CN111806038A - 基于大面积修复薄膜转移-加热治愈的微纳米褶皱祛除方法 - Google Patents

基于大面积修复薄膜转移-加热治愈的微纳米褶皱祛除方法 Download PDF

Info

Publication number
CN111806038A
CN111806038A CN202010595654.9A CN202010595654A CN111806038A CN 111806038 A CN111806038 A CN 111806038A CN 202010595654 A CN202010595654 A CN 202010595654A CN 111806038 A CN111806038 A CN 111806038A
Authority
CN
China
Prior art keywords
layer
film
wrinkle
pmma
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010595654.9A
Other languages
English (en)
Other versions
CN111806038B (zh
Inventor
胡开明
张文明
李修远
辛宜航
白欣茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202010595654.9A priority Critical patent/CN111806038B/zh
Publication of CN111806038A publication Critical patent/CN111806038A/zh
Application granted granted Critical
Publication of CN111806038B publication Critical patent/CN111806038B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0007Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
    • B32B37/003Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality to avoid air inclusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0625Warming the body, e.g. hyperthermia treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0007Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0664Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses, catheter

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Quality & Reliability (AREA)
  • Biophysics (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

一种基于大面积修复薄膜转移‑加热治愈的微纳米褶皱祛除方法,利用晶圆级修复层薄膜湿法转移技术,将锗层/石墨烯上旋涂得到的均匀大面积PMMA薄膜修复层准确、无损地转移到已有褶皱图案PAN‑PDMS双层结构上表面,再结合多步低温加热平坦化工艺充分去除湿法转移过程中在PAN‑石墨烯/PMMA‑PDMS多层系统的界面处引入的残余液体和空气,使转移的修复层薄膜良好地贴合在已有褶皱表面,并利用不同表面层的褶皱触发临界应变条件不同,进而达到治愈已有褶皱的效果。本发明保证修复层薄膜厚度均匀性且尺度在晶圆级;通过多步低温加热平坦化工艺可以保证充分共型接触和界面结合强度,保证很好的祛皱效果,适用于解决人体皮肤祛皱、扫描电子显微镜表征过程褶皱失真问题和航空航天领域的大型薄膜褶皱消除技术。

Description

基于大面积修复薄膜转移-加热治愈的微纳米褶皱祛除方法
技术领域
本发明涉及的是一种航天新材料领域的技术,具体是一种基于晶圆级面积修复层薄膜转移-加热的硬膜-软基多层系统中微纳米尺度褶皱消除方法。
背景技术
薄膜结构是在受到外力作用下只能抗拉不能抗压的柔性结构,易产生表面失稳引起的局部褶皱。局部失稳引起的褶皱行为在自然界和工程技术领域广泛存在,从石墨烯薄膜纳米褶皱到人脸皮肤微米褶皱,甚至大型航空航天薄膜结构(太阳帆、天线等)中也存在局部褶皱。上述微纳米褶皱形貌的出现极大地影响了材料的力学、电学、光学和热学等性能,同时也导致微纳米器件相应的性能衰减,甚至直接失效报废。因此,如何抑制或者消除薄膜结构表面屈曲失稳引起的褶皱行为既是一种研究材料本征特性的重要基础研究问题,也是面向重大工程技术的应用研究。
目前,硬膜-软基系统中微纳米表面褶皱常用的祛除方法主要包括:超脉冲二氧化碳(CO2)激光除皱、磨削术和化学剥脱术、注射除皱和除皱术(Rhytidectomy),每种除皱方法都有其各自的优缺点,效果也是具体情况而异,需要根据个体情况制定复杂的祛除方案。因此,缺乏一种通用性更好、操作简单的硬膜-软基系统中大面积微纳米表面褶皱祛除方法。
发明内容
本发明针对现有技术存在的上述不足,提出一种基于大面积修复薄膜转移-加热治愈的微纳米褶皱祛除方法,利用修复层薄膜湿法转移技术,能够准确地将大面积、厚度均匀的修复层薄膜无损地转移到已有褶皱图案表面,再结合多步低温加热平坦化工艺使得转移的薄膜良好地贴合在已有褶皱表面,进而达到治愈已有褶皱的效果。
本发明是通过以下技术方案实现的:
本发明涉及一种硬膜-软基多层系统的微纳米褶皱,为多层复合结构,包括聚二甲基硅氧烷基底层(PDMS)、含蒽共聚物层(anthracene-contained copolymer,PAN)、晶圆级大小的均匀CVD单层石墨烯薄膜以及聚甲基丙烯酸甲酯层(PMMA)。
所述的PMMA,通过旋涂方式旋涂在单层石墨烯薄膜表面。
所述的单层石墨烯薄膜在搭载PMMA后,通过湿法转移到含蒽共聚物层的褶皱表面,进而在多层系统中形成界面褶皱形貌。
本发明涉及一种基于上述硬膜-软基多层系统中微纳米褶皱的应用,将其用于柔性电子器件中表面褶皱祛除,提高柔性器件表面功能特性。
本发明涉及一种基于硬膜-软基多层系统微纳米褶皱的修复层薄膜转移-加热消除方法,将顶层旋涂PMMA薄膜的带有CVD石墨烯薄膜的锗层通过湿法转移到已有褶皱的PAN-PDMS双层结构的上表面得到微纳米褶皱;然后采用多步低温加热平坦化工艺将微纳米褶皱的界面处残余液体和空气充分去除,使得尺度在晶圆级的PMMA/单层石墨烯复合薄膜层与基底褶皱表面有良好的共型接触。
所述的湿法转移是指通过刻蚀溶剂掉残余锗层;然后将刻蚀后得到带有PMMA薄膜的CVD石墨烯薄膜从刻蚀溶液转移到去离子水中漂洗残余刻蚀剂;最后将带有PMMA薄膜的CVD石墨烯薄膜缓慢地转移到带有褶皱的PAN-PDMS双层结构上表面。
所述的通过刻蚀溶剂掉残余锗层,优选采用比例为1:1:10的HF:H2O2:H2O刻蚀溶剂,刻蚀2~3小时。
所述的多步低温加热平坦化工艺是指:将微纳米褶皱在加热板上从30℃到50℃、温度梯度为5℃,每个温度下缓慢加热2小时,充分挥发和驱除界面处的界面液体,使界面处残余液体和空气充分去除,实现转移得到大面积修复层的下表面与PAN-PDMS双层系统的上表面充分的接触和平坦化。
所述的共型接触是指:利用不同表面层的多层硬膜-软基系统褶皱触发的临界应变条件不同,通过转移增加的PMMA/石墨烯薄膜层可以提高褶皱失稳的临界应变,使褶皱图案更难触发。
所述的应变条件包括:PAN-PDMS双层结构和PMMA/石墨烯-PAN/PDMS多层结构的褶皱临界应变,其中:PAN-PDMS双层结构中褶皱临界应变为
Figure BDA0002557312040000021
在应变εG1作用下,褶皱的幅值为
Figure BDA0002557312040000022
波长为
Figure BDA0002557312040000023
PMMA/石墨烯-PAN/PDMS多层结构中褶皱临界应变为
Figure BDA0002557312040000024
在应变εG2作用下,褶皱的幅值为
Figure BDA0002557312040000025
波长为
Figure BDA0002557312040000026
本发明涉及上述硬膜-软基多层系统中大面积微纳米褶皱的薄膜转移-加热治愈祛除方法,上述多步低温加热平坦化工艺还适用于解决人体皮肤祛皱、扫描电子显微镜(SEM)表征过程褶皱失真问题和航空航天领域的大型薄膜褶皱消除技术等方面。
技术效果
本发明整体解决了硬膜-软基多层系统中微纳米尺度褶皱祛除中存在的大面积、厚度均匀修复层薄膜转移技术难题,目前缺乏一种通用性强表面失稳引起的大面积褶皱结构祛除方法。
与现有技术相比,本发明利用薄膜湿法转移技术,能够准确地将大面积均匀、薄膜无损地转移到已有褶皱图案表面,再结合多步低温加热平坦化工艺使得转移的薄膜良好地贴合在已有褶皱表面,进而达到治愈已有褶皱的效果并可保证良好的共型接触、褶皱治愈效果好等优点,适用于大面积、批量化褶皱形貌的祛除。
附图说明
图1为本方法原理与结果图;
图中:a-c为微纳米表面褶皱的祛除方法示意图,其中a为修复层的湿法转移工艺A,b为多步低温加热平坦化工艺B,c为表面褶皱祛除后的截面示意图;d为已有微纳米表面褶皱的光学显微图,e为通过修复层湿法转移后的微纳米表面褶皱光学显微图,f为通过多步低温加热平坦化工艺后的PAN-石墨烯/PMMA-PDMS多层系统上表面光学显微图;
图中:PDMS 1、PAN 2、石墨烯3、PMMA4;
图2为湿法转移后修复层边界处表面形貌的对比图;
图中:a,I和II分别为湿法转移修复层后多步低温加热平坦化工艺前修复层边界处的表面形貌的光学显微图和三维激光共聚焦显微图(LSCM);b,I和II分别为修复层经过多步低温加热平坦化工艺后样品边界处的表面形貌的光学显微图和三维激光共聚焦显微图(LSCM);C为湿法转移后的修复层边界。
图3为修复层的湿法转移工艺流程图;
图中:PDMS 1、PAN 2、石墨烯3、PMMA4、锗层5、HF:H2O2:H20刻蚀溶剂6、容器槽7;a为锗层5上CVD生长晶圆级单层石墨烯3;b为在石墨烯3表面旋涂PMMA4;c为HF:H2O2:H20刻蚀溶剂6刻蚀锗层5;d为刻蚀锗层5后的PMMA4/石墨烯3复合层通过湿法转移到PDMS1/PAN2硬膜-软基系统的褶皱表面。
图4为多步低温加热平坦化工艺中加热温度随着加热时间的变化图;
具体实施方式
如图1a-f所示,本实施例通过以下步骤进行硬膜-软基多层系统中已有微纳米尺度褶皱的基于大面积薄膜转移-加热消除方法,包括:
①如图1a-b所示,将用于修复的石墨烯3和PMMA4通过湿法转移工艺A转移到已有褶皱样品表面上(PAN 2上表面);如图1d所示,在修复层转移之前,已有褶皱为褶皱方向相互垂直的十字交叉型表面图案,褶皱波长为16微米;如图1e所示在修复层转移后,修复层仅覆盖在已有褶皱表面(PAN 2上表面),光学显微镜图(图1d)表明,晶圆级PMMA4和石墨烯3复合的修复层薄膜在褶皱表面有一定悬空和缝隙,缝隙中存在一定湿法转移技术留下的液体和空气。
②如图1b-c所示,为了去除上述湿法转移技术残留在修复层和褶皱上表面之间的液体和空气,提高修复层与褶皱上表面之间的界面结合强度,采用多步低温加热平坦化工艺使得液体和空气通过界面缓慢释放,同时增大修复层与褶皱上表面接触面积;如图1f所示,在多步低温加热平坦化工艺后,修复层与褶皱上表面有很好的共型接触,微米界面褶皱形貌被彻底消除。
如图2a,I所示,在修复层转移后多步低温加热平坦化工艺之前的样品中,修复层边界处褶皱的方向沿着原有褶皱方向,在修复层转移以后褶皱方向和幅值基本上保持不变;如图2a,II所示,三维激光共聚焦显微图表明修复层边界处存在显著高度差(~8微米);如图2a,I-II,修复层覆盖区域的白色曲线为覆盖层与褶皱上表面之间间隙存在空气,且修复层未覆盖的区域褶皱在边界处具有连续性。
如图2b所示,在多步低温加热平坦化工艺修复后的样品中,修复层边界处褶皱的方向平行于边界处方向,在修复层转移以后褶皱方向和幅值都改变;如图2b,I-II,修复层覆盖区域的白色曲线也消失,且修复层未覆盖的区域褶皱在边界处具有连续性被打断。上述结果说明经过多步低温加热平坦化工艺修复后湿法转移过程褶皱上表面和修复层之间引入的液体和空气被完全去除,且原有微米褶皱图案被完全治愈。
上述图2b中的微纳米褶皱能被治愈的力学原理为利用硬膜-软基多层系统中不同表面层的褶皱触发临界应变条件不同。通过转移修复层(石墨烯3和PMMA4)可以提高褶皱失稳的临界应变,使表面屈曲失稳引起的褶皱图案更难形成。
所述的PAN-PDMS双层结构中褶皱临界应变为
Figure BDA0002557312040000041
在应变εG1作用下,褶皱的幅值为
Figure BDA0002557312040000042
波长为
Figure BDA0002557312040000043
所述的PMMA/石墨烯-PAN/PDMS多层结构中褶皱临界应变为
Figure BDA0002557312040000044
Figure BDA0002557312040000045
在应变εG2作用下,褶皱的幅值为
Figure BDA0002557312040000046
Figure BDA0002557312040000051
波长为
Figure BDA0002557312040000052
上述所述的PMMA/石墨烯-PAN/PDMS多层结构中褶皱临界应变大于PAN-PDMS双层结构中褶皱临界应变,即,(εG2)cr>(εG1)cr.
如图3所示,在已有周期性微米尺度褶皱结构表面湿法转移修复层的具体步骤为:
如图3a-b所示,在带有石墨烯3的锗层5的上表面上旋涂PMMA4;
如图3c所示,通过1:1:10的比例方式配备HF:H2O2:H20刻蚀溶剂,刻蚀时间为2~3小时,充分刻蚀掉残余锗层5,并在去离子水清洗与干燥;
如图3d所示,在去离子水环境中将带有PMMA4的石墨烯3修复薄膜缓慢地转移已有褶皱的PAN2/PDMS1双层结构样品上表面。
如图4所示,将上述湿法转移得到的PMMA/石墨烯-PAN/PDMS多层结构样品进行多步低温加热平坦化工艺,充分去处湿法转移过程中引入层间液体和空气,使修复层完美贴合在PAN褶皱上表面,多步低温加热工艺是指从30℃开始,温度梯度为5℃,每步加热时间为2小时,加热至50℃停在加热。
以上操作中图1a-c中大面积微纳米褶皱祛除的薄膜转移-加热治愈方法为本发明独创、从未被公开且其工作方式与任何现有文献记载均不相同的是:相比于已有褶皱去除方法,本发明所提的基于薄膜转移-加热治愈的微纳米褶皱祛除方法可以通过湿法转移薄膜修复层,该方式可保证修复层薄膜厚度均匀性且尺度在晶圆级;通过多步低温加热平坦化工艺可以保证充分共型接触和界面结合强度,保证很好的祛皱效果。
经过具体实际实验,如图1d-f所示,通过基于大面积薄膜转移-加热消除方法,原有微米褶皱图案被完全治愈;如图2a-b,通过对比修复层边界处的褶皱形貌的变化情况,可以表面上述褶皱祛除方法可以很好地改变已有褶皱的方向和幅值,使表面屈曲引起的褶皱失稳行为得到很好的抑制。
综上,与现有技术相比,本发明利用薄膜湿法转移技术,能够准确地讲大面积均匀、薄膜无损地转移到已有褶皱图案表面,再结合多步低温加热平坦化工艺使得转移的薄膜良好地贴合在已有褶皱表面,进而达到治愈已有褶皱的效果。
与现有技术相比,本发明所提褶皱祛除方法具有操作简单、可保证良好的共型接触、褶皱治愈效果好等优点,适用于大面积批量化褶皱形貌的祛除。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (9)

1.一种硬膜-软基多层系统的微纳米褶皱,其特征在于,为多层复合结构,包括聚二甲基硅氧烷基底层、含蒽共聚物层、晶圆级大小的均匀CVD单层石墨烯薄膜以及聚甲基丙烯酸甲酯层;
所述的单层石墨烯薄膜在搭载PMMA后,通过湿法转移到含蒽共聚物层的褶皱表面,进而在多层系统中形成界面褶皱形貌。
2.一种基于权利要求1所述硬膜-软基多层系统中微纳米褶皱的应用,其特征在于,将其用于柔性电子器件中表面褶皱祛除,提高柔性器件表面功能特性。
3.一种基于硬膜-软基多层系统微纳米褶皱的修复层薄膜转移-加热消除方法,其特征在于,将顶层旋涂PMMA薄膜的带有CVD石墨烯薄膜的锗层通过湿法转移到已有褶皱的PAN-PDMS双层结构的上表面得到微纳米褶皱;然后采用多步低温加热平坦化工艺将微纳米褶皱的界面处残余液体和空气充分去除,使得尺度在晶圆级的PMMA/单层石墨烯复合薄膜层与基底褶皱表面有良好的共型接触。
4.根据权利要求3所述的修复层薄膜转移-加热消除方法,其特征是,所述的湿法转移是指通过刻蚀溶剂掉残余锗层;然后将刻蚀后得到带有PMMA薄膜的CVD石墨烯薄膜从刻蚀溶液转移到去离子水中漂洗残余刻蚀剂;最后将带有PMMA薄膜的CVD石墨烯薄膜缓慢地转移到带有褶皱的PAN-PDMS双层结构上表面。
5.根据权利要求3所述的修复层薄膜转移-加热消除方法,其特征是,所述的通过刻蚀溶剂掉残余锗层,采用比例为1:1:10的HF:H2O2:H2O刻蚀溶剂,刻蚀2~3小时。
6.根据权利要求3所述的修复层薄膜转移-加热消除方法,其特征是,所述的多步低温加热平坦化工艺是指:将微纳米褶皱在加热板上从30℃到50℃、温度梯度为5℃,每个温度下缓慢加热2小时,充分挥发和驱除界面处的界面液体,使界面处残余液体和空气充分去除,实现转移得到大面积修复层的下表面与PAN-PDMS双层系统的上表面充分的接触和平坦化。
7.根据权利要求3所述的修复层薄膜转移-加热消除方法,其特征是,所述的共型接触是指:利用不同表面层的多层硬膜-软基系统褶皱触发的临界应变条件不同,通过转移增加的PMMA/石墨烯薄膜层可以提高褶皱失稳的临界应变使褶皱图案更难触发。
8.根据权利要求7所述的修复层薄膜转移-加热消除方法,其特征是,所述的应变条件包括:PAN-PDMS双层结构和PMMA/石墨烯-PAN/PDMS多层结构的褶皱临界应变,其中:PAN-PDMS双层结构中褶皱临界应变为
Figure FDA0002557312030000021
在应变εG1作用下,褶皱的幅值为
Figure FDA0002557312030000022
波长为
Figure FDA0002557312030000023
PMMA/石墨烯-PAN/PDMS多层结构中褶皱临界应变为
Figure FDA0002557312030000024
在应变εG2作用下,褶皱的幅值为
Figure FDA0002557312030000025
波长为
Figure FDA0002557312030000026
9.根据权利要求3或6所述的修复层薄膜转移-加热消除方法,其特征是,所述的多步低温加热平坦化工艺适用于解决人体皮肤祛皱、扫描电子显微镜(SEM)表征过程褶皱失真问题和航空航天领域的大型薄膜褶皱消除技术。
CN202010595654.9A 2020-06-28 2020-06-28 基于大面积修复薄膜转移-加热治愈的微纳米褶皱祛除方法 Expired - Fee Related CN111806038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010595654.9A CN111806038B (zh) 2020-06-28 2020-06-28 基于大面积修复薄膜转移-加热治愈的微纳米褶皱祛除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010595654.9A CN111806038B (zh) 2020-06-28 2020-06-28 基于大面积修复薄膜转移-加热治愈的微纳米褶皱祛除方法

Publications (2)

Publication Number Publication Date
CN111806038A true CN111806038A (zh) 2020-10-23
CN111806038B CN111806038B (zh) 2021-07-06

Family

ID=72855483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010595654.9A Expired - Fee Related CN111806038B (zh) 2020-06-28 2020-06-28 基于大面积修复薄膜转移-加热治愈的微纳米褶皱祛除方法

Country Status (1)

Country Link
CN (1) CN111806038B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859223A (zh) * 2021-01-25 2021-05-28 上海交通大学 表面褶皱机械复合光栅系统及调谐方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607240A (zh) * 2017-08-31 2018-01-19 上海交通大学 基于褶皱形成原理的石墨烯力学性能同步表征实现方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607240A (zh) * 2017-08-31 2018-01-19 上海交通大学 基于褶皱形成原理的石墨烯力学性能同步表征实现方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAIXIA MEI: "《Buckling modes of elastic thin films on elastic substrates》", 《APPLIED PHYSICS LETTERS》 *
KAI-MING HU: "《A NOVEL FABRICATION METHOD OF GRAPHENE WRINKLE-INDUCED SUPERHYDROPHOBIC SURFACE FOR FLEXIBLE MICRO/NANO SENSORS》", 《IEEE MEMS 2020, VANCOUVER》 *
KAI-MING HU: "《Probing built-in stress effect on the defect density of stretched monolayer graphene membranes》", 《CARBON》 *
LIANGWEI ZHOU: "《Regulating surface wrinkles using light》", 《NATIONAL SCIENCE REVIEW》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859223A (zh) * 2021-01-25 2021-05-28 上海交通大学 表面褶皱机械复合光栅系统及调谐方法

Also Published As

Publication number Publication date
CN111806038B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
Hong et al. A rational strategy for graphene transfer on substrates with rough features
Zhang et al. Enhancement of silicon-wafer solar cell efficiency with low-cost wrinkle antireflection coating of polydimethylsiloxane
CN105590703B (zh) 可图形化三维石墨烯/聚氨酯柔性导电薄膜的制备方法
Okayasu et al. Spontaneous Formation of Ordered Lateral Patterns in Polymer Thin‐Film Structures
KR20130080857A (ko) 미세 구조 적층체, 미세 구조 적층체의 제작 방법 및 미세 구조체의 제조 방법
KR101632504B1 (ko) 유기 용매 증기를 이용한 접착력 제어 방식의 나노 구조체 제조 방법 및 나노 전사 프린팅 방법
CN111806038B (zh) 基于大面积修复薄膜转移-加热治愈的微纳米褶皱祛除方法
US20150217532A1 (en) Method of manufacturing a laminate provided with a concave-convex structure and transfer film
Hong et al. Solution-processed fabrication of superhydrophobic hierarchical zinc oxide nanostructures via nanotransfer printing and hydrothermal growth
Choi et al. Robustly nano-tailored honeycomb structure for high-throughput antireflection polymer films
Kim et al. Effect of surface tension and coefficient of thermal expansion in 30 nm scale nanoimprinting with two flexible polymer molds
Lin et al. Smoothening of wrinkles in CVD-grown hexagonal boron nitride films
Weiss et al. All-inorganic thermal nanoimprint process
Sun et al. Fabrication of the similar porous alumina silicon template for soft UV nanoimprint lithography
KR102384264B1 (ko) 마찰 전기 발전 소자 및 이의 제조방법
CN112047298A (zh) 一种二维超薄自支撑薄膜、其转移方法及其物理性质调控方法
Wang et al. Intelligent surfaces thermally switchable between the highly rough and entirely smooth states
US20120048184A1 (en) Organic- inorganic hybrid material and stamp for nanoimprint manufactured from the same
Rhee et al. Soft skin layers for reconfigurable and programmable nanowrinkles
KR101636450B1 (ko) 전도성 접착제 필름의 제조방법 및 이에 따라 제조되는 전도성 접착제 필름
KR20210008589A (ko) 결함 없는 그래핀 전사방법
Lu Cellulose nanocrystals for wrinkled fabric
CN109666175A (zh) 经表面结构化的聚合体及其制造方法
CN111439746B (zh) 一种扭转角度可控的单层石墨烯折叠结构制备方法
Jin et al. A facile method to prepare super-hydrophobic surfaces on silicone rubbers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210706