CN111801901B - 用于具有模拟波束的自主上行链路的波束管理 - Google Patents

用于具有模拟波束的自主上行链路的波束管理 Download PDF

Info

Publication number
CN111801901B
CN111801901B CN201980016938.3A CN201980016938A CN111801901B CN 111801901 B CN111801901 B CN 111801901B CN 201980016938 A CN201980016938 A CN 201980016938A CN 111801901 B CN111801901 B CN 111801901B
Authority
CN
China
Prior art keywords
aul
base station
resources
specific
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980016938.3A
Other languages
English (en)
Other versions
CN111801901A (zh
Inventor
K·巴塔德
J·孙
张晓霞
S·耶拉马利
T·卡道斯
魏永斌
骆涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN111801901A publication Critical patent/CN111801901A/zh
Application granted granted Critical
Publication of CN111801901B publication Critical patent/CN111801901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

特定于波束的自主上行链路(AUL)资源可以被配置有用于波束管理的相关联的参考信号。例如,基站可以配置特定于一个或多个基站接收波束的相应的AUL资源集合。这些特定于波束的AUL资源集合可以被配置为与参考信号(诸如信道状态信息参考信号(CSI‑RS)、同步信号突发(SSB)等)相关联(例如,准共置(QCL))。基站可以周期性地发送与AUL资源相关联的参考信号。在检测到一个或多个参考信号时,用户设备(UE)可以识别哪些AUL资源集合可用于上行链路数据的AUL传输。在这样的情况下,UE可以基于与AUL资源集合相关联的参考信号的信号强度来选择AUL资源集合。

Description

用于具有模拟波束的自主上行链路的波束管理
交叉引用
本专利申请要求享受以下申请的权益:由Bhattad等人于2018年3月6日提交的、名称为“Beam Management for Autonomous Uplink with Analog Beams”的美国临时专利申请No.62/639,150;以及由Bhattad等人于2019年3月4日提交的、名称为“Beam Managementfor Autonomous Uplink with Analog Beams”的美国专利申请No.16/292,293,上述全部申请中的每一个申请被转让给本申请的受让人。
技术领域
概括而言,下文涉及无线通信以及用于具有模拟波束的自主上行链路(AUL)的波束管理。
背景技术
无线通信系统被广泛地部署以提供诸如语音、视频、分组数据、消息传送、广播等各种类型的通信内容。这些系统能够通过共享可用的系统资源(例如,时间、频率和功率)来支持与多个用户的通信。这样的多址系统的示例包括第四代(4G)系统(例如,长期演进(LTE)系统、改进的LTE(LTE-A)系统或LTE-A专业系统)和第五代(5G)系统(其可以被称为新无线电(NR)系统)。这些系统可以采用诸如以下各项的技术:码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)或者离散傅里叶变换扩频OFDM(DFT-S-OFDM)。无线多址通信系统可以包括多个基站或网络接入节点,每个基站或网络接入节点同时支持针对多个通信设备(其可以另外被称为用户设备(UE))的通信。
在一些无线通信系统中,无线设备(例如,基站、UE等)可以使用定向传输(例如,波束)进行通信,其中可以使用一个或多个天线元件来应用波束成形技术以在特定方向上形成波束。可以在AUL传输中使用定向传输和波束管理。
发明内容
所描述的技术涉及支持用于具有模拟波束的自主上行链路(AUL)的波束管理的改进的方法、系统、设备或装置。概括而言,所描述的技术提供将特定于波束的AUL资源配置有相关联的参考信号,以实现高效的波束管理。例如,基站可以配置特定于一个或多个基站接收波束的相应的AUL资源集合。这些特定于波束的AUL资源集合可以被配置为与参考信号(诸如信道状态信息参考信号(CSI-RS)、同步信号突发(SSB)等)相关联(例如,准共置(QCL))。基站可以周期性地发送与AUL资源相关联的参考信号,并且用户设备(UE)在检测到一个或多个参考信号时可以识别哪些AUL资源集合可用于上行链路数据的AUL传输。在这样的情况下,UE可以基于与AUL资源集合相关联的参考信号的信号强度来选择AUL资源集合。另外,UE可以确定先前具有最高信号强度的参考信号已经丢失(例如,参考信号的信号强度已经下降到门限以下),并且可以选择与不同的特定于波束的AUL资源集合相关联的另一参考信号。因此,UE可以使用不同的特定于波束的AUL资源集合来执行后续的AUL传输。与相应的AUL资源集合相关联的参考信号的存在可以使UE能够相干且连续地监测由基站配置的可用AUL资源。这样的波束管理技术可以确保当不同的波束用于AUL时(例如,当UE随时间移动并且处于相对于基站的不同位置时),UE能够执行AUL传输。同样地,基站可以配置(和重新配置)AUL资源以考虑UE移动性。
描述了一种无线通信的方法。所述方法可以包括:从基站接收AUL配置,所述AUL配置包括对用于UE的多个AUL资源集合的指示,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;从所述基站接收与多个特定于波束的AUL资源集合相关联的多个参考信号;至少部分地基于所述多个参考信号中的第一参考信号的信号强度,来从所述多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合;以及使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到所述基站的AUL传输。
描述了一种用于无线通信的装置。所述装置可以包括:用于从基站接收AUL配置的单元,所述AUL配置包括对用于UE的多个AUL资源集合的指示,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;用于从所述基站接收与多个特定于波束的AUL资源集合相关联的多个参考信号的单元;用于至少部分地基于所述多个参考信号中的第一参考信号的信号强度,来从所述多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合的单元;以及用于使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到所述基站的AUL传输的单元。
描述了另一种用于无线通信的装置。所述装置可以包括处理器、与所述处理器进行电子通信的存储器、以及被存储在所述存储器中的指令。所述指令可以可操作为使得所述处理器进行以下操作:从基站接收AUL配置,所述AUL配置包括对用于UE的多个AUL资源集合的指示,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;从所述基站接收与多个特定于波束的AUL资源集合相关联的多个参考信号;至少部分地基于所述多个参考信号中的第一参考信号的信号强度,来从所述多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合;以及使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到所述基站的AUL传输。
描述了一种用于无线通信的非暂时性计算机可读介质。所述非暂时性计算机可读介质可以包括可操作为使得处理器进行以下操作的指令:从基站接收AUL配置,所述AUL配置包括对用于UE的多个AUL资源集合的指示,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;从所述基站接收与多个特定于波束的AUL资源集合相关联的多个参考信号;至少部分地基于所述多个参考信号中的第一参考信号的信号强度,来从所述多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合;以及使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到所述基站的AUL传输。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述第一参考信号的所述信号强度来确定所述第一参考信号的后续传输可能已经变得不可检测。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述多个参考信号中的第二参考信号的信号强度,来从所述多个特定于波束的AUL资源集合中选择第二特定于波束的AUL资源集合。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:使用所选择的第二特定于波束的AUL资源集合来执行上行链路数据到所述基站的第二AUL传输。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述多个参考信号中的每个参考信号的信号强度来确定所述多个参考信号的后续传输可能已经变得不可检测。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:向所述基站发送请求消息以配置用于基站接收波束集合的通信资源。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述请求消息包括随机接入信道(RACH)消息。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:将所述第一参考信号的信号强度与所述多个参考信号中的第二参考信号的信号强度进行比较,其中,选择所述第一特定于波束的AUL资源集合可以是至少部分地基于所述比较的。在上述方法、装置和非暂时性计算机可读介质的一些示例中,接收所述多个参考信号包括:根据周期性来接收所述多个参考信号。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:测量所述多个参考信号的信号强度。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:向所述基站发送包括从所述多个参考信号的所述测量获得的信息的测量报告,其中,所述测量报告可以是使用可以与所选择的第一特定于波束的AUL资源集合不同的特定于波束的资源集合来发送的。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述测量报告可以是在确定所述第一参考信号的信号强度不再满足门限时发送的。在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述测量报告可以是在确定第二参考信号的信号强度变得比所述第一参考信号的信号强度大一门限量时发送的。在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述特定于波束的资源集合可以是由从所述基站接收的资源授权来调度的。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述多个参考信号中的第二参考信号的信号强度,来从所述多个特定于波束的AUL资源集合中选择第二特定于波束的AUL资源集合。在上述方法、装置和非暂时性计算机可读介质的一些示例中,执行所述上行链路数据的所述AUL传输包括:使用所选择的第一特定于波束的AUL资源集合和所选择的第二特定于波束的AUL资源集合来执行所述上行链路数据的所述AUL传输。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,选择所述第一特定于波束的AUL资源集合包括:确定所述第一参考信号的信号强度满足门限。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于关于所述第一参考信号的所述信号强度满足门限的所述确定,来选择所述第一特定于波束的AUL资源集合。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述多个特定于波束的AUL资源集合可以被配置用于所述基站的大多数接收波束。在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述多个特定于波束的AUL资源集合可以被配置用于从所述基站的大多数接收波束中选择的接收波束子集。在上述方法、装置和非暂时性计算机可读介质的一些示例中,每个特定于波束的AUL资源集合中的资源数量可以与所述基站的对应的AUL接收波束上的业务负载成比例。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述多个参考信号中的每个参考信号包括信道状态信息参考信号(CSI-RS)、或同步信号突发(SSB)、或其组合。描述了一种无线通信的方法。所述方法可以包括:识别用于UE的多个AUL资源集合;确定用于所述多个AUL资源集合和所述基站的多个AUL接收波束的AUL配置,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;向所述UE发送与所述多个特定于波束的AUL资源集合相关联的多个参考信号;以及至少部分地基于所述多个参考信号来从所述UE接收AUL传输,其中,所述AUL传输是使用来自所述多个AUL资源集合的第一特定于波束的AUL资源集合来接收的。
描述了一种用于无线通信的装置。所述装置可以包括:用于识别用于UE的多个AUL资源集合的单元;用于确定用于所述多个AUL资源集合和所述基站的多个AUL接收波束的AUL配置的单元,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;用于向所述UE发送与所述多个特定于波束的AUL资源集合相关联的多个参考信号的单元;以及用于至少部分地基于所述多个参考信号来从所述UE接收AUL传输的单元,其中,所述AUL传输是使用来自所述多个AUL资源集合的第一特定于波束的AUL资源集合来接收的。
描述了另一种用于无线通信的装置。所述装置可以包括处理器、与所述处理器进行电子通信的存储器、以及被存储在所述存储器中的指令。所述指令可以可操作为使得所述处理器进行以下操作:识别用于UE的多个AUL资源集合;确定用于所述多个AUL资源集合和所述基站的多个AUL接收波束的AUL配置,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;向所述UE发送与所述多个特定于波束的AUL资源集合相关联的多个参考信号;以及至少部分地基于所述多个参考信号来从所述UE接收AUL传输,其中,所述AUL传输是使用来自所述多个AUL资源集合的第一特定于波束的AUL资源集合来接收的。
描述了一种用于无线通信的非暂时性计算机可读介质。所述非暂时性计算机可读介质可以包括可操作为使得处理器进行以下操作的指令:识别用于UE的多个AUL资源集合;确定用于所述多个AUL资源集合和所述基站的多个AUL接收波束的AUL配置,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;向所述UE发送与所述多个特定于波束的AUL资源集合相关联的多个参考信号;以及至少部分地基于所述多个参考信号来从所述UE接收AUL传输,其中,所述AUL传输是使用来自所述多个AUL资源集合的第一特定于波束的AUL资源集合来接收的。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述多个参考信号的后续传输,来使用来自所述多个AUL资源集合的第二特定于波束的AUL资源集合从所述UE接收第二AUL传输。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述多个参考信号中的每个参考信号的后续传输变得不可由所述UE检测到,来从所述UE接收请求消息。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:响应于所述请求消息来配置用于与所述UE进行通信的通信资源和接收波束集合。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述请求消息包括RACH消息。在上述方法、装置和非暂时性计算机可读介质的一些示例中,向所述UE发送所述多个参考信号包括:根据周期性来向所述UE发送所述多个参考信号。
上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:从所述UE接收测量报告,所述测量报告包括从所述多个参考信号的测量获得的信息,其中,所述测量报告可以是使用可以与所述第一特定于波束的AUL资源集合不同的特定于波束的资源集合来接收的。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所接收的测量报告来重新配置用于所述UE的所述多个特定于波束的AUL资源集合和所述相应的AUL接收波束。在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述特定于波束的资源集合可以是由被发送到所述UE的资源授权来调度的。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,接收所述上行链路数据的所述AUL传输包括:使用所述第一特定于波束的AUL资源集合和第二特定于波束的AUL资源集合来从所述UE接收所述上行链路数据的所述AUL传输。在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述多个特定于波束的AUL资源集合可以被配置用于所述基站的大多数接收波束。
在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述多个特定于波束的AUL资源集合可以被配置用于从所述基站的大多数接收波束中选择的接收波束子集。在上述方法、装置和非暂时性计算机可读介质的一些示例中,每个特定于波束的AUL资源集合中的资源数量可以与所述基站的对应的AUL接收波束上的业务负载成比例。在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述多个参考信号中的每个参考信号包括CSI-RS、或SSB、或其组合。
附图说明
图1示出了根据本公开内容的各方面的支持用于具有模拟波束的自主上行链路(AUL)的波束管理的用于无线通信的系统的示例。
图2A和2B示出了根据本公开内容的各方面的支持用于具有模拟波束的AUL的波束管理的无线通信系统的示例。
图3A和3B示出了根据本公开内容的各方面的支持用于具有模拟波束的AUL的波束管理的系统中的AUL资源配置的示例。
图4示出了根据本公开内容的各方面的支持用于具有模拟波束的AUL的波束管理的系统中的过程流的示例。
图5至7示出了根据本公开内容的各方面的支持用于具有模拟波束的AUL的波束管理的设备的框图。
图8示出了根据本公开内容的各方面的包括支持用于具有模拟波束的AUL的波束管理的用户设备(UE)的系统的框图。
图9至11示出了根据本公开内容的各方面的支持用于具有模拟波束的AUL的波束管理的设备的框图。
图12示出了根据本公开内容的各方面的包括支持用于具有模拟波束的AUL的波束管理的基站的系统的框图。
图13至18示出了根据本公开内容的各方面的用于具有模拟波束的AUL的波束管理的方法。
具体实施例
一些无线通信系统可以在毫米波(mmW)频率范围(例如,从25千兆赫(GHz)到300GHz)中操作。这些频率处的无线通信可能与增加的信号衰减(例如,路径损耗)相关联,增加的信号衰减可能受到各种因素的影响,诸如温度、大气压力、衍射等。因此,可以对传输进行波束成形以克服在这些频率处经历的路径损耗。这样的系统内的无线设备可以相应地经由这些定向波束(例如,被波束成形以使用无线设备处的天线阵列进行发送和接收)进行通信。例如,基站和UE可以经由波束对链路进行通信,每个波束对链路包括一个无线节点(例如,UE)的发射波束和第二无线节点(例如,基站)的接收波束。
在这样的无线通信系统中,基站可以在资源集合上调度用于UE的上行链路传输,然后基站可以在UE的调度的传输的方向上进行监听,例如,通过在该方向上形成接收波束。相反,在某些传统无线通信系统中,当从UE接收传输时,基站可以使用全向天线。因此,不管UE发送的方向如何,某些传统无线通信系统中的基站通常可以在不形成接收波束的情况下检测所发送的信号。
在自主上行链路(AUL)传输(例如,无授权或未调度的传输)的情况下,基站可能不知道针对UE的定向传输进行监听的方向(和对应的接收波束),这导致丢失上行链路数据以及管理来自UE的AUL传输效率低下。另外,UE在系统内的移动性或干扰可能带来进一步的挑战,从而影响AUL传输的高效波束管理。根据本主题技术的一些方面,描述了用于提供用于在mmW频率范围处操作的UE与基站之间的AUL传输的高效波束管理的改进的技术。例如,基站和UE可以使用从UE到基站的上行链路传输和从基站到UE的下行链路传输进行通信。可以通过向UE发送上行链路授权来调度上行链路传输,该上行链路授权用信号向UE发送其可以在配置的或调度的资源上发送上行链路数据。然而,UE还可以具有执行上行链路消息的AUL传输的能力。AUL可以是指如下的过程:通过该过程,UE向基站发送上行链路信号,而无需首先接收上行链路授权,并且可以使用无线电资源控制(RRC)消息传送或L1信令来配置AUL功能。
在一些情况下,经由定向波束进行通信的通信系统内的UE的移动性可能影响AUL传输。例如,当UE改变位置时,最佳基站接收波束可能改变,并且原始基站接收波束(即,在UE改变位置之前基站所利用的基站接收波束)可能不再用于检测来自UE的改变的位置的AUL传输。另外,来自UE的AUL传输可能是偶发的,并且基站(或UE)可能难以发现波束对链路断开或不再起作用。因此,可能期望确保通过用于AUL资源的波束管理,基站沿着很好地适合于AUL传输的基站接收波束(例如,至少部分地基于参考信号强度确定的最佳或最优基站接收波束)检测AUL传输,并且UE在与基站被调谐到的基站接收波束相对应的AUL资源上进行发送,例如在系统内的UE移动性的情况下。
如本文描述的,基站可以将一个或多个时间/频率AUL资源集合配置有相关联的(例如,准共置(QCL))参考信号,其中,AUL资源是特定于基站接收波束的。参考信号的存在(或参考信号的信号强度)可以使UE能够确定用于上行链路数据的AUL传输的AUL资源的可用性。即,UE可以比较各种参考信号的信号强度并且选择具有最高信号强度的参考信号,并且可以使用与该最强参考信号(例如,相对于其它参考信号具有最高参考信号接收功率(RSRP)或信噪比(SNR)的参考信号)相关联的AUL资源集合。此外,在基站与UE之间的波束对链路发生故障的情况下(例如,由于UE的移动性,由于干扰,等等),UE可以检测来自基站的与AUL资源相关联的参考信号。在检测到参考信号并且确定其与AUL资源集合相关联时,UE可以使用与对应的基站接收波束共享相同方向的UE发射波束来在与检测到的参考信号相关联的AUL资源集合上进行发送。
首先在无线通信系统的背景下描述了本公开内容的各方面。提供了示出用于AUL传输的配置的AUL资源的另外的示例。进一步通过涉及用于具有模拟波束的AUL的波束管理的装置图、系统图和流程图来示出并且参照这些图来描述本公开内容的各方面。
图1示出了根据本公开内容的各个方面的无线通信系统100的示例。无线通信系统100包括基站105、UE 115以及核心网络130。在一些示例中,无线通信系统100可以是长期演进(LTE)网络、改进的LTE(LTE-A)网络、LTE-A专业网络、或新无线电(NR)网络。在一些情况下,无线通信系统100可以支持增强型宽带通信、超可靠(例如,任务关键)通信、低时延通信或者与低成本且低复杂度设备的通信。无线通信系统可以支持用于AUL传输的高效波束管理的AUL资源配置。
基站105可以经由一个或多个基站天线与UE 115无线地进行通信。本文描述的基站105可以包括或可以被本领域技术人员称为基站收发机、无线电基站、接入点、无线电收发机、节点B、演进型节点B(eNB)、下一代节点B或千兆节点B(其中的任一项可以被称为gNB)、家庭节点B、家庭演进型节点B、或某种其它适当的术语。无线通信系统100可以包括不同类型的基站105(例如,宏小区基站或小型小区基站)。本文描述的UE 115能够与各种类型的基站105和网络设备(包括宏eNB、小型小区eNB、gNB、中继基站等)进行通信。
每个基站105可以与在其中支持与各个UE 115的通信的特定地理覆盖区域110相关联。每个基站105可以经由通信链路125为相应的地理覆盖区域110提供通信覆盖,并且在基站105和UE 115之间的通信链路125可以利用一个或多个载波。在无线通信系统100中示出的通信链路125可以包括:从UE 115到基站105的上行链路传输、或者从基站105到UE 115的下行链路传输。下行链路传输还可以被称为前向链路传输,而上行链路传输还可以被称为反向链路传输。
例如,通信链路125上的下行链路传输可以包括参考信号(诸如CSI-RS、SSB等)的传输。在一些情况下,参考信号可以与不同的AUL资源相关联,不同的AUL资源可以继而与基站105的不同接收波束相关联。因此,通信链路125上的上行链路传输可以包括由UE 115发送的AUL传输。UE 115可以基于不同参考信号的信号质量来选择用于AUL传输的特定的AUL资源集合。在一些情况下,例如,UE 115可以选择与具有最高信号强度的参考信号相关联的AUL资源集合。用于上行链路传输的AUL资源的选择可以允许基站105使用适当的接收波束来接收AUL传输,
可以将针对基站105的地理覆盖区域110划分为扇区,所述扇区仅构成地理覆盖区域110的一部分,并且每个扇区可以与小区相关联。例如,每个基站105可以提供针对宏小区、小型小区、热点、或其它类型的小区、或其各种组合的通信覆盖。在一些示例中,基站105可以是可移动的,并且因此,提供针对移动的地理覆盖区域110的通信覆盖。在一些示例中,与不同的技术相关联的不同的地理覆盖区域110可以重叠,并且与不同的技术相关联的重叠的地理覆盖区域110可以由相同的基站105或不同的基站105来支持。无线通信系统100可以包括例如异构LTE/LTE-A/LTE-A专业或NR网络,其中不同类型的基站105提供针对各个地理覆盖区域110的覆盖。
术语“小区”指代用于与基站105的通信(例如,在载波上)的逻辑通信实体,并且可以与用于对经由相同或不同载波来操作的相邻小区进行区分的标识符(例如,物理小区标识符(PCID)、虚拟小区标识符(VCID))相关联。在一些示例中,载波可以支持多个小区,并且不同的小区可以是根据不同的协议类型(例如,机器类型通信(MTC)、窄带物联网(NB-IoT)、增强型移动宽带(eMBB)或其它协议类型)来配置的,所述不同的协议类型可以为不同类型的设备提供接入。在一些情况下,术语“小区”可以指代逻辑实体在其上进行操作的地理覆盖区域110的一部分(例如,扇区)。
UE 115可以散布于整个无线通信系统100中,并且每个UE 115可以是静止的或移动的。UE 115还可以被称为移动设备、无线设备、远程设备、手持设备、或订户设备、或某种其它适当的术语,其中,“设备”还可以被称为单元、站、终端或客户端。UE 115也可以是个人电子设备,例如,蜂窝电话、个人数字助理(PDA)、平板计算机、膝上型计算机或个人计算机。在一些示例中,UE 115还可以指代无线本地环路(WLL)站、物联网(IoT)设备、万物联网(IoE)设备或MTC设备等,其可以是在诸如电器、运载工具、仪表等的各种物品中实现的。
一些UE 115(例如,MTC或IoT设备)可以是低成本或低复杂度设备,并且可以提供机器之间的自动化通信(例如,经由机器到机器(M2M)通信)。M2M通信或MTC可以指代允许设备在没有人为干预的情况下与彼此或基站105进行通信的数据通信技术。在一些示例中,M2M通信或MTC可以包括来自集成有传感器或计量仪以测量或捕获信息并且将该信息中继给中央服务器或应用程序的设备的通信,所述中央服务器或应用程序可以利用该信息或者将该信息呈现给与该程序或应用进行交互的人类。一些UE 115可以被设计为收集信息或者实现机器的自动化行为。针对MTC设备的应用的示例包括智能计量、库存监控、水位监测、设备监测、医疗保健监测、野生生物监测、气候和地质事件监测、车队管理和跟踪、远程安全感测、物理访问控制、以及基于事务的业务计费。
一些UE 115可以被配置为采用减小功耗的操作模式,例如,半双工通信(例如,一种支持经由发送或接收的单向通信而不是同时进行发送和接收的模式)。在一些示例中,半双工通信可以是以减小的峰值速率来执行的。针对UE 115的其它功率节约技术包括:当不参与活动的通信或者在有限的带宽上操作(例如,根据窄带通信)时,进入功率节省的“深度睡眠”模式。在一些情况下,UE 115可以被设计为支持关键功能(例如,任务关键功能),并且无线通信系统100可以被配置为提供用于这些功能的超可靠通信。
在一些情况下,UE 115还能够与其它UE 115直接进行通信(例如,使用对等(P2P)或设备到设备(D2D)协议)。利用D2D通信的一组UE 115中的一个或多个UE 115可以在基站105的地理覆盖区域110内。这样的组中的其它UE 115可以在基站105的地理覆盖区域110之外,或者以其它方式无法从基站105接收传输。在一些情况下,经由D2D通信来进行通信的多组UE 115可以利用一到多(1:M)系统,其中,每个UE 115向组中的每个其它UE 115进行发送。在一些情况下,基站105促进对用于D2D通信的资源的调度。在其它情况下,D2D通信是在UE 115之间执行的,而不涉及基站105。
基站105可以与核心网络130进行通信以及彼此进行通信。例如,基站105可以通过回程链路132(例如,经由S1或其它接口)与核心网络130以接口方式连接。基站105可以在回程链路134上(例如,经由X2或其它接口)上直接地(例如,直接在基站105之间)或间接地(例如,经由核心网络130)彼此进行通信。
核心网络130可以提供用户认证、接入授权、跟踪、互联网协议(IP)连接、以及其它接入、路由或移动性功能。核心网络130可以是演进分组核心(EPC),其可以包括至少一个移动性管理实体(MME)、至少一个服务网关(S-GW)和至少一个分组数据网络(PDN)网关(P-GW)。MME可以管理非接入层(例如,控制平面)功能,例如,针对由与EPC相关联的基站105服务的UE 115的移动性、认证和承载管理。用户IP分组可以通过S-GW来传输,所述S-GW本身可以连接到P-GW。P-GW可以提供IP地址分配以及其它功能。P-GW可以连接到网络运营商IP服务。运营商IP服务可以包括对互联网、内联网、IP多媒体子系统(IMS)或分组交换(PS)流服务的接入。
网络设备中的至少一些网络设备(例如,基站105)可以包括诸如接入网络实体之类的子组件,其可以是接入节点控制器(ANC)的示例。每个接入网络实体可以通过多个其它接入网络传输实体(其可以被称为无线电头端、智能无线电头端或发送/接收点(TRP))来与UE 115进行通信。在一些配置中,每个接入网络实体或基站105的各种功能可以是跨越各个网络设备(例如,无线电头端和接入网络控制器)分布的或者合并到单个网络设备(例如,基站105)中。
无线通信系统100可以使用一个或多个频带(通常在300MHz到300GHz的范围中)来操作。通常,从300MHz到3GHz的区域被称为特高频(UHF)区域或分米频带,因为波长范围在长度上从近似一分米到一米。UHF波可能被建筑物和环境特征阻挡或重定向。然而,波可以足以穿透结构,以用于宏小区向位于室内的UE 115提供服务。与使用频谱的低于300MHz的高频(HF)或甚高频(VHF)部分的较小频率和较长的波的传输相比,UHF波的传输可以与较小的天线和较短的距离(例如,小于100km)相关联。
无线通信系统100还可以在使用从3GHz到30GHz的频带(还被称为厘米频带)的超高频(SHF)区域中操作。SHF区域包括诸如5GHz工业、科学和医疗(ISM)频带之类的频带,其可以由能够容忍来自其它用户的干扰的设备机会性地使用。
无线通信系统100还可以在频谱的极高频(EHF)区域(例如,从25GHz到300GHz)(还被称为毫米频带)中操作。在一些示例中,无线通信系统100可以支持UE 115与基站105之间的mmW通信,并且与UHF天线相比,相应设备的EHF天线可以甚至更小并且间隔得更紧密。在一些情况下,这可以促进在UE 115内使用天线阵列。然而,与SHF或UHF传输相比,EHF传输的传播可能遭受到甚至更大的大气衰减和更短的距离。在一些情况下,UE 115和基站105可以使用经由波束成形的定向波束来克服mmW频率中的衰减的一些方面。可以跨越使用一个或多个不同的频率区域的传输来采用本文公开的技术,并且对跨越这些频率区域的频带的指定使用可以根据国家或管理机构而不同。
尝试接入无线网络的UE 115可以通过检测来自基站105的主同步信号(PSS)来执行初始小区搜索。PSS可以启用时隙时序的同步并且可以指示物理层身份值。UE 115然后可以接收辅同步信号(SSS)。SSS可以启用无线电帧同步,并且可以提供小区身份值,该小区身份值可以与物理层身份值组合以标识小区。SSS还可以使得能够检测双工模式和循环前缀长度。诸如时分双工(TDD)系统之类的一些系统可以发送SSS,但是不发送PSS。PSS和SSS可以分别位于载波的中央62和72子载波中。在接收到PSS和SSS之后,UE 115可以接收主信息块(MIB),其可以在物理广播信道(PBCH)中被发送。MIB可以包含系统带宽信息、SFN和物理混合自动重传请求(HARQ)指示符信道(PHICH)配置。在解码MIB之后,UE 115可以接收一个或多个SIB。例如,SIB1可以包含用于其它SIB的小区接入参数和调度信息。解码SIB1可以使UE 115能够接收SIB2。SIB2可以包含与随机接入信道(RACH)过程、寻呼、PUCCH、物理上行链路共享信道(PUSCH)、功率控制、探测参考信号(SRS)和小区禁止有关的RRC配置信息。在一些情况下,基站105可以使用多个波束以波束扫描的方式通过小区覆盖区域来发送同步信号(SS)(例如,PSS、SSS等)。例如,可以在相应的定向波束上在不同的SS块内发送PSS、SSS和/或广播信息(例如,PBCH),其中一个或多个SS块可以被包括在SS突发(SSB)内。在一些情况下,可以在不同的时间和/或使用不同的波束来发送这些SS和参考信号。例如,当UE 115从基站105接收与多个AUL资源集合相关联的多个参考信号时,多个参考信号中的至少一些参考信号可以包括SSB。
在UE 115解码SIB2之后,其可以向基站105发送RACH前导码。例如,可以从64个预定序列的集合中随机选择RACH前导码。这可以使基站105能够区分尝试同时接入系统的多个UE 115。基站105可以利用随机接入响应(其提供上行链路资源授权、时序提前和临时C-RNTI)来进行响应。然后,UE 115可以发送RRC连接请求连同临时移动用户身份(TMSI)(如果UE 115先前已经被连接到相同的无线网络的话)或随机标识符。RRC连接请求还可以指示UE115正在连接到网络的原因(例如,紧急情况、信令、数据交换等)。基站105可以利用寻址到UE 115的竞争解决消息(其可以提供新的C-RNTI)来对连接请求进行响应。如果UE 115接收到具有正确标识的竞争解决消息,则其可以继续进行RRC建立。如果UE 115没有接收到竞争解决消息(例如,如果存在与另一UE 115的冲突的话),则UE 115可以通过发送新的RACH前导码来重复RACH过程。在一些示例中,基站105可以向UE 115发送与多个AUL资源集合相关联的多个参考信号,并且基站105可以至少部分地基于多个参考信号中的每个参考信号的后续传输变得不可由UE检测到,来从UE 115接收RACH消息。基站105可以响应于RACH消息来配置用于与UE 115进行通信的通信资源和接收波束集合。
基站105可以插入周期性导频符号(诸如特定于小区的参考信号(CRS))以辅助UE115进行信道估计和相干解调。CRS可以包括504个不同的小区身份之一。可以使用正交相移键控(QPSK)来对其进行调制并且进行功率提升(例如,以比周围数据元素高6dB来发送),以使其抵御噪声和干扰。可以基于接收UE 115的天线端口或层的数量(多达4个),来将CRS嵌入在每个资源块(RB)中的4至16个资源元素中。除了可以由基站105的覆盖区域110中的所有UE 115使用的CRS之外,解调参考信号(DMRS)可以被引导去往特定的UE 115,并且可以仅在被指派给那些UE 115的RB上被发送。DMRS可以包括它们在其中被发送的每个RB中的6个资源元素上的信号。针对不同天线端口的DMRS均可以利用相同的6个资源元素,并且可以使用不同的正交覆盖码来进行区分(例如,在不同的资源中利用1或-1的不同组合来掩码每个信号)。在一些情况下,可以在毗连的资源元素中发送两个DMRS集合。在一些情况下,可以包括被称为信道状态信息参考信号(CSI-RS)的额外的参考信号,以辅助生成信道状态信息(CSI)。在上行链路上,UE 115可以发送周期性SRS和上行链路DMRS的组合,以分别用于链路适配和解调。例如,当UE 115从基站105接收与多个AUL资源集合相关联的多个参考信号时,多个参考信号中的至少一些参考信号可以包括CSI-RS。
在一些情况下,无线通信系统100可以利用经许可和免许可射频频谱带两者。例如,无线通信系统100可以采用免许可频带(例如,5GHz ISM频带)中的许可辅助接入(LAA)、LTE免许可(LTE-U)无线电接入技术或NR技术。当在免许可射频频谱带中操作时,无线设备(例如,基站105和UE 115)可以在发送数据之前采用先听后说(LBT)过程来确保频率信道是空闲的。在一些情况下,免许可频带中的操作可以基于结合在经许可频带(例如,LAA)中操作的CC的CA配置。免许可频谱中的操作可以包括下行链路传输、上行链路传输、对等传输或这些项的组合。免许可频谱中的双工可以基于频分双工(FDD)、时分双工(TDD)或这两者的组合。在一些情况下,UE 115可以在执行AUL传输之前执行LBT过程。
在一些示例中,基站105或UE 115可以被配备有多个天线,其可以用于采用诸如发射分集、接收分集、多输入多输出(MIMO)通信或波束成形之类的技术。例如,无线通信系统100可以在发送设备(例如,基站105)和接收设备(例如,UE 115)之间使用传输方案,其中,发送设备被配备有多个天线,以及接收设备被配备有一个或多个天线。MIMO通信可以采用多径信号传播,以通过经由不同的空间层来发送或接收多个信号(这可以被称为空间复用)来提高频谱效率。例如,发送设备可以经由不同的天线或者天线的不同组合来发送多个信号。同样,接收设备可以经由不同的天线或者天线的不同组合来接收多个信号。多个信号中的每个信号可以被称为分离的空间流,并且可以携带与相同的数据流(例如,相同的码字)或不同的数据流相关联的比特。不同的空间层可以与用于信道测量和报告的不同的天线端口相关联。MIMO技术包括单用户MIMO(SU-MIMO)(其中,多个空间层被发送给相同的接收设备)和多用户MIMO(MU-MIMO)(其中,多个空间层被发送给多个设备)。
波束成形(其还可以被称为空间滤波、定向发送或定向接收)是一种如下的信号处理技术:可以在发送设备或接收设备(例如,基站105或UE 115)处使用该技术,以沿着在发送设备和接收设备之间的空间路径来形成或引导天线波束(例如,发送波束或接收波束)。可以通过以下操作来实现波束成形:对经由天线阵列的天线元件传送的信号进行组合,使得在相对于天线阵列的特定朝向上传播的信号经历相长干涉,而其它信号经历相消干涉。对经由天线元件传送的信号的调整可以包括:发送设备或接收设备向经由与该设备相关联的天线元件中的每个天线元件携带的信号应用某些幅度和相位偏移。可以由与特定朝向(例如,相对于发送设备或接收设备的天线阵列,或者相对于某个其它朝向)相关联的波束成形权重集合来定义与天线元件中的每个天线元件相关联的调整。
在一个示例中,基站105可以使用多个天线或天线阵列,来进行用于与UE 115的定向通信的波束成形操作。例如,基站105可以在不同的方向上将一些信号(例如,同步信号、参考信号、波束选择信号或其它控制信号)发送多次,所述一些信号可以包括根据与不同的传输方向相关联的不同的波束成形权重集合发送的信号。不同的波束方向上的传输可以用于(例如,由基站105或接收设备(例如,UE 115))识别用于基站105进行的后续发送和/或接收的波束方向。基站105可以在单个波束方向(例如,与接收设备(例如,UE 115)相关联的方向)上发送一些信号(例如,与特定的接收设备相关联的数据信号)。在一些示例中,与沿着单个波束方向的传输相关联的波束方向可以是至少部分地基于在不同的波束方向上发送的信号来确定的。例如,UE 115可以接收基站105在不同方向上发送的信号中的一个或多个信号,并且UE 115可以向基站105报告对其接收到的具有最高信号质量或者以其它方式可接受的信号质量的信号的指示。虽然这些技术是参照基站105在一个或多个方向上发送的信号来描述的,但是UE 115可以采用类似的技术来在不同方向上多次发送信号(例如,用于识别用于UE 115进行的后续发送或接收的波束方向)或者在单个方向上发送信号(例如,用于向接收设备发送数据)。
当从基站105接收各种信号(例如,同步信号、参考信号、波束选择信号或其它控制信号)时,接收设备(例如,UE 115,其可以是mmW接收设备的示例)可以尝试多个接收波束。例如,接收设备可以通过经由不同的天线子阵列来进行接收,通过根据不同的天线子阵列来处理接收到的信号,通过根据向在天线阵列的多个天线元件处接收的信号应用的不同的接收波束成形权重集合来进行接收,或者通过根据向在天线阵列的多个天线元件处接收的信号应用的不同的接收波束成形权重集合来处理接收到的信号(以上各个操作中的任何操作可以被称为根据不同的接收波束或接收方向的“监听”),来尝试多个接收方向。在一些示例中,接收设备可以使用单个接收波束来沿着单个波束方向进行接收(例如,当接收数据信号时)。单个接收波束可以在至少部分地基于根据不同的接收波束方向进行监听而确定的波束方向(例如,至少部分地基于根据多个波束方向进行监听而被确定为具有最高信号强度、最高信噪比、或者以其它方式可接受的信号质量的波束方向)上对准。
在一些情况下,基站105或UE 115的天线可以位于一个或多个天线阵列内,所述一个或多个天线阵列可以支持MIMO操作或者发送或接收波束成形。例如,一个或多个基站天线或天线阵列可以共置于天线组件处,例如天线塔。在一些情况下,与基站105相关联的天线或天线阵列可以位于不同的地理位置上。基站105可以具有天线阵列,所述天线阵列具有基站105可以用于支持对与UE 115的通信的波束成形的多行和多列的天线端口。同样,UE115可以具有可以支持各种MIMO或波束成形操作的一个或多个天线阵列。在一些情况下,一个或多个天线阵列可以包括定向天线阵列。
在一些情况下,无线通信系统100可以是根据分层协议栈来操作的基于分组的网络。在用户平面中,在承载或分组数据汇聚协议(PDCP)层处的通信可以是基于IP的。在一些情况下,无线电链路控制(RLC)层可以执行分组分段和重组以在逻辑信道上进行通信。介质访问控制(MAC)层可以执行优先级处理和逻辑信道到传输信道的复用。MAC层还可以使用HARQ来提供在MAC层处的重传,以改善链路效率。在控制平面中,无线电资源控制(RRC)协议层可以提供在UE 115与基站105或核心网络130之间的RRC连接(其支持针对用户平面数据的无线电承载)的建立、配置和维护。在物理(PHY)层处,传输信道可以被映射到物理信道。
在一些情况下,UE 115和基站105可以支持数据的重传,以增加数据被成功接收的可能性。HARQ反馈是一种增加数据在通信链路125上被正确接收的可能性的技术。HARQ可以包括错误检测(例如,使用循环冗余校验(CRC))、前向纠错(FEC)和重传(例如,自动重传请求(ARQ))的组合。HARQ可以在差的无线电状况(例如,信号与噪声状况)下改进MAC层处的吞吐量。在一些情况下,无线设备可以支持相同时隙HARQ反馈,其中,该设备可以在特定时隙中提供针对在该时隙中的先前符号中接收的数据的HARQ反馈。在其它情况下,该设备可以在后续时隙中或者根据某个其它时间间隔来提供HARQ反馈。
可以以基本时间单位(其可以例如指代Ts=1/30,720,000秒的采样周期)的倍数来表示LTE或NR中的时间间隔。可以根据均具有10毫秒(ms)的持续时间的无线电帧对通信资源的时间间隔进行组织,其中,帧周期可以表示为Tf=307,200Ts。无线电帧可以通过范围从0到1023的系统帧编号(SFN)来标识。每个帧可以包括编号从0到9的10个子帧,并且每个子帧可以具有1ms的持续时间。可以进一步将子帧划分成2个时隙,每个时隙具有0.5ms的持续时间,并且每个时隙可以包含6或7个调制符号周期(例如,这取决于在每个符号周期前面添加的循环前缀的长度)。排除循环前缀,每个符号周期可以包含2048个采样周期。在一些情况下,子帧可以是无线通信系统100的最小调度单元,并且可以被称为传输时间间隔(TTI)。在其它情况下,无线通信系统100的最小调度单元可以比子帧短或者可以是动态选择的(例如,在缩短的TTI(sTTI)的突发中或者在选择的使用sTTI的分量载波中)。
在一些无线通信系统中,可以将时隙进一步划分成包含一个或多个符号的多个微时隙。在一些实例中,微时隙的符号或者微时隙可以是最小调度单元。每个符号在持续时间上可以根据例如子载波间隔或操作的频带而改变。此外,一些无线通信系统可以实现时隙聚合,其中,多个时隙或微时隙被聚合在一起并且用于在UE 115和基站105之间的通信。
术语“载波”指代具有用于支持在通信链路125上的通信的定义的物理层结构的射频频谱资源集合。例如,通信链路125的载波可以包括射频频谱带中的根据用于给定无线电接入技术的物理层信道来操作的部分。每个物理层信道可以携带用户数据、控制信息或其它信令。载波可以与预定义的频率信道(例如,E-UTRA绝对射频信道号(EARFCN))相关联,并且可以根据信道栅格来放置以便被UE 115发现。载波可以是下行链路或上行链路(例如,在FDD模式中),或者可以被配置为携带下行链路和上行链路通信(例如,在TDD模式中)。在一些示例中,在载波上发送的信号波形可以由多个子载波构成(例如,使用诸如正交频分复用(OFDM)或DFT-s-OFDM之类的多载波调制(MCM)技术)。
针对不同的无线电接入技术(例如,LTE、LTE-A、LTE-A专业、NR等),载波的组织结构可以是不同的。例如,可以根据TTI或时隙来组织载波上的通信,所述TTI或时隙中的每一者可以包括用户数据以及用于支持对用户数据进行解码的控制信息或信令。载波还可以包括专用捕获信令(例如,同步信号或系统信息等)和协调针对载波的操作的控制信令。在一些示例中(例如,在载波聚合配置中),载波还可以具有捕获信令或协调针对其它载波的操作的控制信令。
可以根据各种技术在载波上对物理信道进行复用。例如,可以使用时分复用(TDM)技术、频分复用(FDM)技术或混合TDM-FDM技术来在下行链路载波上对物理控制信道和物理数据信道进行复用。在一些示例中,在物理控制信道中发送的控制信息可以以级联的方式分布在不同的控制区域之间(例如,在公共控制区域或公共搜索空间与一个或多个特定于UE的控制区域或特定于UE的搜索空间之间)。
在物理下行链路控制信道(PDCCH)中发送包括HARQ信息的下行链路控制信息(DCI),PDCCH在至少一个控制信道元素CCE中携带DCI,控制信道元素CCE可以由九个在逻辑上连续的资源元素组(REG)组成,其中每个REG包含四个资源元素。DCI包括关于下行链路调度指派、上行链路资源授权、传输方案、上行链路功率控制、HARQ信息、调制和编码方案(MCS)以及其它信息的信息。DCI消息的大小和格式可以根据由DCI携带的信息的类型和数量而改变。例如,如果支持空间复用,则与连续的频率分配相比,DCI消息的大小是大的。类似地,对于采用MIMO的系统,DCI包括额外的信令信息。DCI大小和格式取决于信息数量以及诸如带宽、天线端口数和双工模式之类的因素。
载波可以与射频频谱的特定带宽相关联,并且在一些示例中,载波带宽可以被称为载波或无线通信系统100的“系统带宽”。例如,载波带宽可以是针对特定无线电接入技术的载波的多个预定带宽中的一个带宽(例如,1.4、3、5、10、15、20、40或80MHz)。在一些示例中,每个被服务的UE 115可以被配置用于在载波带宽的部分或全部带宽上进行操作。在其它示例中,一些UE 115可以被配置用于使用与载波内的预定义的部分或范围(例如,子载波或RB的集合)相关联的窄带协议类型进行的操作(例如,窄带协议类型的“带内”部署)。
在采用MCM技术的系统中,资源元素可以由一个符号周期(例如,一个调制符号的持续时间)和一个子载波组成,其中,符号周期和子载波间隔是逆相关的。每个资源元素携带的比特的数量可以取决于调制方案(例如,调制方案的阶数)。因此,UE 115接收的资源元素越多并且调制方案的阶数越高,针对UE 115的数据速率就可以越高。在MIMO系统中,无线通信资源可以指代射频频谱资源、时间资源和空间资源(例如,空间层)的组合,并且对多个空间层的使用可以进一步增加用于与UE 115的通信的数据速率。
无线通信系统100的设备(例如,基站105或UE 115)可以具有支持特定载波带宽上的通信的硬件配置,或者可以可配置为支持载波带宽集合中的一个载波带宽上的通信。在一些示例中,无线通信系统100可以包括基站105和/或UE,其能够支持经由与一个以上的不同载波带宽相关联的载波进行的同时通信。
无线通信系统100可以支持在多个小区或载波上与UE 115的通信(一种可以被称为载波聚合(CA)或多载波操作的特征)。根据载波聚合配置,UE 115可以被配置有多个下行链路CC和一个或多个上行链路CC。可以将载波聚合与FDD分量载波和TDD分量载波两者一起使用。
在一些情况下,无线通信系统100可以利用增强型分量载波(eCC)。eCC可以由包括以下各项的一个或多个特征来表征:较宽的载波或频率信道带宽、较短的符号持续时间、较短的TTI持续时间或经修改的控制信道配置。在一些情况下,eCC可以与载波聚合配置或双连接配置相关联(例如,当多个服务小区具有次优的或非理想的回程链路时)。eCC还可以被配置用于在免许可频谱或共享频谱中使用(例如,其中允许一个以上的运营商使用频谱)。由宽载波带宽表征的eCC可以包括可以被无法监测整个载波带宽或以其它方式被配置为使用有限载波带宽(例如,以节省功率)的UE 115使用的一个或多个片段。
在一些情况下,eCC可以利用与其它CC不同的符号持续时间,这可以包括使用与其它CC的符号持续时间相比减小的符号持续时间。较短的符号持续时间可以与在相邻子载波之间的增加的间隔相关联。利用eCC的设备(例如,UE 115或基站105)可以以减小的符号持续时间(例如,16.67微秒)来发送宽带信号(例如,根据20、40、60、80MHz等的频率信道或载波带宽)。eCC中的TTI可以由一个或多个符号周期组成。在一些情况下,TTI持续时间(即,TTI中的符号周期的数量)可以是可变的。
除此之外,无线通信系统(诸如NR系统)可以利用经许可、共享和免许可频谱带的任意组合。eCC符号持续时间和子载波间隔的灵活性可以允许跨越多个频谱来使用eCC。在一些示例中,NR共享频谱可以提高频谱利用率和频谱效率,尤其是通过对资源的动态垂直(例如,跨越频率)和水平(例如,跨越时间)共享。
无线通信系统100可以支持将特定于波束的AUL资源配置有相关联的参考信号,以用于相干波束管理。例如,基站105可以配置特定于一个或多个基站接收波束的相应的AUL资源集合。这些特定于波束的AUL资源集合可以被配置为与诸如CSI-RS、SSB等之类的参考信号相关联(例如,QCL)。基站105可以周期性地发送与AUL资源相关联的参考信号。在检测到参考信号中的一个或多个参考信号时,UE 115可以识别哪些AUL资源集合可用于上行链路数据的AUL传输。在这样的情况下,UE 115可以基于与该AUL资源集合相关联的参考信号的信号强度来选择AUL资源集合。另外,UE 115可以确定先前具有最高信号强度的参考信号已经丢失(例如,参考信号的信号强度已经下降到门限以下),并且可以选择与不同的特定于波束的AUL资源集合相关联的另一参考信号。因此,UE 115可以使用不同的特定于波束的AUL资源集合来执行后续的AUL传输。与相应的AUL资源集合相关联的参考信号的存在可以使UE能够相干且连续地监测由基站105配置的可用AUL资源。这样的波束管理技术可以确保当不同的波束用于AUL时(例如,当UE 115随时间移动并且处于相对于基站105的不同位置时),UE 115能够执行AUL传输。同样地,基站105可以配置(和重新配置)AUL资源以考虑UE移动性。
图2A和2B示出了根据本公开内容的各个方面的支持用于具有模拟波束的AUL的波束管理的无线通信系统200-a和200-b的示例。在一些示例中,无线通信系统200-a和200-b可以实现无线通信系统100的各方面。例如,无线通信系统200-a和200-b包括基站105-a和UE 115-a,它们可以是参照图1描述的对应设备的示例。在一些情况下,无线通信系统200-a和200-b可以支持使用由基站105-a调度的资源(例如,经由资源授权调度)的上行链路通信,并且作为用于UE 115-a的调度的资源授权的替代或者除了用于UE 115-a的调度的资源授权,还可以支持AUL通信。因此,本文描述的技术可以由具有AUL能力并且还可以例如从基站105接收调度的资源的授权的无线设备来执行。在一些情况下,无线通信系统200-a和200-b可以表示支持参考信号与配置的AUL资源的关联以启用波束管理的系统。
无线通信系统200-a和200-b可以在与基站105-a和UE 115-a之间的波束成形传输相关联的频率范围中操作。例如,无线通信系统200可以使用mmW频率范围来操作。因此,可以使用诸如波束成形之类的信号处理技术来相干地组合能量并且克服路径损耗。例如,基站105-a和UE 115-a可以经由波束对链路进行通信,每个波束对链路包括例如基站105-a的基站接收波束205和UE 115-a的UE发射波束210。应当理解,相应的设备能够形成用于发送和接收的定向波束,其中基站105-a还可以形成用于在下行链路上进行发送的一个或多个发射波束,并且UE 115-a可以形成用于从基站105-a接收信号的对应的接收波束。基站105-a和UE 115-a可以在形成这些发射和接收波束时利用定向天线阵列。与由在一些频率中(尤其是在mmW频率范围之外的频率(诸如低于6GHz的频率)中)进行发送和接收的全向天线阵列形成的波束相比,这些波束可能是窄的。在一些情况下,基站105-a可能仅具有一次(例如,在TTI期间)利用单个基站接收波束205的能力,并且基站105-a可以在监测UE发射波束210的路径(例如,在特定方向上)时从UE 115-a接收定向传输。
UE 115-a能够进行去往基站105-a的AUL传输,并且因此可以经由发射波束205执行去往基站105-a的AUL传输,可以在基站105-a处使用对应的接收波束210来接收该发射波束。对应的波束可以被定义为用于从特定方向接收信号的接收波束210,其中可以存在用于在该方向上进行发送的对应的发射波束205。另外或替代地,对应的波束可以是指使用相同的波束成形权重的发射波束205和接收波束210。同一设备处的发射波束和接收波束之间也可能存在对应关系。例如,基站105-a可以在特定的接收波束210上接收传输(即,在第一方向上),并且基站105-a可以使用与接收波束210相同的波束路径来在对应的发射波束上发送下行链路传输(即,在第一方向上)。在这样的场景中,对于基站105-a处的接收波束210和发射波束两者,波束成形权重可以相同。对于在UE 115-a和UE 115-b处形成的发射波束205和接收波束,可以发生相同的对应关系。在任何情况下,UE 115-a可以在AUL资源集合上发送AUL传输(例如,使用AUL资源220)。基站105-a可以相应地经由下行链路波束向UE 115-a发送下行链路通信,其可以包括AUL配置,其中AUL配置指示供UE 115使用的AUL资源集合。
在一些情况下,AUL资源220可以包括感测部分和数据部分。可以分配不同的AUL资源220,使得每个AUL资源220的感测部分在不同的波束对链路上被发送,而数据部分对于所有波束对链路可以是公共的。因此,本公开内容中描述的以下技术可以应用于AUL资源220的感测部分、AUL资源220的数据部分、或两者的组合。
基站105-a可以配置参考信号215(例如,CSI-RS、SSB等),该参考信号215可以与配置的AUL资源220相关联。例如,AUL指派可以与配置的参考信号215是QCL的。AUL资源集合220与参考信号215之间的QCL关联可以对应于相同或类似的用于发送参考信号215的基站发射波束以及用于接收AUL传输的对应的基站接收波束205。因此,QCL关联还可以是指例如用于参考信号215的传输的天线端口与形成用于接收AUL传输的基站接收波束205的天线端口之间的QCL关系。如果在其上在一个天线端口上传送符号的信道的特性可以从在其上在另一天线端口上传送符号的信道推断出来,则可以称这两个天线端口(或两个天线端口集合)是QCL、空间QCL或具有QCL关系。例如,如果用于第一天线端口(或天线端口集合)的信道的参数(例如,延迟扩展、多普勒扩展、多普勒频移、平均延迟、空间参数等)的测量值在用于第二天线端口(或天线端口集合)的信道的参数的测量值的门限值内,则这两个天线端口(或两个天线端口集合)可以被认为是QCL。即,如果第一信号是利用与用于发送第二信号的第二天线端口QCL的第一天线端口发送的,则可以经由相同的发射波束和接收波束(例如,相同的波束对链路)传送第一信号和第二信号。
此外,可以存在针对发射波束和接收波束的互易性。例如,由于互易性,用于发送信号的基站105-a发射波束可以对应于用于在相同方向上接收信号的基站接收波束205。因此,基站105-a可以知道哪些UE 115位于各个方向上,并且哪些基站接收波束205可以在基站105-a处用于从这些UE 115接收信号。
UE 115-a可以使用参考信号215来识别用于通信的最佳波束(例如,最强接收波束),并且UE 115-a还可以在相同方向上将其自身的传输关联到基站105-a(例如,基于接收到的参考信号215与AUL资源集合220之间的QCL关系)。例如,UE 115-a可以监测与相应的AUL资源集合220相关联的参考信号215,并且如果检测到参考信号215或者如果检测到的参考信号215的强度高于门限,则可以发送AUL传输。例如,如果相关联的参考信号的信号强度被测量为大于信号强度门限,则UE 115-a可以使用第一AUL资源集合220-a。在一些情况下,如果UE 115-a没有检测到与AUL资源220相关联的参考信号215,或者如果检测到的参考信号215的强度落在门限以下,则可以不利用AUL资源220。
基站105-a可以将UE 115-a配置有一个或多个AUL资源集合220。每个AUL资源集合220或多个AUL资源集合220可以被配置有用于一个基站接收波束205的一个参考信号215(例如,CSI-RS或SSB)。该AUL资源集合220可以是用于基站接收波束205的所有预留的AUL资源220的子集,这可以允许多个UE 115对基站接收波束205上的AUL传输进行复用。基站105-a可以使用与配置的基站接收波束205使用相同路径的基站发射波束来周期性地向一个或多个UE 115发送参考信号215。
在一些示例中,基站105-a可以具有多个可用的接收波束205(例如,多达64个不同的波束),其中,一个或多个基站接收波束205可以用于接收来自UE 115-a的AUL传输。对于一个或多个基站接收波束205,基站105-a可以为每个基站接收波束205预留AUL资源集合220。在一些示例中,基站105-a可以为每个基站接收波束205配置AUL资源220,其中无论UE115-a被调谐到的基站接收波束205如何,都可以存在可用于UE 115-a的AUL资源220。这样的配置可能导致基站105-a处的开销,但是同时,也可以确保有足够的AUL资源可用于UE115以用于AUL传输。
在其它示例中,基站接收波束205可能不具有对应的UE发射波束210,并且基站105-a可能不为每个基站接收波束205都预留AUL资源220。例如,可能没有UE 115位于与基站接收波束205-b相对应的由基站105-a服务的小区的区域中。因此,基站105-a可能不期望在基站接收波束205-b上接收AUL传输,并且因此,基站105-a可能不为基站接收波束205-b配置AUL资源220。
UE 115-a可以被配置有用于可能的接收波束205的子集的AUL资源220。该配置可以减少基站105-a处的开销,但是它也可以降低针对UE 115-a的可用覆盖。作为一个示例,无线通信系统200-a和200-b可以被配置有64个基站接收波束205以用于全覆盖。然而,UE115-a可以被配置有仅与4个基站接收波束205相关联的AUL资源220,该4个基站接收波束205对应于最强的基站接收波束205(例如,具有最高信号强度或基站接收波束205的最低干扰的基站接收波束205)以及UE 115-a进行波束管理可能需要的接收波束205。可能期望基站105-a将AUL资源220配置为仅用于“繁忙”基站接收波束205(例如,经历最多业务的基站接收波束205)。在这样的情况下,在基站接收波束205上预留的资源量可以与基站接收波束205的繁忙程度成比例(例如,与接收低业务量的基站接收波束205-b相比,经历高业务量的基站接收波束205-a可以具有在其上预留的更大数量的AUL资源220)。
在一些示例中,UE 115-a可以在由基站105-a服务的小区内在方向230上移动。在这样的情况下,用于AUL传输的基站接收波束205与UE发射波束210之间的波束对链路可能断开。例如,基站105-a可以使用基站接收波束205-a来接收来自UE 115-a的AUL传输,其中UE 115-a利用与基站接收波束205-a相对应的UE发射波束210(例如,遵循相同的路径)。如果UE 115-a改变了基站105-a的小区内的位置,则当UE 115-a在UE 115-a的原始位置处使用与基站接收波束205-a相对应的UE发射波束210时,基站接收波束205-a可能不再检测来自UE 115-a的AUL传输。在这样的情况下,可能浪费AUL传输,因此UE 115-a可以避免继续进行AUL传输并且与基站105-a重新建立波束对链路。在一些情况下,从UE 115-a到基站105-a的AUL传输可能是偶发的,并且这些传输可以分开长的传输间隙(例如,与调度的上行链路传输相比)。在这样的情况下,基站105-a可能难以发现波束对链路断开。因此,UE 115-a可以发起波束重建机制。
UE 115-a可以是移动的,并且参照图2B,UE 115-a可以改变位置,并因此断开与基站105-a的用于AUL传输的波束对链路。此外,UE 115-a可能无法检测到用于配置的第一AUL资源集合220-a的任何参考信号215,但是可能能够检测到UE 115-a针对其被配置有另一AUL资源集合220的一个或多个其它基站接收波束205。例如,UE 115-a在改变位置后可能不再能够检测到基站接收波束205-a和205-b,但是可能能够检测到均具有配置的特定于波束的AUL资源集合220的基站接收波束205-c、205-d和205-e,如图2B所示。在这样的情况下,UE115-a可以使用与基站105-a的波束同步过程,并且在一个或多个其它基站接收波束205(例如,基站接收波束205-c、205-d和205-e)上被指派不同的AUL资源集合220-b。这样的过程可以包括UE 115-a报告UE检测到的基站接收波束205(例如,基站接收波束205-c、205-d和205-e中的一个或多个)并且请求用于检测到的基站接收波束205的AUL资源220。在一些情况下,如果UE 115-a不再能够从基站105-a检测到已经为其配置了AUL资源的任何参考信号215,则UE 115-a可以使用另一过程来进行波束管理(例如,用于再次建立与基站105-a的通信的RACH过程)。
UE 115-a可以检测参考信号215以识别可以使用哪个AUL资源集合220。UE 115-a可以确定最强参考信号215(例如,具有最高信号强度的参考信号215或经历最小干扰的参考信号215,这可以是基于RSRP、SNR、信号与干扰加噪声比(SINR)等的),并且将与最强参考信号215相关联的AUL资源220用于AUL传输。如果检测到多个参考信号215,则UE 115-a可以比较检测到的参考信号215的信号强度,并且基于该比较来确定要利用哪个AUL资源220。在一些示例中,UE 115-a可能不再检测当前最强参考信号215。然而,UE 115-a可以检测其它参考信号215,这可以允许UE 115-a继续波束管理。例如,UE 115-a可以在可用参考信号215当中确定新的最强参考信号215,并且选择在与该新的最强参考信号215相关联的AUL资源220上进行发送。当发生波束改变或UE 115-a改变位置时,该解决方案可以向无线通信系统200-a和200-b提供稳健性。替代地或另外,可以基于优先级顺序来使用AUL资源220。例如,基站105-a可以将第一AUL资源配置为主AUL资源,并且将第二AUL资源配置为辅AUL资源。在一些情况下,假设相关联的参考信号强度满足门限条件(例如,信号强度高于门限),则UE115-a可以使用主AUL资源。在一些情况下,如果主AUL资源变得不可用并且辅AUL资源仍然满足门限条件,则UE 115-a可以使用辅AUL资源。
在一些示例中,剩余的AUL资源220(即,与未被确定为最强参考信号215的参考信号215相关联的AUL资源或辅AUL资源)可以用于报告可以触发AUL资源重配置的测量。例如,UE 115-a可以测量剩余的参考信号215(例如,SSB或CSI-RS)的信号强度,并且向基站105-a发送包括从测量获得的信息的测量报告。因此,UE 115-a使用AUL资源220来报告针对被配置用于UE 115-a的接收波束205之一的测量事件(例如,其最强接收波束的变化),并且基站105-a可以响应于这样的报告来向UE 115-a指派接收波束205和相关联的AUL资源220的新集合。测量事件的其它示例可以包括UE 115-a能够检测到的波束205的变化、波束205(或与波束205相关联的参考信号)的信号强度或相对信号强度改变了门限等。作为一个示例,当最强参考信号215的信号强度下降到门限以下时,可以发送测量报告。在其它示例中,当剩余参考信号215中的一个或多个参考信号215的信号强度变得比最强参考信号215的信号强度大门限量时,可以报告测量报告。基站105-a可以基于该测量来重新配置AUL资源220。如果UE 115-a不再检测到UE 115-a针对其被配置了AUL资源220的任何参考信号215,则UE115-a可以使用不同的过程(例如,执行RACH)再次执行波束管理。
在一些示例中,基站105-a可以将UE 115-a配置为使得UE 115-a仅在与一个基站接收波束205(例如,在所有基站接收波束205中具有最高信号强度的基站接收波束205,或与主AUL资源相对应的基站接收波束205)相对应的UE发射波束210上发送AUL传输。在其它示例中,UE 115-a可以在与一个以上的基站接收波束205相对应的AUL资源220上并行地发送AUL传输。例如,UE 115-a可以确定两个(例如,或更多个)基站接收波束205是用于AUL传输的基站接收波束(例如,基站接收波束205-c和205-d被确定为在所有基站接收波束205中具有最高信号强度)或两个基站接收波束都满足用于通信的门限条件。在这样的情况下,UE115-a可以使用与两个确定的基站接收波束205中的一个或两个(例如,基站接收波束205的最佳或最优子集)相对应的AUL资源220进行发送。这可以允许UE 115-a有更多的机会来发送AUL传输,这可以减少传输延迟。另外或替代地,并行传输可以消除或以其它方式减少针对UE 115-a确定要在其上进行发送的基站接收波束205的需求。然而,在通过并行传输获得的稳健性与UE 115-a处的功率消耗之间可能存在折衷。
图3A和3B示出了根据本公开内容的各个方面的支持用于具有模拟波束的AUL的波束管理的系统中的AUL资源配置301和302的示例。AUL资源配置301和302的各方面可以由UE115和基站105来实现,UE 115和基站105可以是关于无线通信系统100和200的对应设备的示例。AUL资源配置301和302可以示出AUL资源的示例,所述AUL资源被配置用于基站105处的特定接收波束,并且可以包括感测部分和数据部分。另外,AUL资源配置301和302可以示出与参考信号相关联并且用于UE 115的波束管理的AUL资源305。
如上所述,一个或多个AUL资源集合305的AUL指派可以配置为与参考信号是QCL的。资源(例如,AUL资源305)可以被定义为时间/频率资源,其包括例如RB、波束、子帧等中的一项或多项。例如,RB可以是被分配给用户的时间/频率资源的最小单位,其可以包括具有时隙的持续时间的多个子载波(例如,12个子载波)。因此,基站105可以为UE 115配置相应的时域AUL资源305,其中基站105-a可以使用不同的接收波束来接收AUL传输。在一些示例中,基站105可以在不同的波束上为不同的UE 115配置不同的AUL资源305,其中AUL资源305可以在时间上重叠。例如,基站105可以将特定于第一基站接收波束的第一AUL资源集合配置有第一关联参考信号,将特定于第二基站接收波束的第二AUL资源集合配置有第二关联参考信号,等等。另外,AUL资源集合305可以包括感测部分310、或数据部分315、或其组合。在一些情况下,感测部分310、数据部分315、或两者中的资源可以被配置用于被确定为比其它基站接收波束更繁忙(例如,基于业务负载)的基站接收波束。AUL资源集合305内的资源数量(例如,RB数量)也可以与对应的接收波束的繁忙程度成比例。
在一些示例中,例如图3A中的AUL资源配置301中所示,AUL资源集合305-a可以具有重叠的感测部分310-a,其中数据部分315-a可以是不重叠的并且被时分复用。在这样的情况下,基站105可以支持多波束感测能力(例如,全向感测),其使基站105能够在发送感测部分310期间从不同方向接收多个发射波束。在这样的情况下,UE 115可以同时向基站105发送它们各自的包括感测信号的AUL传输。
基于AUL传输内的接收到的感测信号的存在和/或接收信号强度,基站105可以确定可能正在执行AUL传输的每个UE 115的波束方向。因此,基站105可以在数据部分315-a之前或期间调谐其接收波束,以与所确定的与UE 115相对应的发射波束路径对准,这可以允许基站105从UE 115接收相应的数据部分315-a。UE 115可以沿着与其相应的感测信号相同的发射波束路径来对其相应的数据部分315进行复用,其中基站105在将其接收波束调谐或重新调谐为与UE 115的相应的发射波束对准之后能够接收数据部分315。在一些示例中,UE115可以针对感测部分310-a和数据部分315-a两者发送DMRS。
另外或替代地,并且如图3B中的AUL资源配置302中所示,对于不同的波束,用于不同的基站接收波束的相应的感测部分310可以被时分复用并且是不重叠的,并且数据部分315也可以是不重叠的并且被时分复用。UE 115可以在感测部分310中的一个或多个感测部分310中向基站105发送AUL指示或感测信号,其中多个感测部分310被复用,使得它们在时间上不重叠。例如,感测部分310-b、310-c和310-d可以各自对应于不同的基站接收波束,并且可以被复用,使得它们在时间上不重叠。因此,具有要发送的上行链路数据的UE 115可以识别与感测部分310和/或数据部分315中的一个(或多个)相关联的参考信号(即,QCL),并且可以确定感测部分和/或数据部分315是否可用于AUL传输。在一些情况下,如果UE 115知道感测部分310与基站105处的接收波束之间的映射,则UE 115可以仅在相关联的波束上发送感测信号。在感测部分310中的一个或多个感测部分310中感测到AUL指示符或感测信号时,基站105可以调谐其接收波束以接收AUL传输的数据部分315-b。
图4示出了根据本公开内容的各个方面的支持用于具有模拟波束的AUL的波束管理的系统中的过程流400的示例。在一些示例中,过程流400可以实现无线通信系统100和200的各方面。例如,过程流400包括UE 115-b和基站105-b,它们可以是参照图1、2A和2B描述的对应设备的示例。过程流400可以示出用于AUL传输的波束管理技术,其中参考信号与一个或多个特定于波束的AUL资源集合相关联。
在405处,基站105-b可以识别用于一个或多个UE 115(例如,包括UE 115-b)的多个AUL资源集合。在一些示例中,AUL资源可以包括感测部分、数据部分、或两者。在一些情况下,可以针对多个基站接收波束向感测部分分配不同的AUL资源,但是数据部分对于所有基站接收波束可以是公共的。
在410处,基站105-b可以确定用于基站的多个AUL资源集合和多个AUL接收波束的AUL配置。多个AUL资源集合中的每一个可以是特定于基站105-b的相应的AUL接收波束的,并且一个或多个AUL资源集合可以与参考信号相关联(例如,QCL)。在一些情况下,参考信号可以包括CSI-RS、或SSB、或其组合。多个特定于波束的AUL资源集合可以被配置用于基站105-b的大多数接收波束(并且在一些情况下,为每个接收波束),或者可以被配置用于从基站105-b的大多数接收波束中选择的接收波束子集(并且在一些情况下,为每个接收波束)。例如,基站105-b可以具有接收波束的总数(例如,64个波束),但是基站105-b可以仅将UE115-b配置有波束总数的子集(例如,4个波束)。在一些情况下,每个特定于波束的AUL资源集合中的资源数量可以与基站105-b的对应的AUL接收波束上的业务负载成比例。
在415处,基站105-b可以发送AUL配置,并且UE 115-b可以接收AUL配置。例如,基站105-a可以半静态地(例如,通过RRC消息传送或DCI)或动态地(例如,通过DCI或下行链路触发)发送对配置的AUL资源的指示。在420处,基站105-b可以向UE 115-b发送与多个特定于波束的AUL资源集合相关联的多个参考信号。在一些情况下,可以以特定的周期性来发送(和接收)参考信号。
在425处,UE 115-b可以测量多个参考信号的信号强度。另外,UE 115-b可以比较多个参考信号的测量的信号强度。例如,UE 115-b可以将第一参考信号的信号强度与多个参考信号中的第二参考信号的信号强度进行比较。在430处,UE 115-b可以至少部分地基于多个参考信号中的第一参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合。例如,选择第一特定于波束的AUL资源集合可以是至少部分地基于该比较的,其中(与第一特定于波束的AUL资源集合相关联的)第一参考信号可以具有与第二参考信号相比更大的信号强度。在一些情况下,UE 115-b可以确定第一参考信号的信号强度满足门限,并且可以基于关于第一参考信号的信号强度满足门限的确定来选择第一特定于波束的AUL资源集合。在另一示例中,还可以基于优先级顺序来使用AUL资源。例如,基站105-b可以将第一AUL资源配置为主AUL资源,并且将第二AUL资源配置为辅AUL资源。在一些情况下,如果相关联的参考信号的信号强度满足门限条件(例如,信号强度高于门限),则UE 115-b可以使用主AUL资源。在一些情况下,如果主AUL资源变得不可用并且辅AUL资源仍然满足门限条件,则UE 115-b可以使用辅AUL资源。
在435处,UE 115-b可以使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到基站105-b的AUL传输。在一些情况下,UE 115-b还可以选择第二特定于波束的AUL资源集合,并且可以使用第一特定于波束的AUL资源集合和第二特定于波束的AUL资源集合中的一者或两者来执行AUL传输。即,UE 115-b可以可选地执行使用多个基站接收波束接收的上行链路数据的并行AUL传输。
在稍后的时间,在440处,UE 115-b可以基于第一参考信号的信号强度来确定第一参考信号的后续传输变得不可检测。例如,UE 115-b可以是移动的,并且由于UE 115-b相对于基站105-b的新位置,先前使用的参考信号可能变得不可检测。在其它示例中,由于干扰影响所发送的参考信号,因此第一参考信号可能变得不可检测(例如,第一参考信号的信号强度可能下降到门限以下或未能满足门限)。在一些情况下,UE 115-b可以至少部分地基于多个参考信号中的每个参考信号的信号强度来确定所有参考信号的后续传输已经变得不可检测。在这样的情况下,UE 115-b可以向基站105-b发送请求消息(例如,RACH消息),以配置用于基站接收波束集合的通信资源。
在445处,UE 115-b可以可选地向基站105-b发送测量报告,其中测量报告可以包括从多个参考信号的测量获得的信息(例如,在425处或在某个其它时间)。在一些情况下,可以使用与所选择的第一特定于波束的AUL资源集合不同的特定于波束的资源集合来发送测量报告。例如,用于发送测量报告的特定于波束的资源集合可以包括被配置为多个AUL资源集合的AUL配置的一部分的资源。另外或替代地,可以通过从基站105-b接收到的资源授权(例如,经由DCI或其它类型的信令接收的上行链路授权)来调度用于发送测量报告的特定于波束的资源集合。在一些示例中,在确定第一参考信号的信号强度不再满足门限时发送测量报告。另外或替代地,可以在确定第二参考信号的信号强度变得比第一参考信号的信号强度大门限量时发送测量报告。在450处,基站105-b可以可选地基于所接收的测量报告来重新配置用于UE的多个特定于波束的AUL资源集合和相应的AUL接收波束。
在455处,UE 115-b可以可选地至少部分地基于多个参考信号中的第二参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第二特定于波束的AUL资源集合。在460处,UE 115-b可以使用所选择的第二特定于波束的AUL资源集合来执行上行链路数据到基站105-b的第二AUL传输。因此,当参考信号变得不可检测时,或者基于基站105-b对AUL资源的重新配置,UE 115-b可以重复上述波束管理过程。
图5示出了根据本公开内容的各方面的支持用于具有模拟波束的AUL的波束管理的无线设备505的框图500。无线设备505可以是如本文描述的UE 115的各方面的示例。无线设备505可以包括接收机510、UE通信管理器515和发射机520。无线设备505还可以包括处理器。这些组件中的每个组件可以相互通信(例如,经由一个或多个总线)。
接收机510可以接收诸如与各种信息信道(例如,与用于具有模拟波束的AUL的波束管理相关的控制信道、数据信道以及信息等)相关联的分组、用户数据或者控制信息之类的信息。可以将信息传递给该设备的其它组件。接收机510可以是参照图8描述的收发机835的各方面的示例。接收机510可以利用单个天线或一组天线。
UE通信管理器515可以是参照图8描述的UE通信管理器815的各方面的示例。UE通信管理器515和/或其各个子组件中的至少一些子组件可以用硬件、由处理器执行的软件、固件或其任意组合来实现。如果用由处理器执行的软件来实现,则UE通信管理器515和/或其各个子组件中的至少一些子组件的功能可以由被设计为执行本公开内容中描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或者晶体管逻辑、分立硬件组件或者其任意组合来执行。
UE通信管理器515和/或其各个子组件中的至少一些子组件可以在物理上位于各个位置处,包括被分布以使得由一个或多个物理设备在不同的物理位置处实现功能中的部分功能。在一些示例中,根据本公开内容的各个方面,UE通信管理器515和/或其各个子组件中的至少一些子组件可以是分离且不同的组件。在其它示例中,根据本公开内容的各个方面,UE通信管理器515和/或其各个子组件中的至少一些子组件可以与一个或多个其它硬件组件(包括但不限于I/O组件、收发机、网络服务器、另一计算设备、本公开内容中描述的一个或多个其它组件、或其组合)组合。
UE通信管理器515可以从基站105接收AUL配置,该AUL配置包括对用于UE 115的多个AUL资源集合的指示,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。UE通信管理器515可以进行以下操作:从基站105接收与多个特定于波束的AUL资源集合相关联的多个参考信号;基于多个参考信号中的第一参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合;以及使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到基站105的AUL传输。
发射机520可以发送由该设备的其它组件所生成的信号。例如,发射机520可以使用由UE通信管理器515选择的第一特定于波束的AUL资源集合来向基站105发送AUL传输。在一些示例中,发射机520可以与接收机510共置于收发机模块中。例如,发射机520可以是参照图8描述的收发机835的各方面的示例。发射机520可以利用单个天线或一组天线。
图6示出了根据本公开内容的各方面的支持用于具有模拟波束的AUL的波束管理的无线设备605的框图600。无线设备605可以是如参照图5描述的无线设备505或UE 115的各方面的示例。无线设备605可以包括接收机610、UE通信管理器615和发射机620。无线设备605还可以包括处理器。这些组件中的每个组件可以相互通信(例如,经由一个或多个总线)。
接收机610可以接收诸如与各种信息信道(例如,与用于具有模拟波束的AUL的波束管理相关的控制信道、数据信道以及信息等)相关联的分组、用户数据或者控制信息之类的信息。可以将信息传递给该设备的其它组件。接收机610可以是参照图8描述的收发机835的各方面的示例。接收机610可以利用单个天线或一组天线。
UE通信管理器615可以是参照图8描述的UE通信管理器815的各方面的示例。UE通信管理器615还可以包括UE AUL配置管理器625、参考信号组件630、AUL资源选择组件635和AUL传输组件640。关于UE通信管理器615、UE AUL配置管理器625、参考信号组件630、AUL资源选择组件635和AUL传输组件640描述的每个特征是可选的,并且可与关于UE通信管理器615、UE AUL配置管理器625、参考信号组件630、AUL资源选择组件635和AUL传输组件640描述的其它特征分离。
UE AUL配置管理器625可以从基站105接收AUL配置,该AUL配置包括对用于UE 115的多个AUL资源集合的指示,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。在一些情况下,多个特定于波束的AUL资源集合被配置用于基站105的大多数接收波束(以及在一些情况下,为每个接收波束)。另外或替代地,多个特定于波束的AUL资源集合可以被配置用于从基站105的大多数接收波束中选择的接收波束子集(以及在一些情况下,为每个接收波束)。在一些情况下,每个特定于波束的AUL资源集合中的资源数量与基站105的对应的AUL接收波束上的业务负载成比例。在一些情况下,可以经由RRC信令从基站105接收AUL配置。
参考信号组件630可以从基站105接收与多个特定于波束的AUL资源集合相关联的多个参考信号。在一些情况下,参考信号组件630可以基于第一参考信号的信号强度来确定第一参考信号的后续传输已经变得不可检测。另外或替代地,参考信号组件630可以基于多个参考信号中的每个参考信号的信号强度来确定多个参考信号的后续传输已经变得不可检测。在一些情况下,参考信号组件630可以将第一参考信号的信号强度与多个参考信号中的第二参考信号的信号强度进行比较。在一些情况下,接收多个参考信号包括:根据周期性来接收多个参考信号。在一些情况下,多个参考信号中的每个参考信号包括CSI-RS、或SSB、或其组合。参考信号组件630可以与接收机610耦合以执行本文描述的各种功能,诸如接收多个参考信号。
AUL资源选择组件635可以基于多个参考信号中的第一参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合。在一些情况下,AUL资源选择组件635可以基于多个参考信号中的第二参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第二特定于波束的AUL资源集合。在一些示例中,AUL资源选择组件635可以基于关于第一参考信号的信号强度满足门限的确定,来选择第一特定于波束的AUL资源集合。在一些情况下,选择第一特定于波束的AUL资源集合可以是基于第一参考信号的信号强度与第二参考信号的信号强度的比较的。另外或替代地,选择第一特定于波束的AUL资源集合包括:确定第一参考信号的信号强度大于第二参考信号的信号强度。在一些情况下,选择第一特定于波束的AUL资源集合包括:确定第一参考信号的信号强度满足门限。
AUL传输组件640可以使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到基站105的AUL传输。另外或替代地,AUL传输组件640可以使用所选择的第二特定于波束的AUL资源集合来执行上行链路数据到基站105的第二AUL传输。在一些示例中,执行上行链路数据的AUL传输包括:使用所选择的第一特定于波束的AUL资源集合和所选择的第二特定于波束的AUL资源集合来执行上行链路数据的AUL传输。例如,可以使用第一特定于波束的AUL资源集合、或第二特定于波束的AUL资源集合、或其组合来执行AUL传输。在一些情况下,AUL传输组件640可以与发射机620耦合并且与发射机620协调地执行上述功能。
发射机620可以发送由该设备的其它组件生成的信号。在一些示例中,发射机620可以与接收机610共置于收发机模块中。例如,发射机620可以是参照图8描述的收发机835的各方面的示例。发射机620可以利用单个天线或一组天线。
图7示出了根据本公开内容的各方面的支持用于具有模拟波束的AUL的波束管理的UE通信管理器715的框图700。UE通信管理器715可以是参照图5、6和8描述的UE通信管理器515、UE通信管理器615或UE通信管理器815的各方面的示例。UE通信管理器715可以包括UE AUL配置管理器720、参考信号组件725、AUL资源选择组件730、AUL传输组件735、请求消息组件740和测量组件745。这些模块中的每个模块可以直接地或者间接地相互通信(例如,经由一个或多个总线)。
UE AUL配置管理器720可以从基站105接收AUL配置,该AUL配置包括对用于UE 115的多个AUL资源集合的指示,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。在一些情况下,多个特定于波束的AUL资源集合被配置用于基站105的大多数接收波束(以及在一些情况下,为每个接收波束)。另外或替代地,多个特定于波束的AUL资源集合可以被配置用于从基站105的大多数接收波束中选择的接收波束子集(以及在一些情况下,为每个接收波束)。在一些情况下,每个特定于波束的AUL资源集合中的资源数量与基站105的对应的AUL接收波束上的业务负载成比例。
参考信号组件725可以从基站105接收与多个特定于波束的AUL资源集合相关联的多个参考信号。在一些情况下,参考信号组件725可以基于第一参考信号的信号强度来确定第一参考信号的后续传输已经变得不可检测。另外或替代地,参考信号组件725可以基于多个参考信号中的每个参考信号的信号强度来确定多个参考信号的后续传输已经变得不可检测。在一些情况下,参考信号组件725可以将第一参考信号的信号强度与多个参考信号中的第二参考信号的信号强度进行比较。在一些情况下,接收多个参考信号包括:根据周期性来接收多个参考信号。在一些情况下,多个参考信号中的每个参考信号包括CSI-RS、或SSB、或其组合。
AUL资源选择组件730可以基于多个参考信号中的第一参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合。在一些情况下,AUL资源选择组件730可以基于多个参考信号中的第二参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第二特定于波束的AUL资源集合。在一些示例中,AUL资源选择组件730可以基于关于第一参考信号的信号强度满足门限的确定,来选择第一特定于波束的AUL资源集合。在一些情况下,选择第一特定于波束的AUL资源集合可以是基于第一参考信号的信号强度与第二参考信号的信号强度的比较的。在一些情况下,选择第一特定于波束的AUL资源集合包括:确定第一参考信号的信号强度满足门限。
AUL传输组件735可以使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到基站105的AUL传输。另外或替代地,AUL传输组件735可以使用所选择的第二特定于波束的AUL资源集合来执行上行链路数据到基站105的第二AUL传输。在一些示例中,执行上行链路数据的AUL传输包括:使用所选择的第一特定于波束的AUL资源集合和/或所选择的第二特定于波束的AUL资源集合来执行上行链路数据的AUL传输。
请求消息组件740可以向基站105发送请求消息,以配置用于基站105接收波束集合的通信资源(例如,如果来自基站的所有参考信号都变得不可检测的话)。在一些情况下,请求消息包括RACH消息。测量组件745可以测量多个参考信号的信号强度,并且向基站105发送包括从多个参考信号的测量获得的信息的测量报告,其中,测量报告是使用与所选择的第一特定于波束的AUL资源集合不同的特定于波束的资源集合来发送的。在一些情况下,测量报告是在确定第一参考信号的信号强度不再满足门限时发送的。在一些情况下,测量报告是在确定第二参考信号的信号强度变得比第一参考信号的信号强度大一门限量时发送的。在一些示例中,特定于波束的资源集合是由从基站105接收的资源授权来调度的。
图8示出了根据本公开内容的各方面的包括支持用于具有模拟波束的AUL的波束管理的设备805的系统800的图。设备805可以是以下各项的示例或者包括以下各项的组件:如上文(例如,参照图5和6)描述的无线设备505、无线设备605或UE 115。设备805可以包括用于双向语音和数据通信的组件,其包括用于发送和接收通信的组件,包括:UE通信管理器815、处理器820、存储器825、软件830、收发机835、天线840以及I/O控制器845。这些组件可以经由一个或多个总线(例如,总线810)进行电子通信。设备805可以与一个或多个基站105无线地通信。
处理器820可以包括智能硬件设备(例如,通用处理器、DSP、中央处理单元(CPU)、微控制器、ASIC、FPGA、可编程逻辑器件、分立门或者晶体管逻辑组件、分立硬件组件或者其任意组合)。在一些情况下,处理器820可以被配置为使用存储器控制器来操作存储器阵列。在其它情况下,存储器控制器可以集成到处理器820中。处理器820可以被配置为执行存储在存储器中的计算机可读指令,以执行各种功能(例如,支持用于具有模拟波束的AUL的波束管理的功能或者任务)。
存储器825可以包括随机存取存储器(RAM)和只读存储器(ROM)。存储器825可以存储包括指令的计算机可读、计算机可执行软件830,所述指令在被执行时使得处理器执行本文描述的各种功能。在一些情况下,除此之外,存储器825还可以包含基本输入/输出系统(BIOS),所述BIOS可以控制基本硬件或软件操作(例如,与外围组件或者设备的交互)。
软件830可以包括用于实现本公开内容的各方面的代码,其包括用于支持如例如参照图13-16描述的用于具有模拟波束的AUL的波束管理的代码。软件830可以被存储在非暂时性计算机可读介质(例如,系统存储器或者其它存储器)中。在一些情况下,软件830可以不是可由处理器直接执行的,而是可以使得计算机(例如,当被编译和被执行时)执行本文所描述的功能。
收发机835可以经由如上文描述的一个或多个天线、有线或者无线链路双向地通信。例如,收发机835可以表示无线收发机,并且可以与另一无线收发机双向地通信。收发机835还可以包括调制解调器,所述调制解调器用于对分组进行调制并且将经调制的分组提供给天线以用于传输,以及对从天线接收到的分组进行解调。
在一些情况下,无线设备可以包括单个天线840。然而,在一些情况下,该设备可以具有多于一个的天线840,其能够并发发送或者接收多个无线传输。
I/O控制器845可以管理针对设备805的输入和输出信号。I/O控制器845还可以管理未集成到设备805中的外围设备。在一些情况下,I/O控制器845可以表示到外部外围设备的物理连接或者端口。在一些情况下,I/O控制器845可以利用诸如 之类的操作系统或者另一已知的操作系统。在其它情况下,I/O控制器845可以表示调制解调器、键盘、鼠标、触摸屏或类似设备或者与上述设备进行交互。在一些情况下,I/O控制器845可以被实现成处理器的一部分。在一些情况下,用户可以经由I/O控制器845或者经由I/O控制器845所控制的硬件组件来与设备805进行交互。
图9示出了根据本公开内容的各方面的支持用于具有模拟波束的AUL的波束管理的无线设备905的框图900。无线设备905可以是如本文描述的基站105的各方面的示例。无线设备905可以包括接收机910、基站通信管理器915和发射机920。无线设备905还可以包括处理器。这些组件中的每个组件可以相互通信(例如,经由一个或多个总线)。
接收机910可以接收诸如与各种信息信道(例如,与用于具有模拟波束的AUL的波束管理相关的控制信道、数据信道以及信息等)相关联的分组、用户数据或者控制信息之类的信息。可以将信息传递给该设备的其它组件。接收机910可以是参照图12描述的收发机1235的各方面的示例。接收机910可以利用单个天线或一组天线。
基站通信管理器915可以是参照图12描述的基站通信管理器1215的各方面的示例。基站通信管理器915和/或其各个子组件中的至少一些子组件可以用硬件、由处理器执行的软件、固件或其任意组合来实现。如果用由处理器执行的软件来实现,则基站通信管理器915和/或其各个子组件中的至少一些子组件的功能可以由被设计为执行本公开内容中描述的功能的通用处理器、DSP、ASIC、FPGA或其它可编程逻辑器件、分立门或者晶体管逻辑、分立硬件组件或者其任意组合来执行。
基站通信管理器915和/或其各个子组件中的至少一些子组件可以在物理上位于各个位置处,包括被分布以使得由一个或多个物理设备在不同的物理位置处实现功能中的部分功能。在一些示例中,根据本公开内容的各个方面,基站通信管理器915和/或其各个子组件中的至少一些子组件可以是分离且不同的组件。在其它示例中,根据本公开内容的各个方面,基站通信管理器915和/或其各个子组件中的至少一些子组件可以与一个或多个其它硬件组件(包括但不限于I/O组件、收发机、网络服务器、另一计算设备、本公开内容中描述的一个或多个其它组件、或其组合)组合。
基站通信管理器915可以进行以下操作:识别用于UE 115的多个AUL资源集合;以及确定用于多个AUL资源集合和基站105的多个AUL接收波束的AUL配置,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。基站通信管理器915可以进行以下操作:向UE 115发送与多个特定于波束的AUL资源集合相关联的多个参考信号;以及基于多个参考信号来从UE 115接收上行链路数据的AUL传输,其中,AUL传输是使用来自多个AUL资源集合的第一特定于波束的AUL资源集合来接收的。
发射机920可以发送由该设备的其它组件所生成的信号。在一些示例中,发射机920可以与接收机910共置于收发机模块中。例如,发射机920可以是参照图12描述的收发机1235的各方面的示例。发射机920可以利用单个天线或一组天线。
图10示出了根据本公开内容的各方面的支持用于具有模拟波束的AUL的波束管理的无线设备1005的框图1000。无线设备1005可以是如参照图9描述的无线设备905或基站105的各方面的示例。无线设备1005可以包括接收机1010、基站通信管理器1015和发射机1020。无线设备1005还可以包括处理器。这些组件中的每个组件可以相互通信(例如,经由一个或多个总线)。
接收机1010可以接收诸如与各种信息信道(例如,与用于具有模拟波束的AUL的波束管理相关的控制信道、数据信道以及信息等)相关联的分组、用户数据或者控制信息之类的信息。可以将信息传递给该设备的其它组件。接收机1010可以是参照图12描述的收发机1235的各方面的示例。接收机1010可以利用单个天线或一组天线。
基站通信管理器1015可以是参照图12描述的基站通信管理器1215的各方面的示例。基站通信管理器1015还可以包括基站AUL资源管理器1025、基站AUL配置管理器1030、参考信号管理器1035和AUL接收组件1040。关于基站通信管理器1015、基站AUL资源管理器1025、基站AUL配置管理器1030、参考信号管理器1035和AUL接收组件1040描述的每个特征是可选的,并且可与关于基站通信管理器1015、基站AUL资源管理器1025、基站AUL配置管理器1030、参考信号管理器1035和AUL接收组件1040所描述的其它特征分离。
基站AUL资源管理器1025可以识别用于UE 115的多个AUL资源集合。在一些情况下,每个特定于波束的AUL资源集合中的资源数量与基站的对应的AUL接收波束上的业务负载成比例。基站AUL配置管理器1030可以确定用于多个AUL资源集合和基站105的多个AUL接收波束的AUL配置,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。在一些示例中,基站AUL配置管理器1030可以响应于请求消息来配置用于与UE 115进行通信的通信资源和接收波束集合。在一些情况下,基站AUL配置管理器1030可以基于所接收的测量报告来重新配置用于UE 115的多个特定于波束的AUL资源集合和相应的AUL接收波束。在一些示例中,特定于波束的资源集合由被发送到UE 115的资源授权(例如,上行链路授权)来调度。在一些情况下,多个特定于波束的AUL资源集合被配置用于基站105的大多数接收波束(以及在一些情况下,为每个接收波束)。在一些情况下,多个特定于波束的AUL资源集合被配置用于从基站105的大多数接收波束中选择的接收波束子集(以及在一些情况下,为每个接收波束)。在一些示例中,AUL配置可以经由RRC消息被发送到一个或多个UE 115。
参考信号管理器1035可以向UE 115发送与多个特定于波束的AUL资源集合相关联的多个参考信号。在一些情况下,向UE 115发送多个参考信号包括:根据周期性来向UE 115发送多个参考信号。在一些情况下,多个参考信号中的每个参考信号包括CSI-RS、或SSB、或其组合。
AUL接收组件1040可以基于多个参考信号来从UE 115接收上行链路数据的AUL传输,其中,AUL传输是使用来自多个AUL资源集合的第一特定于波束的AUL资源集合来接收的。AUL接收组件1040还可以基于多个参考信号的后续传输,来使用来自多个AUL资源集合的第二特定于波束的AUL资源集合从UE 115接收第二AUL传输。在一些情况下,接收上行链路数据的AUL传输包括:使用第一特定于波束的AUL资源集合和第二特定于波束的AUL资源集合来从UE 115接收上行链路数据的AUL传输。即,可以在多个特定于波束的AUL资源集合(以及对应的基站接收波束)上同时接收AUL传输。
发射机1020可以发送由该设备的其它组件生成的信号。在一些示例中,发射机1020可以与接收机1010共置于收发机模块中。例如,发射机1020可以是参照图12描述的收发机1235的各方面的示例。发射机1020可以利用单个天线或一组天线。
图11示出了根据本公开内容的各方面的支持用于具有模拟波束的AUL的波束管理的基站通信管理器1115的框图1100。基站通信管理器1115可以是参照图9、10和12描述的基站通信管理器1215的各方面的示例。基站通信管理器1115可以包括基站AUL资源管理器1120、基站AUL配置管理器1125、参考信号管理器1130、AUL接收组件1135、请求消息管理器1140和测量报告管理器1145。这些模块中的每个模块可以直接地或者间接地相互通信(例如,经由一个或多个总线)。
基站AUL资源管理器1120可以识别用于UE 115的多个AUL资源集合。在一些情况下,每个特定于波束的AUL资源集合中的资源数量与基站105的对应的AUL接收波束上的业务负载成比例。基站AUL配置管理器1125可以确定用于多个AUL资源集合和基站105的多个AUL接收波束的AUL配置,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。在一些示例中,基站AUL配置管理器1125可以响应于请求消息来配置用于与UE 115进行通信的通信资源和接收波束集合。在一些情况下,基站AUL配置管理器1125可以基于所接收的测量报告来重新配置用于UE 115的多个特定于波束的AUL资源集合和相应的AUL接收波束。在一些情况下,多个特定于波束的AUL资源集合被配置用于基站105的大多数接收波束(以及在一些情况下,为每个接收波束)。在一些情况下,多个特定于波束的AUL资源集合被配置用于从基站105的大多数接收波束中选择的接收波束子集(以及在一些情况下,为每个接收波束)。
参考信号管理器1130可以向UE 115发送与多个特定于波束的AUL资源集合相关联的多个参考信号。在一些情况下,向UE 115发送多个参考信号包括:根据周期性来向UE 115发送多个参考信号。在一些情况下,多个参考信号中的每个参考信号包括CSI-RS、或SSB、或其组合。
AUL接收组件1135可以基于多个参考信号来从UE 115接收上行链路数据的AUL传输,其中,AUL传输是使用来自多个AUL资源集合的第一特定于波束的AUL资源集合来接收的。在一些情况下,AUL接收组件1135可以基于多个参考信号的后续传输,来使用来自多个AUL资源集合的第二特定于波束的AUL资源集合从UE 115接收第二AUL传输。在一些情况下,接收上行链路数据的AUL传输包括:使用第一特定于波束的AUL资源集合和第二特定于波束的AUL资源集合来从UE 115接收上行链路数据的AUL传输。
请求消息管理器1140可以基于多个参考信号中的每个参考信号的后续传输变得不可由UE 115检测到,来从UE 115接收请求消息。在一些情况下,请求消息包括RACH消息。测量报告管理器1145可以从UE 115接收测量报告,该测量报告包括从多个参考信号的测量获得的信息,其中,测量报告可以是使用与第一特定于波束的AUL资源集合不同的特定于波束的资源集合来接收的。
图12示出了根据本公开内容的各方面的包括支持用于具有模拟波束的AUL的波束管理的设备1205的系统1200的图。设备1205可以是如上文(例如,参照图1)描述的基站105的示例或者包括基站105的组件。设备1205可以包括用于双向语音和数据通信的组件,其包括用于发送和接收通信的组件,包括:基站通信管理器1215、处理器1220、存储器1225、软件1230、收发机1235、天线1240、网络通信管理器1245和站间通信管理器1250。这些组件可以经由一个或多个总线(例如,总线1210)来进行电子通信。设备1205可以与一个或多个UE115无线地通信。
处理器1220可以包括智能硬件设备(例如,通用处理器、DSP、CPU、微控制器、ASIC、FPGA、可编程逻辑器件、分立门或者晶体管逻辑组件、分立硬件组件或者其任意组合)。在一些情况下,处理器1220可以被配置为使用存储器控制器来操作存储器阵列。在其它情况下,存储器控制器可以集成到处理器1220中。处理器1220可以被配置为执行存储在存储器中的计算机可读指令,以执行各种功能(例如,支持用于具有模拟波束的AUL的波束管理的功能或者任务)。
存储器1225可以包括RAM和ROM。存储器1225可以存储包括指令的计算机可读、计算机可执行软件1230,所述指令在被执行时使得处理器执行本文描述的各种功能。在一些情况下,除此之外,存储器1225还可以包含BIOS,所述BIOS可以控制基本硬件或软件操作(例如,与外围组件或者设备的交互)。
软件1230可以包括用于实现本公开内容的各方面的代码,其包括用于支持如例如参照图17-18描述的用于具有模拟波束的AUL的波束管理的代码。软件1230可以被存储在非暂时性计算机可读介质(例如,系统存储器或者其它存储器)中。在一些情况下,软件1230可以不是可由处理器直接执行的,而是可以使得计算机(例如,当被编译和被执行时)执行本文所描述的功能。
收发机1235可以经由如上文描述的一个或多个天线、有线或者无线链路双向地通信。例如,收发机1235可以表示无线收发机,并且可以与另一无线收发机双向地通信。收发机1235还可以包括调制解调器,所述调制解调器用于对分组进行调制并且将经调制的分组提供给天线以用于传输,以及对从天线接收到的分组进行解调。在一些情况下,无线设备可以包括单个天线1240。然而,在一些情况下,设备可以具有多于一个的天线1240,其能够并发发送或者接收多个无线传输。
网络通信管理器1245可以管理与核心网的通信(例如,经由一个或多个有线回程链路)。例如,网络通信管理器1245可以管理针对客户端设备(例如,一个或多个UE 115)的数据通信的传输。
站间通信管理器1250可以管理与其它基站105的通信,并且可以包括用于与其它基站105协作地控制与UE 115的通信的控制器或调度器。例如,站间通信管理器1250可以协调针对去往UE 115的传输的调度,以用于诸如波束成形或联合传输之类的各种干扰减轻技术。在一些示例中,站间通信管理器1250可以提供在长期演进(LTE)/LTE-A无线通信网络技术内的X2接口,以提供在基站105之间的通信。
图13示出了说明根据本公开内容的各方面的用于具有模拟波束的AUL的波束管理的方法1300的流程图。方法1300的操作可以由如本文描述的UE 115或其组件来实现。例如,方法1300的操作可以由如参照图5至8描述的UE通信管理器来执行。在一些示例中,UE 115可以执行代码集,以控制该设备的功能单元执行下文描述的功能。另外或替代地,UE 115可以使用专用硬件来执行下文描述的功能的各方面。
在1305处,UE 115可以从基站105接收AUL配置,该AUL配置包括对用于UE 115的多个AUL资源集合的指示,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。1305的操作可以根据本文描述的方法来执行。在某些示例中,1305的操作的各方面可以由如参照图5至8描述的UE AUL配置管理器来执行。
在1310处,UE 115可以从基站105接收与多个特定于波束的AUL资源集合相关联的多个参考信号。1310的操作可以根据本文描述的方法来执行。在某些示例中,1310的操作的各方面可以由如参照图5至8描述的参考信号组件来执行。
在1315处,UE 115可以至少部分地基于多个参考信号中的第一参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合。1315的操作可以根据本文描述的方法来执行。在某些示例中,1315的操作的各方面可以由如参照图5至8描述的AUL资源选择组件来执行。
在1320处,UE 115可以使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到基站105的AUL传输。1320的操作可以根据本文描述的方法来执行。在某些示例中,1320的操作的各方面可以由如参照图5至8描述的AUL传输组件来执行。
图14示出了说明根据本公开内容的各方面的用于具有模拟波束的AUL的波束管理的方法1400的流程图。方法1400的操作可以由如本文描述的UE 115或其组件来实现。例如,方法1400的操作可以由如参照图5至8描述的UE通信管理器来执行。在一些示例中,UE 115可以执行代码集,以控制该设备的功能单元执行下文描述的功能。另外或替代地,UE 115可以使用专用硬件来执行下文描述的功能的各方面。
在1405处,UE 115可以从基站105接收AUL配置,该AUL配置包括对用于UE 115的多个AUL资源集合的指示,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。1405的操作可以根据本文描述的方法来执行。在某些示例中,1405的操作的各方面可以由如参照图5至8描述的UE AUL配置管理器来执行。
在1410处,UE 115可以从基站105接收与多个特定于波束的AUL资源集合相关联的多个参考信号。1410的操作可以根据本文描述的方法来执行。在某些示例中,1410的操作的各方面可以由如参照图5至8描述的参考信号组件来执行。
在1415处,UE 115可以至少部分地基于多个参考信号中的第一参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合。1415的操作可以根据本文描述的方法来执行。在某些示例中,1415的操作的各方面可以由如参照图5至8描述的AUL资源选择组件来执行。
在1420处,UE 115可以使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到基站105的AUL传输。1420的操作可以根据本文描述的方法来执行。在某些示例中,1420的操作的各方面可以由如参照图5至8描述的AUL传输组件来执行。
在1425处,UE 115可以至少部分地基于第一参考信号的信号强度来确定第一参考信号的后续传输已经变得不可检测。1425的操作可以根据本文描述的方法来执行。在某些示例中,1425的操作的各方面可以由如参照图5至8描述的参考信号组件来执行。
在1430处,UE 115可以至少部分地基于多个参考信号中的第二参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第二特定于波束的AUL资源集合。1430的操作可以根据本文描述的方法来执行。在某些示例中,1430的操作的各方面可以由如参照图5至8描述的AUL资源选择组件来执行。
在1435处,UE 115可以使用所选择的第二特定于波束的AUL资源集合来执行上行链路数据到基站105的第二AUL传输。1435的操作可以根据本文描述的方法来执行。在某些示例中,1435的操作的各方面可以由如参照图5至8描述的AUL传输组件来执行。
图15示出了说明根据本公开内容的各方面的用于具有模拟波束的AUL的波束管理的方法1500的流程图。方法1500的操作可以由如本文描述的UE 115或其组件来实现。例如,方法1500的操作可以由如参照图5至8描述的UE通信管理器来执行。在一些示例中,UE 115可以执行代码集,以控制该设备的功能单元执行下文描述的功能。另外或替代地,UE 115可以使用专用硬件来执行下文描述的功能的各方面。
在1505处,UE 115可以从基站105接收AUL配置,该AUL配置包括对用于UE 115的多个AUL资源集合的指示,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。1505的操作可以根据本文描述的方法来执行。在某些示例中,1505的操作的各方面可以由如参照图5至8描述的UE AUL配置管理器来执行。
在1510处,UE 115可以从基站105接收与多个特定于波束的AUL资源集合相关联的多个参考信号。1510的操作可以根据本文描述的方法来执行。在某些示例中,1510的操作的各方面可以由如参照图5至8描述的参考信号组件来执行。
在1515处,UE 115可以至少部分地基于多个参考信号中的第一参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合。1515的操作可以根据本文描述的方法来执行。在某些示例中,1515的操作的各方面可以由如参照图5至8描述的AUL资源选择组件来执行。
在1520处,UE 115可以使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到基站105的AUL传输。1520的操作可以根据本文描述的方法来执行。在某些示例中,1520的操作的各方面可以由如参照图5至8描述的AUL传输组件来执行。
在1525处,UE 115可以至少部分地基于多个参考信号中的每个参考信号的信号强度来确定多个参考信号的后续传输已经变得不可检测。1525的操作可以根据本文描述的方法来执行。在某些示例中,1525的操作的各方面可以由如参照图5至8描述的参考信号组件来执行。
在1530处,UE 115可以向基站105发送请求消息(例如,RACH消息),以配置用于基站105接收波束集合的通信资源。1530的操作可以根据本文描述的方法来执行。在某些示例中,1530的操作的各方面可以由如参照图5至8描述的请求消息组件来执行。
图16示出了说明根据本公开内容的各方面的用于具有模拟波束的AUL的波束管理的方法1600的流程图。方法1600的操作可以由如本文描述的UE 115或其组件来实现。例如,方法1600的操作可以由如参照图5至8描述的UE通信管理器来执行。在一些示例中,UE 115可以执行代码集,以控制该设备的功能单元执行下文描述的功能。另外或替代地,UE 115可以使用专用硬件来执行下文描述的功能的各方面。
在1605处,UE 115可以从基站105接收AUL配置,该AUL配置包括对用于UE 115的多个AUL资源集合的指示,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。1605的操作可以根据本文描述的方法来执行。在某些示例中,1605的操作的各方面可以由如参照图5至8描述的UE AUL配置管理器来执行。
在1610处,UE 115可以从基站105接收与多个特定于波束的AUL资源集合相关联的多个参考信号。1610的操作可以根据本文描述的方法来执行。在某些示例中,1610的操作的各方面可以由如参照图5至8描述的参考信号组件来执行。
在1615处,UE 115可以至少部分地基于多个参考信号中的第一参考信号的信号强度,来从多个特定于波束的AUL资源集合中选择第一特定于波束的AUL资源集合。1615的操作可以根据本文描述的方法来执行。在某些示例中,1615的操作的各方面可以由如参照图5至8描述的AUL资源选择组件来执行。
在1620处,UE 115可以使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到基站105的AUL传输。1620的操作可以根据本文描述的方法来执行。在某些示例中,1620的操作的各方面可以由如参照图5至8描述的AUL传输组件来执行。
在1625处,UE 115可以测量多个参考信号的信号强度。1625的操作可以根据本文描述的方法来执行。在某些示例中,1625的操作的各方面可以由如参照图5至8描述的测量组件来执行。
在1630处,UE 115可以向基站105发送包括从多个参考信号的测量获得的信息的测量报告,其中,测量报告是使用与所选择的第一特定于波束的AUL资源集合不同的特定于波束的资源集合来发送的。1630的操作可以根据本文描述的方法来执行。在某些示例中,1630的操作的各方面可以由如参照图5至8描述的测量组件来执行。
图17示出了说明根据本公开内容的各方面的用于具有模拟波束的AUL的波束管理的方法1700的流程图。方法1700的操作可以由如本文描述的基站105或其组件来实现。例如,方法1700的操作可以由如参照图9至12描述的基站通信管理器来执行。在一些示例中,基站105可以执行代码集,以控制该设备的功能单元执行下文描述的功能。另外或替代地,基站105可以使用专用硬件来执行下文描述的功能的各方面。
在1705处,基站105可以识别用于UE 115的多个AUL资源集合。1705的操作可以根据本文描述的方法来执行。在某些示例中,1705的操作的各方面可以由如参照图9至12描述的基站AUL资源管理器来执行。
在1710处,基站105可以确定用于多个AUL资源集合和基站105的多个AUL接收波束的AUL配置,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。1710的操作可以根据本文描述的方法来执行。在某些示例中,1710的操作的各方面可以由如参照图9至12描述的基站AUL配置管理器来执行。
在1715处,基站105可以向UE 115发送与多个特定于波束的AUL资源集合相关联的多个参考信号。1715的操作可以根据本文描述的方法来执行。在某些示例中,1715的操作的各方面可以由如参照图9至12描述的参考信号管理器来执行。
在1720处,基站105可以至少部分地基于多个参考信号来从UE 115接收上行链路数据的AUL传输,其中,AUL传输是使用来自多个AUL资源集合的第一特定于波束的AUL资源集合来接收的。1720的操作可以根据本文描述的方法来执行。在某些示例中,1720的操作的各方面可以由如参照图9至12描述的AUL接收组件来执行。
图18示出了说明根据本公开内容的各方面的用于具有模拟波束的AUL的波束管理的方法1800的流程图。方法1800的操作可以由如本文描述的基站105或其组件来实现。例如,方法1800的操作可以由如参照图9至12描述的基站通信管理器来执行。在一些示例中,基站105可以执行代码集,以控制该设备的功能单元执行下文描述的功能。另外或替代地,基站105可以使用专用硬件来执行下文描述的功能的各方面。
在1805处,基站105可以识别用于UE 115的多个AUL资源集合。1805的操作可以根据本文描述的方法来执行。在某些示例中,1805的操作的各方面可以由如参照图9至12描述的基站AUL资源管理器来执行。
在1810处,基站105可以确定用于多个AUL资源集合和基站105的多个AUL接收波束的AUL配置,其中,多个AUL资源集合中的每个AUL资源集合是特定于基站105的相应的AUL接收波束的并且是与参考信号相关联的。1810的操作可以根据本文描述的方法来执行。在某些示例中,1810的操作的各方面可以由如参照图9至12描述的基站AUL配置管理器来执行。
在1815处,基站105可以向UE 115发送与多个特定于波束的AUL资源集合相关联的多个参考信号。1815的操作可以根据本文描述的方法来执行。在某些示例中,1815的操作的各方面可以由如参照图9至12描述的参考信号管理器来执行。
在1820处,基站105可以使用第一特定于波束的AUL资源集合和第二特定于波束的AUL资源集合来从UE 115接收上行链路数据的AUL传输。1820的操作可以根据本文描述的方法来执行。在某些示例中,1820的操作的各方面可以由如参照图9至12描述的AUL接收组件来执行。
实施例1:一种用于UE处的无线通信的方法,包括:从基站接收AUL配置,所述AUL配置包括对用于所述UE的多个AUL资源集合的指示,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;从所述基站接收与所述多个AUL资源集合相关联的多个参考信号;至少部分地基于所述多个参考信号中的第一参考信号的信号强度,来从所述多个AUL资源集合中选择第一特定于波束的AUL资源集合;以及使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到所述基站的AUL传输。
实施例2:根据实施例1所述的方法,还包括:至少部分地基于所述第一参考信号的所述信号强度来确定所述第一参考信号的后续传输已经变得不可检测;至少部分地基于所述多个参考信号中的第二参考信号的信号强度,来从所述多个AUL资源集合中选择第二特定于波束的AUL资源集合;以及使用所选择的第二特定于波束的AUL资源集合来执行上行链路数据到所述基站的第二AUL传输。
实施例3:根据实施例1或2中任一项所述的方法,还包括:至少部分地基于所述多个参考信号中的每个参考信号的信号强度来确定所述多个参考信号的后续传输已经变得不可检测;以及向所述基站发送请求消息以配置用于基站接收波束集合的通信资源。
实施例4:根据实施例1至3中任一项所述的方法,其中,所述请求消息包括RACH消息。
实施例5:根据实施例1至4中任一项所述的方法,还包括:将所述第一参考信号的信号强度与所述多个参考信号中的第二参考信号的信号强度进行比较,其中,选择所述第一特定于波束的AUL资源集合是至少部分地基于所述比较的。
实施例6:根据实施例1至5中任一项所述的方法,还包括:测量所述多个参考信号的信号强度;以及向所述基站发送包括从所述多个参考信号的所述测量获得的信息的测量报告,其中,所述测量报告是使用与所选择的第一特定于波束的AUL资源集合不同的特定于波束的资源集合来发送的。
实施例7:根据实施例1至6中任一项所述的方法,其中,所述特定于波束的资源集合是由从所述基站接收的资源授权来调度的。
实施例8:根据实施例1至7中任一项所述的方法,还包括:至少部分地基于所述多个参考信号中的第二参考信号的信号强度,来从所述多个AUL资源集合中选择第二特定于波束的AUL资源集合,其中,执行所述上行链路数据的所述AUL传输包括:使用所选择的第一特定于波束的AUL资源集合和所选择的第二特定于波束的AUL资源集合来执行所述上行链路数据的所述AUL传输。
实施例9:根据实施例1至8中任一项所述的方法,其中,选择所述第一特定于波束的AUL资源集合包括:确定所述第一参考信号的所述信号强度满足门限;以及至少部分地基于所述确定所述第一参考信号的所述信号强度满足所述门限,来选择所述第一特定于波束的AUL资源集合。
实施例10:根据实施例1至9中任一项所述的方法,其中,所述多个AUL资源集合被配置用于所述基站的大多数接收波束。
实施例11:根据实施例1至10中任一项所述的方法,其中,所述多个AUL资源集合被配置用于从所述基站的大多数接收波束中选择的接收波束子集。
实施例12:根据实施例1至11中任一项所述的方法,其中,所述多个参考信号中的每个参考信号包括CSI-RS、或SSB、或其组合。
实施例13:一种用于基站处的无线通信的方法,包括:识别用于用户设备(UE)的多个自主上行链路(AUL)资源集合;确定用于所述多个AUL资源集合和所述基站的多个AUL接收波束的AUL配置,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;向所述UE发送与所述多个AUL资源集合相关联的多个参考信号;以及至少部分地基于所述多个参考信号来从所述UE接收上行链路数据的AUL传输,其中,所述AUL传输是使用来自所述多个AUL资源集合的第一特定于波束的AUL资源集合来接收的。
实施例14:根据实施例13所述的方法,还包括:至少部分地基于所述多个参考信号的后续传输,来使用来自所述多个AUL资源集合的第二特定于波束的AUL资源集合从所述UE接收第二AUL传输。
实施例15:根据实施例13或14中任一项所述的方法,还包括:至少部分地基于所述多个参考信号中的每个参考信号的后续传输变得不可由所述UE检测到,来从所述UE接收请求消息;以及响应于所述请求消息来配置用于与所述UE进行通信的通信资源和接收波束集合。
实施例16:根据实施例13至15中任一项所述的方法,其中,所述请求消息包括随机接入信道(RACH)消息。
实施例17:根据实施例13至16中任一项所述的方法,其中,向所述UE发送所述多个参考信号包括:根据周期性来向所述UE发送所述多个参考信号。
实施例18:根据实施例13至17中任一项所述的方法,还包括:从所述UE接收测量报告,所述测量报告包括从所述多个参考信号的测量获得的信息,其中,所述测量报告是使用与所述第一特定于波束的AUL资源集合不同的特定于波束的资源集合来接收的。
实施例19:根据实施例13至18中的任一项所述的方法,还包括:至少部分地基于所接收的测量报告来重新配置用于所述UE的所述多个AUL资源集合和所述相应的AUL接收波束。
实施例20:根据实施例13至19中任一项所述的方法,其中,所述特定于波束的资源集合是由被发送到所述UE的资源授权来调度的。
实施例21:根据实施例13至20中任一项所述的方法,其中,接收所述上行链路数据的所述AUL传输包括:使用所述第一特定于波束的AUL资源集合和第二特定于波束的AUL资源集合来从所述UE接收所述上行链路数据的所述AUL传输。
实施例22:根据实施例13至21中任一项所述的方法,其中,所述多个AUL资源集合被配置用于所述基站的大多数接收波束。
实施例23:根据实施例13至22中任一项所述的方法,其中,所述多个AUL资源集合被配置用于从所述基站的大多数接收波束中选择的接收波束子集。
实施例24:根据实施例13至23中任一项所述的方法,其中,每个特定于波束的AUL资源集合中的资源数量与所述基站的对应的AUL接收波束上的业务负载成比例。
实施例25:一种装置,包括用于执行根据实施例1至12中任一项所述的方法的至少一个单元。
实施例26:一种装置,包括用于执行根据实施例13至23中任一项所述的方法的至少一个单元。
实施例27:一种用于无线通信的装置,包括:处理器;与所述处理器进行电子通信的存储器;以及指令,所述指令被存储在所述存储器中并且可由所述处理器执行以使得所述装置执行根据实施例1至12中任一项所述的方法。
实施例28:一种用于无线通信的装置,包括:处理器;与所述处理器进行电子通信的存储器;以及指令,所述指令被存储在所述存储器中并且可由所述处理器执行以使得所述装置执行根据实施例13至23中任一项所述的方法。
实施例29:一种存储用于无线通信的代码的非暂时性计算机可读介质,所述代码包括可由处理器执行以执行根据实施例1至12中任一项所述的方法的指令。
实施例30:一种存储用于无线通信的代码的非暂时性计算机可读介质,所述代码包括可由处理器执行以执行根据实施例13至23中任一项所述的方法的指令。
应当注意,上文描述的方法描述了可能的实现方式,并且操作和步骤可以被重新排列或者以其它方式修改,并且其它实现方式是可能的。此外,来自两种或更多种方法的各方面可以被组合。
本文描述的技术可以用于各种无线通信系统,诸如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)和其它系统。CDMA系统可以实现诸如CDMA2000、通用陆地无线接入(UTRA)等的无线电技术。CDMA2000涵盖IS-2000、IS-95和IS-856标准。IS-2000版本通常可以被称为CDMA2000 1X、1X等。IS-856(TIA-856)通常被称为CDMA2000 1xEV-DO、高速分组数据(HRPD)等。UTRA包括宽带CDMA(W-CDMA)和CDMA的其它变型。TDMA系统可以实现诸如全球移动通信系统(GSM)之类的无线电技术。
OFDMA系统可以实现诸如超移动宽带(UMB)、演进型UTRA(E-UTRA)、电气与电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、闪速-OFDM等的无线电技术。UTRA和E-UTRA是通用移动电信系统(UMTS)的一部分。LTE、LTE-A和LTE-A专业是UMTS的使用E-UTRA的版本。在来自名称为“第3代合作伙伴计划”(3GPP)的组织的文档中描述了UTRA、E-UTRA、UMTS、LTE、LTE-A、LTE-A专业、NR和GSM。在来自名称为“第3代合作伙伴计划2”(3GPP2)的组织的文档中描述了CDMA2000和UMB。本文中描述的技术可以用于上文提及的系统和无线电技术以及其它系统和无线电技术。虽然可能出于举例的目的,描述了LTE、LTE-A、LTE-A专业或NR系统的各方面,并且可能在大部分的描述中使用了LTE、LTE-A、LTE-A专业或NR术语,但是本文中描述的技术可以适用于LTE、LTE-A、LTE-A专业或NR应用之外的范围。
宏小区通常覆盖相对大的地理区域(例如,半径为若干千米),并且可以允许由具有与网络提供商的服务订制的UE 115进行不受限制的接入。相比于宏小区,小型小区可以与较低功率的基站105相关联,并且小型小区可以在与宏小区相同或不同(经许可、免许可等)的频带中操作。根据各个示例,小型小区可以包括微微小区、毫微微小区和微小区。例如,微微小区可以覆盖小的地理区域,并且可以允许由具有与网络提供商的服务订制的UE115进行不受限制的接入。毫微微小区也可以覆盖小的地理区域(例如,住宅),并且可以提供由与该毫微微小区具有关联的UE 115(例如,封闭用户组(CSG)中的UE 115、针对住宅中的用户的UE 115等)进行的受限制的接入。针对宏小区的eNB可以被称为宏eNB。针对小型小区的eNB可以被称为小型小区eNB、微微eNB、毫微微eNB或家庭eNB。eNB可以支持一个或多个(例如,两个、三个、四个等)小区,以及还可以支持使用一个或多个分量载波的通信。
本文中描述的无线通信系统100或多个系统可以支持同步或异步操作。对于同步操作,基站105可以具有相似的帧定时,并且来自不同基站105的传输可以在时间上近似对齐。对于异步操作,基站105可以具有不同的帧定时,并且来自不同基站105的传输可以不在时间上对齐。本文中描述的技术可以用于同步或异步操作。
本文中描述的信息和信号可以使用各种不同的技术和方法中的任何一种来表示。例如,可能贯穿上文描述所提及的数据、指令、命令、信息、信号、比特、符号和码片可以由电压、电流、电磁波、磁场或粒子、光场或粒子或者其任意组合来表示。
可以利用被设计为执行本文所述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件(PLD)、分立门或者晶体管逻辑、分立硬件组件或者其任意组合来实现或执行结合本文的公开内容描述的各种说明性的框和模块。通用处理器可以是微处理器,但是在替代方式中,处理器可以是任何常规的处理器、控制器、微控制器或者状态机。处理器还可以实现为计算设备的组合(例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器与DSP核的结合、或者任何其它这种配置)。
本文中所描述的功能可以用硬件、由处理器执行的软件、固件或其任意组合来实现。如果用由处理器执行的软件来实现,所述功能可以作为一个或多个指令或代码存储在计算机可读介质上或通过其进行发送。其它示例和实现方式在本公开内容和所附权利要求的范围之内。例如,由于软件的性质,上文描述的功能可以使用由处理器执行的软件、硬件、固件、硬接线或这些项中的任意项的组合来实现。实现功能的特征还可以在物理上位于各个位置处,包括被分布为使得功能中的各部分功能在不同的物理位置处实现。
计算机可读介质包括非暂时性计算机存储介质和通信介质二者,通信介质包括促进计算机程序从一个地方到另一个地方的传送的任何介质。非暂时性存储介质可以是能够由通用计算机或专用计算机访问的任何可用介质。通过举例而非限制的方式,非暂时性计算机可读介质可以包括随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程ROM(EEPROM)、闪速存储器、压缩光盘(CD)只读存储器或其它光盘存储、磁盘存储或其它磁存储设备、或能够用于以指令或数据结构的形式携带或存储期望的程序代码单元以及能够由通用或专用计算机、或通用或专用处理器访问的任何其它非暂时性介质。此外,任何连接适当地被称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或诸如红外线、无线电和微波之类的无线技术来从网站、服务器或其它远程源发送的,则同轴电缆、光纤光缆、双绞线、DSL或诸如红外线、无线电和微波之类的无线技术被包括在介质的定义内。如本文中所使用的,磁盘和光盘包括CD、激光光盘、光盘、数字多功能光盘(DVD)、软盘和蓝光光盘,其中,磁盘通常磁性地复制数据,而光盘则利用激光来光学地复制数据。上文的组合也被包括在计算机可读介质的范围内。
如本文所使用的(包括在权利要求中),如项目列表(例如,以诸如“中的至少一个”或“中的一个或多个”之类的短语结束的项目列表)中所使用的“或”指示包含性列表,使得例如A、B或C中的至少一个的列表意指A或B或C或AB或AC或BC或ABC(即A和B和C)。此外,如本文所使用的,短语“基于”不应当被解释为对封闭的条件集合的引用。例如,在不脱离本公开内容的范围的情况下,被描述为“基于条件A”的示例性步骤可以基于条件A和条件B两者。换句话说,如本文所使用的,应当以与解释短语“至少部分地基于”相同的方式来解释短语“基于”。
在附图中,相似的组件或特征可以具有相同的附图标记。此外,相同类型的各种组件可以通过在附图标记后跟随有破折号和第二标记进行区分,所述第二标记用于在相似组件之间进行区分。如果在说明书中仅使用了第一附图标记,则描述适用于具有相同的第一附图标记的相似组件中的任何一个组件,而不考虑第二附图标记或其它后续附图标记。
本文结合附图阐述的描述对示例配置进行了描述,而不表示可以实现或在权利要求的范围内的所有示例。本文所使用的术语“示例性”意味着“用作示例、实例或说明”,而不是“优选的”或者“比其它示例有优势”。出于提供对所描述的技术的理解的目的,详细描述包括具体细节。但是,可以在没有这些具体细节的情况下实施这些技术。在一些实例中,公知的结构和设备以框图的形式示出,以便避免使所描述的示例的概念模糊。
为使本领域技术人员能够实现或者使用本公开内容,提供了本文中的描述。对于本领域技术人员来说,对本公开内容的各种修改将是显而易见的,并且在不脱离本公开内容的范围的情况下,本文中定义的总体原理可以应用于其它变型。因此,本公开内容不限于本文中描述的示例和设计,而是被赋予与本文中公开的原理和新颖特征相一致的最广范围。

Claims (26)

1.一种用于用户设备(UE)处的无线通信的方法,包括:
从基站接收自主上行链路(AUL)配置,所述AUL配置包括对用于所述UE的多个AUL资源集合的指示,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;
从所述基站接收与所述多个AUL资源集合相关联的多个参考信号,所述多个参考信号包括与第一特定于波束的AUL资源集合相关联的第一参考信号以及与第二特定于波束的AUL资源集合相关联的第二参考信号;
测量所述多个参考信号的一个或多个信号强度;
至少部分地基于所述多个参考信号中的所述第一参考信号的信号强度,来从所述多个AUL资源集合中选择所述第一特定于波束的AUL资源集合;
使用来自所述多个AUL资源集合的所述第二特定于波束的AUL资源集合来向所述基站发送包括从所述多个参考信号的测量获得的信息的测量报告,其中,所述第二特定于波束的AUL资源集合不同于所选择的第一特定于波束的AUL资源集合,并且其中,所述测量报告是在所述第二参考信号的信号强度变得比所述第一参考信号的所述信号强度大门限量时发送的;以及
使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到所述基站的AUL传输。
2.根据权利要求1所述的方法,还包括:
至少部分地基于所述第一参考信号的所述信号强度来确定所述第一参考信号的后续传输已经变得不可检测;
至少部分地基于所述多个参考信号中的所述第二参考信号的所述信号强度,来从所述多个AUL资源集合中选择所述第二特定于波束的AUL资源集合;以及
使用所选择的第二特定于波束的AUL资源集合来执行上行链路数据到所述基站的第二AUL传输。
3.根据权利要求1所述的方法,还包括:
至少部分地基于所述多个参考信号中的每个参考信号的信号强度来确定所述多个参考信号的后续传输已经变得不可检测;以及
向所述基站发送请求消息以配置用于基站接收波束集合的通信资源。
4.根据权利要求3所述的方法,其中,所述请求消息包括随机接入信道(RACH)消息。
5.根据权利要求1所述的方法,还包括:
将所述第一参考信号的所述信号强度与所述多个参考信号中的所述第二参考信号的所述信号强度进行比较,其中,选择所述第一特定于波束的AUL资源集合是至少部分地基于所述比较的。
6.根据权利要求1所述的方法,还包括:
至少部分地基于所述多个参考信号中的所述第二参考信号的所述信号强度,来从所述多个AUL资源集合中选择所述第二特定于波束的AUL资源集合,其中,执行所述上行链路数据的所述AUL传输包括:
使用所选择的第一特定于波束的AUL资源集合和所选择的第二特定于波束的AUL资源集合来执行所述上行链路数据的所述AUL传输。
7.根据权利要求1所述的方法,其中,选择所述第一特定于波束的AUL资源集合包括:
确定所述第一参考信号的所述信号强度满足第二门限;以及
至少部分地基于所述确定所述第一参考信号的所述信号强度满足所述第二门限,来选择所述第一特定于波束的AUL资源集合。
8.根据权利要求1所述的方法,其中,所述多个AUL资源集合被配置用于所述基站的大多数接收波束。
9.根据权利要求1所述的方法,其中,所述多个AUL资源集合被配置用于从所述基站的大多数接收波束中选择的接收波束子集。
10.根据权利要求1所述的方法,其中,所述多个参考信号中的每个参考信号包括信道状态信息参考信号(CSI-RS)、或同步信号突发(SSB)、或其组合。
11.一种用于基站处的无线通信的方法,包括:
识别用于用户设备(UE)的多个自主上行链路(AUL)资源集合;
确定用于所述多个AUL资源集合和所述基站的多个AUL接收波束的AUL配置,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;
向所述UE发送与所述多个AUL资源集合相关联的多个参考信号,所述多个参考信号包括与第一特定于波束的AUL资源集合相关联的第一参考信号以及与第二特定于波束的AUL资源集合相关联的第二参考信号;
至少部分地基于所述多个参考信号来从所述UE接收上行链路数据的AUL传输,其中,所述AUL传输是使用来自所述多个AUL资源集合的所述第一特定于波束的AUL资源集合来接收的;以及
使用来自所述多个AUL资源集合的所述第二特定于波束的AUL资源集合来从所述UE接收测量报告,所述测量报告包括从所述多个参考信号的测量获得的信息,其中,所述第二特定于波束的AUL资源集合不同于所述第一特定于波束的AUL资源集合,并且其中,所述测量报告指示所述第二参考信号的信号强度变得比所述第一参考信号的信号强度大门限量。
12.根据权利要求11所述的方法,还包括:
至少部分地基于所述多个参考信号的后续传输,来使用来自所述多个AUL资源集合的所述第二特定于波束的AUL资源集合从所述UE接收第二AUL传输。
13.根据权利要求11所述的方法,还包括:
至少部分地基于所述多个参考信号中的每个参考信号的后续传输变得不可由所述UE检测到,来从所述UE接收请求消息;以及
响应于所述请求消息来配置用于与所述UE进行通信的通信资源和接收波束集合。
14.根据权利要求13所述的方法,其中,所述请求消息包括随机接入信道(RACH)消息。
15.根据权利要求11所述的方法,其中,向所述UE发送所述多个参考信号包括:
根据周期性来向所述UE发送所述多个参考信号。
16.根据权利要求11所述的方法,还包括:
至少部分地基于所接收的测量报告来重新配置用于所述UE的所述多个AUL资源集合和所述相应的AUL接收波束。
17.根据权利要求11所述的方法,其中,接收所述上行链路数据的所述AUL传输包括:
使用所述第一特定于波束的AUL资源集合和所述第二特定于波束的AUL资源集合来从所述UE接收所述上行链路数据的所述AUL传输。
18.根据权利要求11所述的方法,其中,所述多个AUL资源集合被配置用于所述基站的大多数接收波束。
19.根据权利要求11所述的方法,其中,所述多个AUL资源集合被配置用于从所述基站的大多数接收波束中选择的接收波束子集。
20.根据权利要求11所述的方法,其中,每个特定于波束的AUL资源集合中的资源数量与所述基站的对应的AUL接收波束上的业务负载成比例。
21.一种用于无线通信的装置,包括:
用于从基站接收自主上行链路(AUL)配置的单元,所述AUL配置包括对用于用户设备(UE)的多个AUL资源集合的指示,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;
用于从所述基站接收与所述多个AUL资源集合相关联的多个参考信号的单元,所述多个参考信号包括与第一特定于波束的AUL资源集合相关联的第一参考信号以及与第二特定于波束的AUL资源集合相关联的第二参考信号;
用于测量所述多个参考信号的一个或多个信号强度的单元;
用于至少部分地基于所述多个参考信号中的所述第一参考信号的信号强度,来从所述多个AUL资源集合中选择所述第一特定于波束的AUL资源集合的单元;
用于使用来自所述多个AUL资源集合的所述第二特定于波束的AUL资源集合来向所述基站发送包括从所述多个参考信号的测量获得的信息的测量报告的单元,其中,所述第二特定于波束的AUL资源集合不同于所选择的第一特定于波束的AUL资源集合,并且其中,所述测量报告是在所述第二参考信号的信号强度变得比所述第一参考信号的所述信号强度大门限量时发送的;以及
用于使用所选择的第一特定于波束的AUL资源集合来执行上行链路数据到所述基站的AUL传输的单元。
22.根据权利要求21所述的装置,还包括:
用于至少部分地基于所述第一参考信号的所述信号强度来确定所述第一参考信号的后续传输已经变得不可检测的单元;
用于至少部分地基于所述多个参考信号中的所述第二参考信号的所述信号强度,来从所述多个AUL资源集合中选择所述第二特定于波束的AUL资源集合的单元;以及
用于使用所选择的第二特定于波束的AUL资源集合来执行上行链路数据到所述基站的第二AUL传输的单元。
23.根据权利要求21所述的装置,还包括:
用于至少部分地基于所述多个参考信号中的每个参考信号的信号强度来确定所述多个参考信号的后续传输已经变得不可检测的单元;以及
用于向所述基站发送请求消息以配置用于基站接收波束集合的通信资源的单元。
24.一种用于基站处的无线通信的装置,包括:
用于识别用于用户设备(UE)的多个自主上行链路(AUL)资源集合的单元;
用于确定用于所述多个AUL资源集合和基站的多个AUL接收波束的AUL配置的单元,其中,所述多个AUL资源集合中的每个AUL资源集合是特定于所述基站的相应的AUL接收波束的并且是与参考信号相关联的;
用于向所述UE发送与所述多个AUL资源集合相关联的多个参考信号的单元,所述多个参考信号包括与第一特定于波束的AUL资源集合相关联的第一参考信号以及与第二特定于波束的AUL资源集合相关联的第二参考信号;
用于至少部分地基于所述多个参考信号来从所述UE接收上行链路数据的AUL传输的单元,其中,所述AUL传输是使用来自所述多个AUL资源集合的所述第一特定于波束的AUL资源集合来接收的;以及
用于使用来自所述多个AUL资源集合的所述第二特定于波束的AUL资源集合来从所述UE接收测量报告的单元,所述测量报告包括从所述多个参考信号的测量获得的信息,其中,所述第二特定于波束的AUL资源集合不同于所述第一特定于波束的AUL资源集合,并且其中,所述测量报告指示所述第二参考信号的信号强度变得比所述第一参考信号的信号强度大门限量。
25.根据权利要求24所述的装置,还包括:
用于至少部分地基于所述多个参考信号的后续传输,来使用来自所述多个AUL资源集合的所述第二特定于波束的AUL资源集合从所述UE接收第二AUL传输的单元。
26.根据权利要求24所述的装置,还包括:
用于至少部分地基于所述多个参考信号中的每个参考信号的后续传输变得不可由所述UE检测到,来从所述UE接收请求消息的单元;以及
用于响应于所述请求消息来配置用于与所述UE进行通信的通信资源和接收波束集合的单元。
CN201980016938.3A 2018-03-06 2019-03-05 用于具有模拟波束的自主上行链路的波束管理 Active CN111801901B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862639150P 2018-03-06 2018-03-06
US62/639,150 2018-03-06
US16/292,293 US11212051B2 (en) 2018-03-06 2019-03-04 Beam management for autonomous uplink with analog beams
US16/292,293 2019-03-04
PCT/US2019/020791 WO2019173365A1 (en) 2018-03-06 2019-03-05 Beam management for autonomous uplink with analog beams

Publications (2)

Publication Number Publication Date
CN111801901A CN111801901A (zh) 2020-10-20
CN111801901B true CN111801901B (zh) 2023-08-04

Family

ID=67843598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980016938.3A Active CN111801901B (zh) 2018-03-06 2019-03-05 用于具有模拟波束的自主上行链路的波束管理

Country Status (4)

Country Link
US (1) US11212051B2 (zh)
EP (1) EP3763055A1 (zh)
CN (1) CN111801901B (zh)
WO (1) WO2019173365A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3064789C (en) * 2018-03-20 2022-04-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for paging, network device, and terminal device
KR20200135385A (ko) * 2018-03-21 2020-12-02 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 신호 전송을 위한 방법과 장치
US10505616B1 (en) * 2018-06-01 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for machine learning based wide beam optimization in cellular network
US11742926B2 (en) * 2018-06-22 2023-08-29 Nec Corporation Beam management
CN112368968B (zh) * 2018-07-10 2022-04-29 华为技术有限公司 上报信道状态信息的方法和装置
CA3119325C (en) 2018-11-27 2023-07-04 XCOM Labs, Inc. Non-coherent cooperative multiple-input multiple-output communications
JP7337101B2 (ja) * 2019-01-10 2023-09-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 基地局、端末及び通信方法
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
WO2021098096A1 (en) * 2020-03-17 2021-05-27 Zte Corporation System and method for sidelink configuration
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
US11758555B2 (en) * 2020-05-19 2023-09-12 Qualcomm Incorporated Techniques for shared channel backoff procedures in wireless communications systems
WO2021242574A1 (en) 2020-05-26 2021-12-02 XCOM Labs, Inc. Interference-aware beamforming
US11963088B2 (en) * 2020-07-31 2024-04-16 Qualcomm Incorporated Beam-specific system information inside remaining minimum system information
KR20230091910A (ko) 2020-10-19 2023-06-23 엑스콤 랩스 인코퍼레이티드 무선 통신 시스템에서의 참조 신호
WO2022093988A1 (en) 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems
CN114554603A (zh) * 2020-11-24 2022-05-27 华为技术有限公司 随机接入方法、装置及通信设备
WO2023065251A1 (zh) * 2021-10-21 2023-04-27 北京小米移动软件有限公司 混合自动重传请求harq进程分配方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160807A (zh) * 2015-04-09 2016-11-23 株式会社Ntt都科摩 波束选择方法、移动台和基站
WO2017083514A1 (en) * 2015-11-10 2017-05-18 Idac Holdings, Inc. Downlink control channel design and signaling for beamformed systems
WO2017116209A1 (en) * 2015-12-30 2017-07-06 Samsung Electronics Co., Ltd. Method and apparatus for channel state information reference signal (csi-rs)
TW201739188A (zh) * 2016-04-13 2017-11-01 高通公司 用於波束管理的系統和方法
WO2017196612A1 (en) * 2016-05-11 2017-11-16 Idac Holdings, Inc. Systems and methods for beamformed uplink transmission
CN107409031A (zh) * 2015-03-14 2017-11-28 高通股份有限公司 相互的信道探测参考信号分配和配置
TW201743576A (zh) * 2016-05-09 2017-12-16 高通公司 用於大容量mimo的參考信號和鏈路調適
WO2018009462A1 (en) * 2016-07-08 2018-01-11 Intel IP Corporation Uplink beamforming and beam management
WO2018022470A1 (en) * 2016-07-25 2018-02-01 Qualcomm Incorporated Beam selection and refinement during a random access channel (rach) procedure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971688B (zh) * 2008-03-20 2014-03-05 爱立信电话股份有限公司 上行链路测量报告的调度
EP2211571A1 (en) * 2009-01-23 2010-07-28 Alcatel Lucent Automatic update of a neighbour relation table of a base station
US9037174B2 (en) * 2009-09-02 2015-05-19 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for improving radio network characteristics
WO2012173547A1 (en) * 2011-06-15 2012-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node in a wireless communication system
EP2632061B1 (en) * 2012-02-27 2020-09-02 Agence Spatiale Européenne A method and a system of providing multi-beam coverage of a region of interest in multi-beam satellite communication.
CN111865374B (zh) * 2013-01-25 2023-09-29 交互数字专利控股公司 用于确定资源的方法和无线发射/接收单元
US10382169B2 (en) * 2016-04-01 2019-08-13 Huawei Technologies Co., Ltd. HARQ systems and methods for grant-free uplink transmissions
US10425200B2 (en) * 2016-04-13 2019-09-24 Qualcomm Incorporated System and method for beam adjustment request
US11388754B2 (en) * 2016-06-06 2022-07-12 Qualcomm Incorporated Channel state information reporting for random access procedures
CN107733609B (zh) * 2016-08-12 2023-10-13 华为技术有限公司 参考信号发送方法和参考信号发送装置
CN108631816B (zh) * 2017-03-24 2021-02-23 华为技术有限公司 发送数据的方法和装置,以及接收数据的方法和装置
US10499390B2 (en) * 2017-03-24 2019-12-03 Institute For Information Industry Base station, user equipment, transmission control method for base station and data transmission method for user equipment
US11483810B2 (en) * 2017-04-03 2022-10-25 Huawei Technologies Co., Ltd. Methods and systems for resource configuration of wireless communication systems
US10728778B2 (en) * 2017-11-06 2020-07-28 FG Innovation Company Limited Interaction mechanism between radio link monitoring/radio link failure (RLM/RLF) and beam failure recovery procedure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107409031A (zh) * 2015-03-14 2017-11-28 高通股份有限公司 相互的信道探测参考信号分配和配置
CN106160807A (zh) * 2015-04-09 2016-11-23 株式会社Ntt都科摩 波束选择方法、移动台和基站
WO2017083514A1 (en) * 2015-11-10 2017-05-18 Idac Holdings, Inc. Downlink control channel design and signaling for beamformed systems
WO2017116209A1 (en) * 2015-12-30 2017-07-06 Samsung Electronics Co., Ltd. Method and apparatus for channel state information reference signal (csi-rs)
TW201739188A (zh) * 2016-04-13 2017-11-01 高通公司 用於波束管理的系統和方法
TW201743576A (zh) * 2016-05-09 2017-12-16 高通公司 用於大容量mimo的參考信號和鏈路調適
WO2017196612A1 (en) * 2016-05-11 2017-11-16 Idac Holdings, Inc. Systems and methods for beamformed uplink transmission
WO2018009462A1 (en) * 2016-07-08 2018-01-11 Intel IP Corporation Uplink beamforming and beam management
WO2018022470A1 (en) * 2016-07-25 2018-02-01 Qualcomm Incorporated Beam selection and refinement during a random access channel (rach) procedure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Samsung Electronics Co., Ltd.R2-168172 "Analysis for UL Measurement based Mobility".3GPP TSG-RAN WG2 Meeting #96 R2-168172.2016,(第TSGR2_96期),全文. *

Also Published As

Publication number Publication date
US11212051B2 (en) 2021-12-28
EP3763055A1 (en) 2021-01-13
CN111801901A (zh) 2020-10-20
US20190280836A1 (en) 2019-09-12
WO2019173365A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
CN111801901B (zh) 用于具有模拟波束的自主上行链路的波束管理
CN111869130B (zh) 波束切换和波束故障恢复
CN111656849B (zh) 采用模拟波束的自主上行链路
CN112567803B (zh) 用于无线通信的方法、装置和非暂时性计算机可读介质
CN112703797B (zh) 传输配置指示符状态与物理小区身份的关联
CN111034105B (zh) 用于无线通信的方法、装置及非暂时性计算机可读介质
CN111699634B (zh) 上行链路波束指派
CN111869260B (zh) 用于用信号通知QoS类指示符的方法和装置
CN112740816B (zh) 关于用户设备空闲信道评估状态的测量报告
CN112997442B (zh) 在初始控制资源集上配置发送配置指示状态
CN111727580B (zh) 用于跟踪的参考信号
CN111937341B (zh) 用于接收物理下行链路共享信道的方法和装置
KR20200044804A (ko) 진보된 허여 표시자로의 접속형 불연속 수신을 위한 빔 관리
TW202341691A (zh) 用於波束指示的虛擬搜尋空間
CN116321468A (zh) 一种针对带宽部分切换的时序参数管理方法和装置
CN111386660A (zh) 确定用于发送波束故障恢复信号的波束候选
JP7250775B2 (ja) 同期信号バーストセットパターンをシグナリングするための技法
CN111344984B (zh) 一种用于无线通信的方法和装置
CN111972027B (zh) 半双工约束下在复用资源上的调度
CN111316712B (zh) 基于用于传输的功率配置的双工模式
CN113615299B (zh) 用于随机接入规程的前置码到解调参考信号映射
CN114041300B (zh) 涵盖通话前监听失败的多级接收机设计
CN112020841B (zh) 用于跨用户设备的非周期性信道状态信息共享的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant