CN111807808A - A kind of preparation method of high temperature resistant thermal insulation composite material - Google Patents
A kind of preparation method of high temperature resistant thermal insulation composite material Download PDFInfo
- Publication number
- CN111807808A CN111807808A CN202010803914.7A CN202010803914A CN111807808A CN 111807808 A CN111807808 A CN 111807808A CN 202010803914 A CN202010803914 A CN 202010803914A CN 111807808 A CN111807808 A CN 111807808A
- Authority
- CN
- China
- Prior art keywords
- montmorillonite
- composite material
- temperature
- phosphate
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 238000009413 insulation Methods 0.000 title claims description 11
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims abstract description 73
- 229910052901 montmorillonite Inorganic materials 0.000 claims abstract description 72
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 34
- 239000010452 phosphate Substances 0.000 claims abstract description 34
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 32
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229920000642 polymer Polymers 0.000 claims abstract description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 14
- 230000001070 adhesive effect Effects 0.000 claims abstract description 14
- 239000000853 adhesive Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 13
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 10
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 10
- 229920005989 resin Polymers 0.000 claims abstract description 9
- 239000011347 resin Substances 0.000 claims abstract description 9
- 239000011780 sodium chloride Substances 0.000 claims abstract description 7
- 229920000620 organic polymer Polymers 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 15
- 238000002156 mixing Methods 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000012153 distilled water Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 239000004570 mortar (masonry) Substances 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 238000000227 grinding Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 238000011049 filling Methods 0.000 abstract description 5
- 239000002861 polymer material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002114 nanocomposite Substances 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 101710134784 Agnoprotein Proteins 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910018516 Al—O Inorganic materials 0.000 description 1
- 229910019092 Mg-O Inorganic materials 0.000 description 1
- 229910019395 Mg—O Inorganic materials 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910001579 aluminosilicate mineral Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000012799 strong cation exchange Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/34—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/10—Clay
- C04B14/104—Bentonite, e.g. montmorillonite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/02—Treatment
- C04B20/023—Chemical treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/50—Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Civil Engineering (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一种耐高温隔热复合材料的制备方法,属于复合材料制备技术领域。本发明的目的是为了实现高蒙脱土填充的同时、提高材料的机械性能,所述方法为:将蒙脱土放在NaCl溶液中,油浴搅拌处理,除去Cl‑,烘干;加入有机聚合物,混合均匀,加入乙酸乙酯,在常温下搅拌30min,去除乙酸乙酯挥发掉,得到有机杂化蒙脱土;将磷酸盐树脂与金属氧化物按照1:1的质量比混合,研制出磷酸盐胶黏剂,加入到制备好的有机杂化蒙脱土中,混合均匀放进模具中,压制成圆柱形样品;将成型的材料进行阶梯状的温度固化即可。本方法用来制备一种磷酸盐、耐高温聚合物共同杂化的有机‑无机杂化蒙脱土复合材料使其具有一定的强度和形变能力。
The invention relates to a preparation method of a high-temperature-resistant and heat-insulating composite material, belonging to the technical field of composite material preparation. The purpose of the present invention is to realize the high montmorillonite filling while improving the mechanical properties of the material, the method is as follows: the montmorillonite is placed in a NaCl solution, stirred in an oil bath, removed Cl , and dried; add organic The polymer was mixed uniformly, ethyl acetate was added, stirred at room temperature for 30 minutes, and the ethyl acetate was removed to volatilize to obtain organic hybrid montmorillonite; phosphate resin and metal oxide were mixed in a mass ratio of 1:1, and the The phosphate adhesive is extracted, added to the prepared organic hybrid montmorillonite, mixed evenly, put into a mold, and pressed into a cylindrical sample; the molded material can be cured at a stepped temperature. The method is used to prepare an organic-inorganic hybrid montmorillonite composite material which is co-hybridized with a phosphate and a high temperature resistant polymer, so that it has certain strength and deformation ability.
Description
技术领域technical field
本发明属于复合材料制备技术领域,具体涉及一种耐高温隔热复合材料的制备方法。The invention belongs to the technical field of composite material preparation, and in particular relates to a preparation method of a high temperature resistant and heat insulating composite material.
背景技术Background technique
近年来,我国航空航天事业取得了飞速的发展,在航天飞机与空气之间的摩擦会产生气动加热的现象,使得飞行器表面会极速上升到很高的温度,以航天飞机为例,航天飞机的机头锥帽、机翼前缘部位、测背风面区域、迎风面部位的峰值温度最高分别可以达到1600℃、1260℃、500℃以及500-1200℃。由于温度的上升所以对于航天器所选用的材料提出了更高的耐高温和隔热方面的需求。并且随着飞行高度的增加对于材料的力学性能以及抗压能力也有一定的要求。保温隔热材料可以分为有机材料和无机材料,它们分别有各自的优缺点,无机保温隔热材料具有防火阻燃性能好的优点,但是存在着导热系数偏大、保温效果稍差的缺点,目前市场上应用较多的主要有:粘土、矿棉、硅酸钙等;有机保温隔热材料导热系数小、保温效果好,包括聚氨酯、有机硅树脂等,但是有机材料易发生燃烧的缺点导致其单独使用受到限制,所以为了使材料具有更加优异的性能,科研人员对有机聚合物和无机材料制备的复合材料进行了研究。In recent years, my country's aerospace industry has achieved rapid development. The friction between the space shuttle and the air will produce aerodynamic heating, which will cause the surface of the aircraft to rapidly rise to a very high temperature. Take the space shuttle as an example. The peak temperatures of the nose cone, the leading edge of the wing, the leeward side and the windward side can reach 1600°C, 1260°C, 500°C and 500-1200°C respectively. Due to the rise in temperature, higher temperature resistance and thermal insulation requirements are put forward for the materials selected for spacecraft. And with the increase of flying height, there are certain requirements for the mechanical properties and compressive ability of the material. Thermal insulation materials can be divided into organic materials and inorganic materials, which have their own advantages and disadvantages. Inorganic thermal insulation materials have the advantages of good fire resistance and flame retardant performance, but they have the disadvantages of large thermal conductivity and slightly poor thermal insulation effect. At present, the most widely used ones in the market are: clay, mineral wool, calcium silicate, etc.; organic thermal insulation materials have low thermal conductivity and good thermal insulation effect, including polyurethane, silicone resin, etc. Its single use is limited, so in order to make the material have more excellent properties, researchers have studied composite materials prepared from organic polymers and inorganic materials.
蒙脱土(Al,Mg)2(SiO10)(OH)2·n H2O是自然界存在的层状硅铝酸盐矿物,层状结构主要由四面体(Si-O)-八面体(Mg-O、Al-O)-四面体(Si-O)这样的三层结构组成。蒙脱土具有较高的吸水能力是由于在蒙脱土的片层上带有负电荷为了对负电荷起到综合的作用在蒙脱土片层中存在大量的金属阳离子,这些金属阳离子的存在使蒙脱土具有较强的阳离子交换能力。蒙脱土具有低密度、低热导率、相对较高的熔点、一定的韧性,并具有化学惰性、耐用性和对环境安全的特性。蒙脱土作为一种轻质多孔材料具有优越的隔热性能,具有的高温稳定性使其具有抵抗高温差的能力,从而成为了高温环境的隔热层材料。Montmorillonite (Al, Mg) 2 (SiO 10 )(OH) 2 ·n H 2 O is a naturally occurring layered aluminosilicate mineral with a layered structure mainly composed of tetrahedral (Si-O)-octahedral ( It is composed of a three-layer structure such as Mg-O, Al-O)-tetrahedron (Si-O). The high water absorption capacity of montmorillonite is due to the negative charge on the montmorillonite sheet. In order to play a comprehensive role in the negative charge, there are a large number of metal cations in the montmorillonite sheet. The existence of these metal cations The montmorillonite has strong cation exchange capacity. Montmorillonite has low density, low thermal conductivity, relatively high melting point, some toughness, and is chemically inert, durable, and environmentally safe. As a lightweight porous material, montmorillonite has excellent thermal insulation properties, and its high temperature stability makes it resistant to high temperature differences, thus becoming a thermal insulation layer material in high temperature environments.
磷酸盐树脂是由磷酸或浓磷酸配制的大分子量的无机盐树脂,磷酸盐树脂与固化剂(常用的有金属氧化物、氢氧化物、金属盐类)会在常温下发生交联反应形成网状结构磷酸盐胶粘剂。磷酸盐胶黏剂具有粘接强度高、耐高温、化学性质稳定、无毒的优点,在很多方面得到广泛的应用。目前有机聚合物材料的应用越来越广泛,众所周知大部分聚合物都存在高温下易燃、不耐热的缺陷,所以对聚合物材料进行改性研究以实现聚合物材料的耐高温特性,市场上耐高温聚合物材料应用较多的是有机硅材料以及酚醛树脂材料他们都具有良好的耐高温特性,受到了广泛的应用。Phosphate resin is a large molecular weight inorganic salt resin prepared from phosphoric acid or concentrated phosphoric acid. Phosphate resin and curing agent (commonly used metal oxides, hydroxides, metal salts) will undergo cross-linking reaction at room temperature to form a network Structured phosphate adhesive. Phosphate adhesives have the advantages of high bonding strength, high temperature resistance, stable chemical properties and non-toxicity, and are widely used in many aspects. At present, the application of organic polymer materials is more and more extensive. It is well known that most polymers have the defects of flammability and heat resistance at high temperature. Therefore, research on modification of polymer materials is carried out to realize the high temperature resistance characteristics of polymer materials. Silicone materials and phenolic resin materials are the most widely used high temperature resistant polymer materials. They have good high temperature resistance properties and are widely used.
目前,蒙脱土在保温隔热复合材料领域的应用研究分为两个方面:一是直接将经过处理的蒙脱土粉体或颗粒作为填料加入到聚合物中,来提高聚合物的力学性能、热性能以及阻隔气体的能力,由于蒙脱土在有机聚合物基质中的剥落和排列不充分,为防止聚集,在复合材料中的蒙脱土浓度通常很低,一般不会超过10wt%。研究人员通过直接熔融共混的方法制备了PA-6/MMT纳米复合材料,通过将用马来酸酐处理后的MMT与PA-6同时进行熔融混合、成型,结果表明在拉伸试验中,随着MMT含量的增加,纳米复合材料的拉伸模量和强度趋于增加,在处理过的蒙脱土含量为0%、2%、5%时拉伸强度分别为27.9MPa、34.08MPa、35.28MPa,但是在拉伸强度增加的同时材料的断裂伸长率出现断崖式下降,并且蒙脱土的添加对于材料的玻璃化转变温度有小幅度的提升但是最大分解温度几乎不变。二是将蒙脱土作为主体材料,由于蒙脱土材料的机械强度低,利用聚合物作为粘合剂和增强材料同时发挥聚合物自身的优异性能。研究人员通过紫外光交联的手段制备了柔性的蒙脱土-聚乙二醇纳米复合膜,具体地,将纳米粒子与聚乙二醇二甲基丙烯酸正丁酯以及光引发剂2-羟基-2-甲基苯乙酮混合放在处理过的玻璃板夹层中在紫外光的条件下交联固化,产生柔性的杂化膜,结果显示在蒙脱土填充量为70%的情况下薄膜(1cm×1cm×60μm)在120s的火焰下保留其原来的形态,并且由于蒙脱土的加入复合材料的力学性能有所改善,蒙脱土在0%、69%、74.3%含量下复合材料的拉伸强度分别为0.74MPa、3.64MPa、4.58MPa,不难发现蒙脱土的含量对于复合材料的性能起着关键性的作用,蒙脱土含量的提高对于复合材料热性能有很好的改善,但是材料的拉伸强度并不高并且承受热的能力也很有限,所以如何做到在高蒙脱土填充的条件下使材料具有高的机械性能以及热性能至关重要。At present, the application research of montmorillonite in the field of thermal insulation composite materials is divided into two aspects: one is to directly add the treated montmorillonite powder or particles as fillers to the polymer to improve the mechanical properties of the polymer , thermal properties and gas barrier ability, due to insufficient exfoliation and alignment of montmorillonite in the organic polymer matrix, in order to prevent aggregation, the concentration of montmorillonite in the composite material is usually very low, generally not more than 10wt%. The researchers prepared PA-6/MMT nanocomposites by direct melt blending. By simultaneously melt mixing and molding the MMT treated with maleic anhydride and PA-6, the results showed that in the tensile test, with With the increase of MMT content, the tensile modulus and strength of nanocomposites tended to increase, and the tensile strengths were 27.9 MPa, 34.08 MPa, 35.28 MPa when the treated montmorillonite content was 0%, 2%, and 5%, respectively. MPa, but the elongation at break of the material decreases by a cliff while the tensile strength increases, and the addition of montmorillonite has a small increase in the glass transition temperature of the material but the maximum decomposition temperature is almost unchanged. The second is to use montmorillonite as the main material. Due to the low mechanical strength of the montmorillonite material, the polymer is used as a binder and a reinforcing material to exert the excellent properties of the polymer itself. The researchers prepared flexible montmorillonite-polyethylene glycol nanocomposite films by means of ultraviolet light cross-linking. Specifically, the nanoparticles were mixed with polyethylene glycol dimethacrylate and 2-hydroxyl as a photoinitiator. -2-Methylacetophenone mixed in the treated glass plate interlayer was cross-linked and cured under UV light, resulting in a flexible hybrid film. The results showed that the film was filled with 70% montmorillonite. (1cm×1cm×60μm) retained its original morphology under the flame of 120s, and the mechanical properties of the composites were improved due to the addition of montmorillonite, and the montmorillonite composites at 0%, 69%, 74.3% content The tensile strengths of the composites are 0.74MPa, 3.64MPa, and 4.58MPa respectively. It is not difficult to find that the content of montmorillonite plays a key role in the performance of the composite material. The increase of the content of montmorillonite has a good effect on the thermal performance of the composite material. However, the tensile strength of the material is not high and the ability to withstand heat is also very limited, so how to make the material have high mechanical and thermal properties under the condition of high montmorillonite filling is very important.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了实现高蒙脱土填充的同时、提高材料的机械性能,提供一种耐高温隔热复合材料的制备方法。The purpose of the present invention is to provide a preparation method of a high temperature resistant and heat insulating composite material in order to realize high montmorillonite filling and at the same time improve the mechanical properties of the material.
为实现上述目的,本发明采取的技术方案如下:To achieve the above object, the technical scheme adopted by the present invention is as follows:
一种耐高温隔热复合材料的制备方法,所述方法步骤为:A preparation method of a high temperature resistant and heat insulating composite material, the method steps are:
步骤一:将蒙脱土放在1mol/L的NaCl溶液中,在80℃油浴的条件下,2000rpm的搅拌速度下处理4h,将处理好的蒙脱土用蒸馏水进行多次的反复冲洗除去其中的Cl-,放进40℃的烘箱中干燥12h;Step 1: Put the montmorillonite in a 1mol/L NaCl solution, under the condition of an oil bath of 80 °C, and treat it at a stirring speed of 2000 rpm for 4 hours. The treated montmorillonite is washed repeatedly with distilled water to remove it. Among them, Cl - was dried in an oven at 40°C for 12h;
步骤二:向处理好的蒙脱土材料中加入有机聚合物,混合均匀,加入乙酸乙酯来使有机聚合物和蒙脱土的混合更加充分,在常温下搅拌30min,放在40℃的烘箱中12h使乙酸乙酯挥发掉,得到有机杂化蒙脱土;Step 2: Add organic polymer to the treated montmorillonite material, mix evenly, add ethyl acetate to make the organic polymer and montmorillonite mix more fully, stir at room temperature for 30 minutes, and place in an oven at 40°C During 12h, ethyl acetate was volatilized to obtain organic hybrid montmorillonite;
步骤三:将磷酸盐树脂与金属氧化物按照1:1的质量比混合,在研钵中研制使其能够充分接触制备出磷酸盐胶黏剂;Step 3: Mix the phosphate resin and the metal oxide in a mass ratio of 1:1, and develop it in a mortar so that it can be fully contacted to prepare a phosphate adhesive;
步骤四:将磷酸盐胶黏剂加入到制备好的有机杂化蒙脱土中,充分搅拌混合均匀,将混合均匀的物料放进模具中,在气动压力机上以2MPa的压力压制成圆柱形样品;Step 4: Add the phosphate adhesive to the prepared organic hybrid montmorillonite, stir and mix well, put the uniformly mixed material into the mold, and press it into a cylindrical sample on a pneumatic press at a pressure of 2MPa ;
步骤五:将成型的材料进行阶梯状的温度固化,分别在80℃、120℃、150℃的烘箱中固化30min,之后在180℃下固化2h即可。Step 5: The formed material is cured at a stepped temperature, and cured in an oven at 80°C, 120°C, and 150°C for 30 minutes, and then cured at 180°C for 2 hours.
本发明相对于现有技术的有益效果为:本方法用来制备一种磷酸盐、耐高温聚合物共同杂化的有机-无机杂化蒙脱土复合材料使其具有一定的强度和形变能力。现有的研究大多是将少量的无机刚性粒子填料加入到聚合物中提高聚合物材料的机械性能以及热性能,但是由于刚性粒子在其中的分散很难做到均匀,因此加入刚性粒子的量是比较少的,大多在10%以下,导致不能充分发挥无机填料的自身优良的性能,并且很少有人研究对于刚性粒子增韧的效果。本实验高填充量的无机填料由于无机填料具有好的耐火型,所以可以在1000摄氏度的高温下仍然维持良好的形态结构,并且具有良好的韧性可以产生一定的形变,从而提高了材料的抗冲击性能以及机械强度。Compared with the prior art, the present invention has the following beneficial effects: the method is used to prepare an organic-inorganic hybrid montmorillonite composite material which is co-hybridized with a phosphate and a high temperature resistant polymer, so that it has certain strength and deformability. Most of the existing researches are to add a small amount of inorganic rigid particle fillers to the polymer to improve the mechanical and thermal properties of the polymer material. However, since the dispersion of rigid particles in it is difficult to achieve uniform, the amount of rigid particles added is Relatively few, mostly below 10%, lead to the failure to give full play to the excellent performance of inorganic fillers, and few people have studied the effect of toughening of rigid particles. The inorganic filler with high filling content in this experiment can maintain a good morphological structure at a high temperature of 1000 degrees Celsius because of its good refractory type, and has good toughness and can produce certain deformation, thereby improving the impact resistance of the material. performance and mechanical strength.
附图说明Description of drawings
图1为不同比例下蒙脱土:磷酸盐的压缩形变能力图;Figure 1 shows the compressive deformation capacity diagram of montmorillonite: phosphate at different ratios;
图2为不同比例下蒙脱土:磷酸盐的抗压强度图;Figure 2 is a graph of the compressive strength of montmorillonite: phosphate at different ratios;
图3为蒙脱土:磷酸盐:酚醛树脂=350:100:100煅烧1000℃前的形貌图;Figure 3 shows the morphology of montmorillonite: phosphate: phenolic resin = 350:100:100 before calcination at 1000°C;
图4为蒙脱土:磷酸盐:酚醛树脂=350:100:100煅烧1000℃后的形貌图。Fig. 4 is a morphology diagram of montmorillonite: phosphate: phenolic resin = 350:100:100 after calcination at 1000°C.
具体实施方式Detailed ways
下面结合附图和实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and embodiments, but are not limited thereto. Any modification or equivalent replacement of the technical solutions of the present invention without departing from the spirit and scope of the technical solutions of the present invention shall cover within the scope of the present invention.
具体实施方式一:本实施方式记载的是一种耐高温隔热复合材料的制备方法,所述方法步骤为:Embodiment 1: This embodiment describes a preparation method of a high temperature resistant and heat insulating composite material, and the method steps are:
步骤一:对蒙脱土进行化学处理,将蒙脱土放在1mol/L的NaCl溶液中,在80℃油浴的条件下,2000rpm的搅拌速度下处理4h,将处理好的蒙脱土用蒸馏水进行多次的反复冲洗除去其中的Cl-,并用AgNO3溶液进行检测,当Cl-消失后将处理后的材料放进40℃的烘箱中干燥12h;用氯化钠处理蒙脱土主要是由于蒙脱土具有较高的阳离子交换能力,钠离子的进入可以扩大蒙脱土的层间距甚至可以使蒙脱土部分发生剥离。蒙脱土粒径小可以使复合材料的混合均匀性更高提高材料的性能指标。Step 1: Chemically treat the montmorillonite, put the montmorillonite in a 1 mol/L NaCl solution, and treat it for 4 hours at a stirring speed of 2000 rpm under the condition of an oil bath at 80 °C. Repeated rinsing with distilled water to remove Cl - was carried out with AgNO 3 solution for detection. When Cl - disappeared, the treated material was placed in an oven at 40°C for drying for 12 hours; the treatment of montmorillonite with sodium chloride was mainly Due to the high cation exchange capacity of montmorillonite, the entry of sodium ions can expand the interlayer spacing of montmorillonite and even make montmorillonite partially peel off. The small particle size of montmorillonite can make the mixing uniformity of the composite material higher and improve the performance index of the material.
步骤二:向处理好的蒙脱土材料中加入耐热性能好的有机聚合物,混合均匀,加入一定量易挥发且不会与材料发生反应的乙酸乙酯来使有机聚合物和蒙脱土的混合更加充分,在常温下搅拌30min,放在40℃的烘箱中12h使乙酸乙酯挥发掉,得到有机杂化蒙脱土;乙酸乙酯相当于所用的耐高温聚合物的溶剂或者稀释剂由于高固含量聚合物的流动性比较差为了使耐高温聚合物材料与处理后的蒙脱土充分接触以及混合,对耐高温聚合物材料进行稀释处理使混合更加均匀。添加耐高温聚合物的作用首先是具有一定的粘接性能,并且由于粘性较大在与蒙脱土混合过程中可以使层状蒙脱土材料发生进一步的剥离,其次所选用的耐高温聚合物材料具有较低的导热系数,并且具有较高的残碳量对于材料的隔热性能发挥更好的作用。Step 2: Add an organic polymer with good heat resistance to the treated montmorillonite material, mix evenly, and add a certain amount of ethyl acetate that is volatile and will not react with the material to make the organic polymer and montmorillonite. The mixing is more complete, stirring at room temperature for 30 minutes, and placing it in an oven at 40 ° C for 12 hours to volatilize the ethyl acetate to obtain organic hybrid montmorillonite; ethyl acetate is equivalent to the solvent or diluent of the high temperature polymer used. Due to the poor fluidity of the high solid content polymer, in order to make the high temperature resistant polymer material fully contact and mix with the treated montmorillonite, the high temperature resistant polymer material is diluted to make the mixing more uniform. The effect of adding high temperature resistant polymer is first to have certain adhesive properties, and due to the high viscosity, the layered montmorillonite material can be further peeled off in the process of mixing with montmorillonite, and secondly, the selected high temperature resistant polymer The material has a lower thermal conductivity, and has a higher residual carbon content to play a better role in the thermal insulation performance of the material.
步骤三:将磷酸盐树脂与金属氧化物按照1:1的质量比混合,在研钵中研制使磷酸盐树脂与金属氧化物的混合物能够充分的接触和混合,制备磷酸盐胶粘剂;Step 3: Mix the phosphate resin and the metal oxide in a mass ratio of 1:1, and develop the mixture in a mortar so that the mixture of the phosphate resin and the metal oxide can be fully contacted and mixed to prepare a phosphate adhesive;
步骤四:将磷酸盐胶黏剂加入到制备好的有机杂化蒙脱土中,充分搅拌混合均匀,将混合均匀的物料放进模具中,在气动压力机上以2MPa的压力压制成直径d=1.3cm,高为1.0cm的圆柱形样品;Step 4: Add the phosphate adhesive to the prepared organic hybrid montmorillonite, stir and mix well, put the uniformly mixed material into the mold, and press it on a pneumatic press with a pressure of 2MPa to a diameter d= 1.3cm, cylindrical sample with a height of 1.0cm;
步骤五:将成型的材料进行阶梯状的温度固化,分别在80℃、120℃、150℃的烘箱中固化30min,之后在180℃下固化2h即可。由于耐高温有机聚合物在加热的过程中会形成气泡多孔的结构,为了减少气泡量和开孔数以及孔和气泡的大小,需要进行固化反应,并采用缓慢升温的操作。Step 5: The formed material is cured at a stepped temperature, and cured in an oven at 80°C, 120°C, and 150°C for 30 minutes, and then cured at 180°C for 2 hours. Since the high temperature-resistant organic polymer will form a porous structure of bubbles during the heating process, in order to reduce the amount of bubbles, the number of open pores, and the size of the pores and bubbles, it is necessary to carry out a curing reaction and use a slow heating operation.
具体实施方式二:具体实施方式一所述的一种耐高温隔热复合材料的制备方法,步骤一中,所述蒙脱土与NaCl溶液的比例为10g:100mL。Embodiment 2: In the method for preparing a high temperature resistant and heat insulating composite material according to Embodiment 1, in step 1, the ratio of the montmorillonite to the NaCl solution is 10g:100mL.
具体实施方式三:具体实施方式一所述的一种耐高温隔热复合材料的制备方法,步骤二中,所述有机聚合物在80℃以上会固化,固化后呈现出交联的网状结构,并且烧蚀后的聚合物会产生碳。交联的网状结构可以使其具有优异的粘接性能,具有较高的粘接强度,强度可达10-20MPa,并且烧蚀后的这种有机聚合物会产生大量的碳,碳具有良好的隔热和阻燃的作用,使这种耐高温聚合物材料在耐高温隔热以及阻燃领域得到了较高的应用价值。Embodiment 3: In the method for preparing a high temperature resistant and heat insulating composite material according to Embodiment 1, in
具体实施方式四:具体实施方式一所述的一种耐高温隔热复合材料的制备方法,步骤三中,所述金属氧化物为Al2O3、ZnO和MgO的混合物。这个金属氧化物的混合物是按照一定比例混合的固化剂产品。Embodiment 4: In the method for preparing a high temperature resistant and heat insulating composite material according to Embodiment 1, in step 3, the metal oxide is a mixture of Al 2 O 3 , ZnO and MgO. This mixture of metal oxides is a hardener product mixed in a certain proportion.
具体实施方式五:具体实施方式一所述的一种耐高温隔热复合材料的制备方法,蒙脱土:磷酸盐胶粘剂:有机聚合物=100~450:100:50或蒙脱土:磷酸盐胶粘剂:有机聚合物=100~450:100:100。Embodiment 5: The method for preparing a high temperature resistant and heat insulating composite material according to Embodiment 1, montmorillonite: phosphate adhesive: organic polymer = 100-450: 100:50 or montmorillonite: phosphate Adhesive: organic polymer=100~450:100:100.
实施例1:Example 1:
利用万能试验机对制备的复合材料样品进行抗压强度和形变能力的测试,如图1和2所示,实验结果为在不添加耐高温有机聚合物的条件下磷酸盐:蒙脱土=100:250,抗压强度33.96MPa,形变为12%;磷酸盐:蒙脱土=100:300,抗压强度36.92MPa,形变为11.67%;磷酸盐:蒙脱土=100:350的样品,抗压强度达到42.67MPa,形变可以达到11%;磷酸盐:蒙脱土=100:400,抗压强度38.14MPa,形变为10%;磷酸盐:蒙脱土=100:450,抗压强度36.22MPa,形变为10.67%。加入有机聚合物后按照磷酸盐:蒙脱土:有机聚合物=100:(100-450):50可以得到抗压强度分别为16.32MPa、17.53MPa、20.46MPa、26.21MPa、26.45MPa、35.67MPa、38.34MPa、32.22MPa,形变分别为8%、12.67%、13.67%、10.7%、13.33%、13%、14.7%、14.7%。进一步增加耐高温有机聚合物的含量按照磷酸盐:蒙脱土:有机聚合物=100:(100-450):100的比例进行混合,抗压强度分别为7.22MPa、14.515MPa、14.813MPa、17.49MPa、20.43MPa、24.95MPa、27.84MPa、28.65MPa,形变分别为5.33%、9%、11%、10.67%、11.67%、13.67%、15.67%、17%。根据以上数据可以发现无论按照哪种配比随着蒙脱土含量的增加抗压强度呈现出先升高后下降的趋势,并且随着耐高温有机聚合物含量的增加抗压强度有小幅度的降低,然而再加入100份的有机聚合物,试样中应变有了很大的提升。The compressive strength and deformation ability of the prepared composite samples were tested by a universal testing machine, as shown in Figures 1 and 2. The experimental results are that phosphate: montmorillonite = 100 without adding high temperature organic polymers : 250, compressive strength 33.96MPa,
将固化好的样品在马弗炉中以10℃/min升温到1000℃保温10min,样品的形貌完整并没有发生变化,如图3和4所示,体现了优异的耐高温特性。并且在之前的研究中并没有发现如此高的蒙脱土填充量情况下所制备的复合材料在满足耐高温的条件下又具备了良好的机械性能,制备的复合材料具有良好的应用前景。The cured sample was heated to 1000°C for 10min at 10°C/min in a muffle furnace, and the morphology of the sample was intact and did not change, as shown in Figures 3 and 4, showing excellent high temperature resistance. And in the previous research, it was not found that the composite material prepared with such a high filling amount of montmorillonite had good mechanical properties under the condition of high temperature resistance, and the prepared composite material had a good application prospect.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010803914.7A CN111807808B (en) | 2020-08-11 | 2020-08-11 | Preparation method of high-temperature-resistant heat-insulation composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010803914.7A CN111807808B (en) | 2020-08-11 | 2020-08-11 | Preparation method of high-temperature-resistant heat-insulation composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111807808A true CN111807808A (en) | 2020-10-23 |
CN111807808B CN111807808B (en) | 2022-04-22 |
Family
ID=72858993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010803914.7A Active CN111807808B (en) | 2020-08-11 | 2020-08-11 | Preparation method of high-temperature-resistant heat-insulation composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111807808B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113522689A (en) * | 2021-07-27 | 2021-10-22 | 哈尔滨工业大学 | A metal surface pretreatment device |
CN119263774A (en) * | 2024-11-12 | 2025-01-07 | 广东枫树陶瓷原料有限公司 | A method for preparing lightweight composite porcelain clay |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1354198A (en) * | 2001-12-26 | 2002-06-19 | 河北工业大学 | Epoxy resin/montmorillonoid nano-compoiste-material and its preparation method |
CN1462777A (en) * | 2003-06-09 | 2003-12-24 | 杭州鸿雁电器公司 | Parent material containing high organic montmorillonite, and its prepn. method |
CN101177517A (en) * | 2007-11-08 | 2008-05-14 | 河北大学 | A kind of preparation method of boron phenolic/in-situ nano-hybrid composite resin |
CN102391791A (en) * | 2011-09-09 | 2012-03-28 | 黑龙江省科学院石油化学研究院 | Phenolic resin hybrid phosphate adhesive and preparation method thereof |
AU2010366305A1 (en) * | 2010-12-30 | 2013-07-25 | Guangdong WEP Energy-saving Technology Co., Ltd | Plate synthesized by waste circuit board powder and manufacturing process thereof |
CN104926305A (en) * | 2015-06-04 | 2015-09-23 | 合肥和安机械制造有限公司 | Composite modified montmorillonite-carbonized foamed phenolic resin-based thermal insulation material for forklift engine exhaust pipe and preparation method thereof |
CN105174899A (en) * | 2015-09-06 | 2015-12-23 | 东南大学 | Phosphate-based composite material and preparation method thereof |
-
2020
- 2020-08-11 CN CN202010803914.7A patent/CN111807808B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1354198A (en) * | 2001-12-26 | 2002-06-19 | 河北工业大学 | Epoxy resin/montmorillonoid nano-compoiste-material and its preparation method |
CN1462777A (en) * | 2003-06-09 | 2003-12-24 | 杭州鸿雁电器公司 | Parent material containing high organic montmorillonite, and its prepn. method |
CN101177517A (en) * | 2007-11-08 | 2008-05-14 | 河北大学 | A kind of preparation method of boron phenolic/in-situ nano-hybrid composite resin |
AU2010366305A1 (en) * | 2010-12-30 | 2013-07-25 | Guangdong WEP Energy-saving Technology Co., Ltd | Plate synthesized by waste circuit board powder and manufacturing process thereof |
CN102391791A (en) * | 2011-09-09 | 2012-03-28 | 黑龙江省科学院石油化学研究院 | Phenolic resin hybrid phosphate adhesive and preparation method thereof |
CN104926305A (en) * | 2015-06-04 | 2015-09-23 | 合肥和安机械制造有限公司 | Composite modified montmorillonite-carbonized foamed phenolic resin-based thermal insulation material for forklift engine exhaust pipe and preparation method thereof |
CN105174899A (en) * | 2015-09-06 | 2015-12-23 | 东南大学 | Phosphate-based composite material and preparation method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113522689A (en) * | 2021-07-27 | 2021-10-22 | 哈尔滨工业大学 | A metal surface pretreatment device |
CN119263774A (en) * | 2024-11-12 | 2025-01-07 | 广东枫树陶瓷原料有限公司 | A method for preparing lightweight composite porcelain clay |
Also Published As
Publication number | Publication date |
---|---|
CN111807808B (en) | 2022-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105968717B (en) | A kind of preparation of carbon fiber/graphite alkene/carbon nano tube/epoxy resin prepreg and carbon fibre composite | |
CN108192145B (en) | A kind of two-dimensional nano filler synergistic flame retardant and preparation method thereof, application | |
CN106520040B (en) | A kind of modified graphene oxide, MGO-SiO2Nano-hybrid material and MGO-SiO2The preparation method of phenol-formaldehyde resin modified hot melt adhesive film | |
CN113105743B (en) | A thermally conductive ceramic silicon rubber material and preparation method thereof | |
CN102514346B (en) | Preparation method of quartz fiber/chrome aluminum phosphate-based high temperature wave-transmitting material | |
CN110746637B (en) | Ceramic modified ablation-resistant phenolic aerogel and preparation method thereof | |
CN111807808B (en) | Preparation method of high-temperature-resistant heat-insulation composite material | |
CN101205441A (en) | A steel structure fireproof coating based on self-crosslinking silicon-acrylic compound emulsion and its preparation method | |
CN104212061A (en) | High-strength wear-resistant flame-retardant polypropylene and preparation method thereof | |
CN102019695A (en) | Preparation method of chopped carbon fiber reinforced phenolic resin base composite material | |
CN107722595B (en) | A preparation method of fiber-graphene-thermoplastic polyarylether multiscale composite material | |
CN104031355A (en) | Epoxy resin composition cured and modified by carboxyl-containing polyether nitrile sulphone ketone copolymer as well as preparation method and application of epoxy resin composition | |
CN107880544B (en) | A kind of highly erosion-resistant ceramizable flame-retardant resin and its preparation method | |
CN103788910A (en) | Packaging adhesive containing modified sepiolite powder | |
CN117683321A (en) | Low-temperature-cured water-based phenolic aerogel composite material and preparation method thereof | |
CN117624514A (en) | Water-based boron modified phenolic aerogel and preparation method thereof | |
CN103881379B (en) | Hydroxy silicate/phosphorous benzoxazine/bismaleimide resin composite material and preparation method thereof | |
CN114015110B (en) | Low-shrinkage phenolic aerogel and preparation method thereof | |
CN115491009A (en) | A kind of anisotropic composite material and preparation method thereof | |
CN118909213A (en) | Modified phenolic resin and preparation method thereof | |
CN115093608A (en) | A kind of preparation method and application of core-shell structure boron nitride material | |
CN118405932A (en) | Carbon-carbon thermal insulation board and preparation method thereof | |
CN118931073A (en) | Fireproof fluororubber for sealing and preparation method thereof | |
CN117624833A (en) | Preparation method for improving thermal conductivity of epoxy resin based on core-shell structure | |
CN106763335A (en) | A kind of preparation method of the modified carbon fiber based brake disc of lighting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |