口相连接,经给水泵10升压后与低温换热器11的冷侧进口相连接,吸热升温后的动力循环工质水经低温换热器11的冷侧出口与燃烧室4的动力循环工质进口相连接,在燃烧室4中继续吸热升温后经燃烧室4的动力循环工质出口与高温换热器5的冷侧进口相连接,高温换热器5的冷侧出口与蒸汽轮机7的进口相连接,在高温换热器5中完成吸热的动力循环工质水成为过热蒸汽后进入蒸汽轮机7膨胀做功并带动发电机8旋转发电,发电机8与蒸汽轮机7同轴连接,蒸汽轮机7的工质出口与冷凝器9的工质进口相连接;
所述燃烧室4的燃烧产物出口与高温换热器5的热侧进口相连接,燃烧产物在高温换热器5放热后经高温换热器5的热侧出口与气固分离装置6的进口相连接,燃烧产物在气固分离装置6实现气固分离,气固分离装置6的固体出口产物为氧化铝;
所述氢气分离子系统包括低温换热器11和气液分离装置12;低温换热器11的热侧进口与气固分离装置6的气体出口相连接,在低温换热器11中燃烧产物放热降温后,组分中的水蒸气凝结成液态,低温换热器11的热侧出口与气液分离装置12的进口相连接,在气液分离装置12中,燃烧产物中的氢气与水分离后,氢气由气液分离装置12的气体出口排出并收集他用,水由气液分离装置12的液体出口排出。
所述的基于铝燃料的综合能源系统的工作方法,所述的综合能源系统以氧化铝为原料,当电网系统中可再生能源发电过剩或富余时,通过氧化铝电解装置1对熔融的氧化铝进行电解,将可再生能源电力通过电化学反应转化成铝燃料的化学能进行储存;当电网系统中可再生能源发电不足或世界上某地理位置需要电力供应时,通过燃料制备及燃烧子系统和蒸汽朗肯循环发电子系统将铝燃料的化学能转化成电能,对外实现供电,具体的将化学能转化成电能的过程为:通过氧化铝电解装置1得到的燃料铝,经制粉系统3磨制成铝粉,铝粉与水在燃烧室4中发生燃烧放热反应,具体的反应方程式为2Al+3H2O=Al2O3+3H2;新补充的动力循环工质水与冷凝器9冷凝回收得到的凝结水混合后经给水泵10升压后依次经低温换热器11、燃烧室4和高温换热器5吸热后成为过热蒸汽,然后进入蒸汽轮机7膨胀做功并带动发电机8旋转发电;铝燃料燃烧后的产物经换热分离后得到氢气和氧化铝,氢气具有广阔的工业用途,如氢燃料电池、氢燃气轮机等,氧化铝可重新进入综合能源系统,通过氧化铝电解装置1电解再次得到铝燃料,实现循环利用,整个过程氧化铝无消耗。
本发明的有益效果:
本发明所述的一种基于铝燃料的综合能源系统及其工作方法,具有如下优点:(1)金属燃料铝的能量密度高;(2)铝燃料中不含碳,且系统整个工作过程不产生污染物,是一种绿色低碳的发电技术;(3)通过电化学反应将可再生能源电力转化为金属燃料铝的化学能进行储存,具有储能周期长,可实现永久储存的优点;(4)整个过程中铝燃料燃烧反应后,其燃烧产物通过电解再生可重新得到金属燃料铝,整个过程燃料铝循环再生、无消耗;(5)在发电的同时还可实现制氢气;(6)通过金属燃料铝进行储能,便于开展全球范围内的能源贸易。
附图说明
图1为本发明的结构示意图。
其中,1为氧化铝电解装置、2为电网中富余的可再生能源电力供应、3为制粉系统、4为燃烧室、5为高温换热器、6为气固分离装置、7为蒸汽轮机、8为发电机、9为冷凝器、10为给水泵、11为低温换热器、12为气液分离装置。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1,一种基于铝燃料的综合能源系统,包括铝燃料制备及燃烧子系统、蒸汽朗肯循环发电子系统和氢气分离子系统;
所述铝燃料制备及燃烧子系统包括气固分离装置6、氧化铝电解装置1、电网中富余的可再生能源电力供应2、制粉系统3和燃烧室4;气固分离装置6分离得到的固体物质氧化铝通过输送管路与氧化铝电解装置1的氧化铝物料进口相连接,氧化铝电解装置1的另一个物料进口与助熔剂冰晶石输送管路相连接,氧化铝电解装置1的电源与电网中富余的可再生能源电力供应2相连接,氧化铝电解装置1的阴极连通制粉系统3的燃料进口,制粉系统3的燃料出口与燃烧室4的燃料进口相连接,燃烧室4的助燃剂进口与助燃剂水输送管路相连接,在燃烧室4中,铝粉与水发生燃烧反应,反应方程式为2Al+3H2O=Al2O3+3H2;
所述蒸汽朗肯循环发电子系统包括给水泵10、低温换热器11、燃烧室4、高温换热器5、蒸汽轮机7、发电机8和冷凝器9;新补充的动力循环工质水与冷凝器9冷凝回收得到的凝结水混合后与给水泵10的工质进口相连接,经给水泵10升压后与低温换热器11的冷侧进口相连接,吸热升温后的动力循环工质水经低温换热器11的冷侧出口与燃烧室4的动力循环工质进口相连接,在燃烧室4中继续吸热升温后经燃烧室4的动力循环工质出口与高温换热器5的冷侧进口相连接,高温换热器5的冷侧出口与蒸汽轮机7的进口相连接,在高温换热器5中完成吸热的动力循环工质水成为过热蒸汽后进入蒸汽轮机7膨胀做功并带动发电机8旋转发电,发电机8与蒸汽轮机7同轴连接,蒸汽轮机7的工质出口与冷凝器9的工质进口相连接;
所述燃烧室4的燃烧产物出口与高温换热器5的热侧进口相连接,燃烧产物在高温换热器5放热后经高温换热器5的热侧出口与气固分离装置6的进口相连接,燃烧产物在气固分离装置6实现气固分离,气固分离装置6的固体出口产物为氧化铝;
所述氢气分离子系统包括低温换热器11和气液分离装置12;低温换热器11的热侧进口与气固分离装置6的气体出口相连接,在低温换热器11中燃烧产物放热降温后,组分中的水蒸气凝结成液态,低温换热器11的热侧出口与气液分离装置12的进口相连接,在气液分离装置12中,燃烧产物中的氢气与水分离后,氢气由气液分离装置12的气体出口排出并收集他用,水由气液分离装置12的液体出口排出。
本发明基于铝燃料的综合能源系统以氧化铝为原料,当电网系统中可再生能源发电过剩或富余时,通过氧化铝电解装置1对熔融的氧化铝进行电解,将可再生能源电力通过电化学反应转化成铝燃料的化学能进行储存。当电网系统中可再生能源发电不足或世界上其他某地理位置需要电力供应时,通过燃料制备及燃烧子系统和蒸汽朗肯循环发电子系统将铝燃料的化学能转化成电能,对外实现供电;具体的将化学能转化成电能的过程为:通过氧化铝电解装置1得到的燃料铝,经制粉系统3磨制成铝粉,铝粉与水在燃烧室4中发生燃烧放热反应,具体的反应方程式为2Al+3H2O=Al2O3+3H2;新补充的动力循环工质水与冷凝器9冷凝回收得到的凝结水混合后经给水泵10升压后依次经低温换热器11、燃烧室4和高温换热器5吸热后成为过热蒸汽,然后进入蒸汽轮机7膨胀做功并带动发电机8旋转发电;铝燃料燃烧后的产物经换热分离后可得到氢气和氧化铝,氢气具有广阔的工业用途,如氢燃料电池、氢燃气轮机等,氧化铝可重新进入综合能源系统,通过氧化铝电解装置1电解再次得到铝燃料,实现循环利用,整个过程氧化铝无消耗。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于铝燃料的综合能源系统,其特征在于:包括铝燃料制备及燃烧子系统、蒸汽朗肯循环发电子系统和氢气分离子系统;
所述铝燃料制备及燃烧子系统包括气固分离装置(6)、氧化铝电解装置(1)、电网中富余的可再生能源电力供应(2)、制粉系统(3)和燃烧室(4);所述气固分离装置(6)的固体物质氧化铝出口通过输送管路与氧化铝电解装置(1)的氧化铝物料进口相连接,氧化铝电解装置(1)的另一个物料进口与助熔剂冰晶石输送管路相连接,氧化铝电解装置(1)的电源与电网中富余的可再生能源电力供应(2)相连接,氧化铝电解装(1)的阴极连通制粉系统(3)的燃料进口,制粉系统(3)的燃料出口与燃烧室(4)的燃料进口相连接,燃烧室(4)的助燃剂进口与助燃剂水输送管路相连接,在燃烧室(4)中,铝粉与水发生燃烧反应,反应方程式为2Al+3H2O=Al2O3+3H2;
所述蒸汽朗肯循环发电子系统包括给水泵(10)、低温换热器(11)、燃烧室(4)、高温换热器(5)、蒸汽轮机(7)、发电机(8)和冷凝器(9);新补充的动力循环工质水与冷凝器(9)冷凝回收得到的凝结水混合后与给水泵(10)的工质进口相连接,经给水泵(10)升压后与低温换热器(11)的冷侧进口相连接,吸热升温后的动力循环工质水经低温换热器(11)的冷侧出口与燃烧室(4)的动力循环工质进口相连接,在燃烧室(4)中继续吸热升温后经燃烧室(4)的动力循环工质出口与高温换热器(5)的冷侧进口相连接,高温换热器(5)的冷侧出口与蒸汽轮机(7)的进口相连接,在高温换热器(5)中完成吸热的动力循环工质水成为过热蒸汽后进入蒸汽轮机(7)膨胀做功并带动发电机(8)旋转发电,发电机(8)与蒸汽轮机(7)同轴连接,蒸汽轮机(7)的工质出口与冷凝器(9)的工质进口相连接;
所述燃烧室(4)的燃烧产物出口与高温换热器(5)的热侧进口相连接,燃烧产物在高温换热器(5)放热后经高温换热器(5)的热侧出口与气固分离装置(6)的进口相连接,燃烧产物在气固分离装置(6)实现气固分离,气固分离装置(6)的固体出口产物为氧化铝;
所述氢气分离子系统包括低温换热器(11)和气液分离装置(12);低温换热器(11)的热侧进口与气固分离装置(6)的气体出口相连接,在低温换热器(11)中燃烧产物放热降温后,组分中的水蒸气凝结成液态,低温换热器(11)的热侧出口与气液分离装置(12)的进口相连接,在气液分离装置(12)中,燃烧产物中的氢气与水分离后,氢气由气液分离装置(12)的气体出口排出并收集他用,水由气液分离装置(12)的液体出口排出。
2.根据权利要求1所述的一种基于铝燃料的综合能源系统,其特征在于:所述气固分离装置(6)采用低温区布置,即布置在高温换热器(5)下游。
3.根据权利要求1所述的一种基于铝燃料的综合能源系统,其特征在于:所述电网中富余的可再生能源电力供应(2)是电网中难以被利用的由可再生能源发出的电。
4.权利要求1至3任一项所述的基于铝燃料的综合能源系统的工作方法,其特征在于:所述的综合能源系统以氧化铝为原料,当电网系统中可再生能源发电过剩或富余时,通过氧化铝电解装置(1)对熔融的氧化铝进行电解,将可再生能源电力通过电化学反应转化成铝燃料的化学能进行储存;当电网系统中可再生能源发电不足或世界上某地理位置需要电力供应时,通过燃料制备及燃烧子系统和蒸汽朗肯循环发电子系统将铝燃料的化学能转化成电能,对外实现供电,具体的将化学能转化成电能的过程为:通过氧化铝电解装置(1)得到的燃料铝,经制粉系统(3)磨制成铝粉,铝粉与水在燃烧室(4)中发生燃烧放热反应,具体的反应方程式为2Al+3H2O=Al2O3+3H2;新补充的动力循环工质水与冷凝器(9)冷凝回收得到的凝结水混合后经给水泵(10)升压后依次经低温换热器(11)、燃烧室(4)和高温换热器(5)吸热后成为过热蒸汽,然后进入蒸汽轮机(7)膨胀做功并带动发电机(8)旋转发电;铝燃料燃烧后的产物经换热分离后得到氢气和氧化铝,氢气用于氢燃料电池或氢燃气轮机,氧化铝可重新进入综合能源系统,通过氧化铝电解装置(1)电解再次得到铝燃料,实现循环利用,整个过程氧化铝无消耗。
CN202010798065.0A 2020-08-10 2020-08-10 一种基于铝燃料的综合能源系统及其工作方法 Pending CN111810267A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010798065.0A CN111810267A (zh) 2020-08-10 2020-08-10 一种基于铝燃料的综合能源系统及其工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010798065.0A CN111810267A (zh) 2020-08-10 2020-08-10 一种基于铝燃料的综合能源系统及其工作方法

Publications (1)

Publication Number Publication Date
CN111810267A true CN111810267A (zh) 2020-10-23

Family

ID=72864609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010798065.0A Pending CN111810267A (zh) 2020-08-10 2020-08-10 一种基于铝燃料的综合能源系统及其工作方法

Country Status (1)

Country Link
CN (1) CN111810267A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811388A (zh) * 2021-02-07 2021-05-18 西安热工研究院有限公司 一种赈灾用的铝基综合能源系统及其工作方法
CN113023671A (zh) * 2021-02-07 2021-06-25 西安热工研究院有限公司 一种耦合铝燃烧和氢燃料电池的发电系统及其工作方法
CN113584530A (zh) * 2021-09-02 2021-11-02 西安热工研究院有限公司 一种背压式铝-蒸汽燃烧多联产储能系统及工作方法
CN114738062A (zh) * 2022-05-19 2022-07-12 西安热工研究院有限公司 耦合sofc和燃气轮机的铝燃料储能系统及工作方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811388A (zh) * 2021-02-07 2021-05-18 西安热工研究院有限公司 一种赈灾用的铝基综合能源系统及其工作方法
CN113023671A (zh) * 2021-02-07 2021-06-25 西安热工研究院有限公司 一种耦合铝燃烧和氢燃料电池的发电系统及其工作方法
CN113584530A (zh) * 2021-09-02 2021-11-02 西安热工研究院有限公司 一种背压式铝-蒸汽燃烧多联产储能系统及工作方法
CN113584530B (zh) * 2021-09-02 2024-04-02 西安热工研究院有限公司 一种背压式铝-蒸汽燃烧多联产储能系统及工作方法
CN114738062A (zh) * 2022-05-19 2022-07-12 西安热工研究院有限公司 耦合sofc和燃气轮机的铝燃料储能系统及工作方法
CN114738062B (zh) * 2022-05-19 2024-04-26 西安热工研究院有限公司 耦合sofc和燃气轮机的铝燃料储能系统及工作方法

Similar Documents

Publication Publication Date Title
CN111810267A (zh) 一种基于铝燃料的综合能源系统及其工作方法
JP5959036B2 (ja) 余剰電力を利用する排ガス中二酸化炭素の天然ガス変換方法および装置
CN113584530B (zh) 一种背压式铝-蒸汽燃烧多联产储能系统及工作方法
CN104377375B (zh) 一种整体煤气化熔融碳酸盐燃料电池发电系统
CN112814746A (zh) 一种燃用铝的发电系统及其工作方法
CN205779064U (zh) 超临界水气化与超临界二氧化碳布雷顿循环联合生产系统
CN113594526A (zh) 一种基于氨储能的多联产系统及其工作方法
CN212454565U (zh) 一种基于铝燃料的综合能源系统
CN216155981U (zh) 一种背压式铝-蒸汽燃烧多联产储能系统
CN113793964A (zh) 一种基于固体氧化物燃料电池的火电调峰系统及工作方法
CN215403079U (zh) 一种耦合铝燃烧和氢燃料电池的发电系统
CN111810269A (zh) 一种基于金属燃料铝储能的多联产发电系统及其工作方法
CN214464425U (zh) 一种燃用铝的发电系统
CN214660375U (zh) 一种基于硅燃料储能的能源系统
CN204204965U (zh) 一种整体煤气化熔融碳酸盐燃料电池发电结构
CN112003309A (zh) 一种电力调峰系统
CN112282878A (zh) 一种以镁为燃料的发电系统及其工作方法
CN113023671A (zh) 一种耦合铝燃烧和氢燃料电池的发电系统及其工作方法
CN111963269A (zh) 耦合铝储能和超临界co2循环发电的多联产系统及方法
CN111173580A (zh) 一种基于金属燃料锂储能、燃烧、电解再生的发电系统
CN113794236A (zh) 一种以镁为载体的能源系统及其工作方法
CN213743550U (zh) 一种以镁为燃料的发电系统
CN212454564U (zh) 一种耦合铝储能和超临界co2循环发电的多联产系统
CN114032563A (zh) 一种基于波浪能供电的海上固体氧化物电解池共电解系统
CN114123521A (zh) 一种针对可再生能源的电解氢与压缩二氧化碳联合储能系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination