CN111801896A - 微分电路 - Google Patents

微分电路 Download PDF

Info

Publication number
CN111801896A
CN111801896A CN201980016330.0A CN201980016330A CN111801896A CN 111801896 A CN111801896 A CN 111801896A CN 201980016330 A CN201980016330 A CN 201980016330A CN 111801896 A CN111801896 A CN 111801896A
Authority
CN
China
Prior art keywords
output
input
coupled
register
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980016330.0A
Other languages
English (en)
Inventor
S·X·于
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN111801896A publication Critical patent/CN111801896A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/0671Cascaded integrator-comb [CIC] filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/0685Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being rational
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/392Arrangements for selecting among plural operation modes, e.g. for multi-standard operation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/462Details relating to the decimation process
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/065Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer
    • H03H17/0664Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer where the output-delivery frequency is lower than the input sampling frequency, i.e. decimation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0223Computation saving measures; Accelerating measures
    • H03H2017/0245Measures to reduce power consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

一种电路(500)包括具有第一输入、第二输入、控制输入和输出的多路复用器(505)。该电路(500)还包括具有耦合到多路复用器(505)的输出的输入以及输出的第一寄存器(520A)。该电路(500)还包括具有耦合到第一寄存器(520A)的输出的输入以及输出的第二寄存器(520X)。该电路(500)还包括具有耦合到多路复用器(505)的输出的第一输入和耦合到第二寄存器(520X)的输出的第二输入的减法器(515)。该电路(500)还包括具有耦合到减法器(515)的输出的输入和耦合到多路复用器(505)的第一输入的输出的第三寄存器(510)。

Description

微分电路
技术领域
本发明涉及微分电路。
发明内容
本说明书的至少一些方面提供一种电路。在一个例子中,该电路包括具有第一输入、第二输入、控制输入和输出的多路复用器。该电路还包括具有耦合到多路复用器的输出的输入以及输出的第一寄存器。该电路还包括具有耦合到第一寄存器的输出的输入以及输出的第二寄存器。该电路还包括具有耦合到多路复用器的输出的第一输入和耦合到第二寄存器的输出的第二输入的减法器。该电路还包括具有耦合到减法器的输出的输入和耦合到多路复用器的第一输入的输出的第三寄存器。
本说明的其他方面提供另一种电路。在一个例子中,该电路包括具有输入和输出的滤波器、具有输入和输出的Δ-∑(delta-sigma,增量-总和)调制器以及耦合到滤波器和Δ-∑调制器的级联积分器梳状(CIC)滤波器。在一个示例中,CIC滤波器包括具有第一输入、第二输入、控制输入和输出的多路复用器,具有耦合到多路复用器的输出的输入以及输出的第一寄存器、具有耦合到第一寄存器的输出的输入以及输出的第二寄存器,具有耦合到多路复用器的输出的第一输入和耦合到第二寄存器的输出的第二输入的减法器,以及具有耦合到减法器的输出的输入和耦合到多路复用器的第一输入的输出的第三寄存器。
本说明的其他方面提供另一种电路。在一个例子中,该电路包括CIC滤波器,该CIC滤波器包括串联耦合的多个积分器以及微分器,其中多个积分器中的第一积分器开始串联并且多个积分器中的第二积分器终止串联。在一个例子中,微分器包括具有第一输入、第二输入、控制输入和输出的多路复用器,具有耦合到多复用器的输出的输入以及输出的第一寄存器,具有耦合到第一寄存器的输出的输入以及输出的第二寄存器,具有耦合到多路复用器的输出的第一输入和耦合到第二寄存器的输出的第二输入的减法器,以及具有耦合到减法器的输出的输入和耦合到多路复用器的第一输入的输出的第三寄存器。该电路还包括具有耦合到多个积分器中的一个的第一端和耦合到微分器的第二端的信号采样器。
附图说明
图1示出了根据各种示例的说明性Δ-∑模数转换器(ADC)的框图。
图2示出了根据各种示例的说明性Δ-∑数模转换器(DAC)的示意图。
图3示出了根据各种示例的说明性CIC滤波器的示意图。
图4示出了根据各种示例的说明性CIC滤波器的示意图。
图5示出了根据各种示例的说明性电路的示意图。
图6示出了根据各种示例的说明性信号的时序图。
图7示出了根据各种示例的说明性方法的流程图。
具体实施方式
Δ-∑ADC和Δ-∑DAC在模拟域和数字域之间转换信号。传统的ADC或DAC有时在转换后的值中插入噪声或误差,从而产生至少部分补偿插入噪声或误差的Δ-∑ADC和Δ-∑DAC。至少在一些例子中,Δ-∑转换器包括调制器和滤波器,通常实现为级联积分器梳状(CIC)滤波器。一些Δ-∑转换器还包括附加滤波器或其他电路,其范围在此不受限制。CIC滤波器包括大于或等于1的任何数量的级,其中每个级包括积分器和微分器,根据CIC滤波器的应用环境由下采样器或上采样器分开。每个微分器包括一个寄存器和一个减法器。通常,CIC滤波器由单个时钟信号控制,使得CIC滤波器的每个级并行工作。然而,随着级数的增加,微分器所需的减法器数量也随之增加。至少在一些示例性架构中,减法器在电路裸片的表面上具有相对大的占地面积,因此当需要在裸片上存在多个单独的减法器时,例如为了便于CIC滤波器的并行工作,增加了制造电路的成本。类似地,每个附加减法器在执行计算时消耗能量,增加CIC滤波器的功率成本(例如,工作成本)。
本说明书的至少一些方面提供包括配置成串行工作的微分器的CIC过滤器。在一些示例中,微分器包括多个寄存器、一个减法器和一个多路复用器。在一些例子中,根据CIC滤波器的级数量来确定微分器中的寄存器数量。例如,具有3个级的CIC滤波器包括3个积分器和具有4个寄存器的微分器。通常,对于具有x个积分器的x级CIC滤波器,微分器包括x+1个寄存器、1个减法器和1个双输入多路复用器。在一些示例中,对于两级或大于两级的CIC滤波器,本说明书的微分器将CIC滤波器中的减法器数目减少x-1。减法器的减少减少了CIC滤波器消耗的表面积,从而降低了生产成本,并且减少了CIC滤波器的组件数量,从而减少了CIC滤波器消耗的功率量。
参见图1,示出说明性的Δ-∑ADC 100的框图。在一些示例中,Δ-∑ADC包括模拟Δ-∑调制器105、CIC滤波器110和可选的滤波器115。在一些示例中,CIC滤波器110包括多个积分器120A,…,120X,其中X是大于1的任意整数,以及具有多个寄存器130A,…,130X,130X+1和减法器135的微分器125。在一些示例中,积分器120X经由下采样器140耦合到微分器125。
至少在一个示例性架构中,模拟Δ-∑调制器105配置成从输入端145接收输入信号,并根据Δ-∑调制来调制输入信号,这里不包括其细节。在一些示例中,ADC耦合在输入端145和模拟Δ-∑调制器105的输入之间。例如在积分器120A的输入处,模拟Δ-∑调制器105的输出耦合到CIC滤波器110的输入。当滤波器115存在于Δ-∑ADC 100中时,CIC滤波器110的输出(例如微分器125的输出)耦合到滤波器115的输入,并且滤波器115的输出耦合到Δ-∑ADC 100的输出端150。当滤波器115不存在于Δ-∑ADC 100中时,CIC滤波器110的输出耦合到输出端150。
在Δ-∑ADC 100工作的示例中,模拟Δ-∑调制器105从输入端145接收输入信号,根据Δ-∑调制来调制输入信号,并将调制信号提供给CIC滤波器110。模拟Δ-∑调制器105的输出由R*N*fs表征,其中R是CIC滤波器110的抽取率,N是滤波器115的抽取率,fs是Δ-∑ADC 100的采样率。在不存在滤波器115的Δ-∑ADC 100的示例中,N限定为1。CIC滤波器110对调制信号进行积分,对积分信号进行下采样,并对下采样信号进行微分以生成滤波信号。在一些示例中,CIC滤波器110向滤波器115提供滤波信号。CIC滤波器110的输出由N*fs表征。在一些示例中,滤波器115以N执行附加滤波和/或附加抽取,使得滤波器115输出的数字信号由fs表征。
参见图2,示出说明性Δ-∑DAC 200的框图。在一些示例中,Δ-∑DAC包括CIC滤波器205、数字Δ-∑调制器210和可选的滤波器215。在一些示例中,CIC滤波器110包括多个积分器220A,…,220X,其中X是大于1的任何整数,以及具有多个寄存器230A,…,230X,230X+1微分器225和减法器235。在一些示例中,积分器220A经由上采样器240耦合到微分器225。
至少在一个示例性架构中,滤波器215配置成在输入端245处接收数字输入信号,并对输入信号进行滤波以形成第一滤波信号。数字输入信号用fs表征,第一滤波信号用N1*fs表征,其中N1是滤波器215的插值比。在不存在滤波器215的Δ-∑DAC 200的示例中,N1限定为1。例如,在微分器225的输入处,滤波器215的输出耦合到CIC滤波器205的输入。在不存在滤波器215的Δ-∑DAC 200的示例中,CIC滤波器205的输入耦合到输入端245。例如,在积分器220X处,CIC滤波器205的输出耦合到数字Δ-∑调制器210的输入。数字Δ-∑调制器210的输出耦合到输出端250。在一些示例中,DAC耦合在数字Δ-∑调制器210的输出和输出端250之间。
在Δ-∑DAC 200工作的示例中,滤波器通过fs接收并滤波数字信号字符,将滤波后的信号提供给CIC滤波器205。CIC滤波器205对滤波后的信号进行微分,对微分后的信号进行上采样(例如,零填充),并对上采样的信号进行积分以生成第二滤波信号。在一些示例中,CIC滤波器205向数字Δ-∑调制器210提供第二滤波信号。CIC滤波器205的输出由R1*N1*fs表征,其中R1是CIC滤波器205的插值比。数字Δ-∑调制器210配置为接收第二滤波信号并根据Δ-∑调制来调制第二滤波信号,这里不包括其细节。
参见图3所示的说明性CIC滤波器300的示意图。在一些示例中,CIC滤波器300代表抽取CIC滤波器。在至少一个示例性架构中,CIC滤波器300包括积分器120A,…,120X,微分器125和下采样器140。在一个例子中,积分器120A包括加法器305A和寄存器310A,并且积分器120X包括加法器305X和寄存器310X。虽然CIC滤波器300示出了积分器120A和积分器120X,但在各种示例中,CIC滤波器300包括位于积分器120A和积分器120X之间的任意数量的介入的积分器,其中前一积分器的输出耦合到下一积分器的输入。积分器120X的输出耦合到下采样器140的输入,下采样器140的输出耦合到微分器125的输入。下采样器140是能够对输入信号进行下采样以形成输出信号的任何合适的装置。
在CIC滤波器300工作的示例中,积分器120A,…,120X中的每一个接收信号,将接收到的信号添加到这些积分器的各自寄存器310A,…,310X的输出中,输出添加后的信号,并将添加后的信号存储到这些积分器的各自寄存器310A,…,310X中,以便在下一个时钟周期中进行加法。至少在一些示例中,寄存器310A,…,310X中的每一个都以时钟频率MODCLK接收和工作。在一些示例中,下采样器140配置成针对由下采样器140接收的每个R信号样本,向微分器125提供积分器120X的输出的1个样本。在一些示例中,下采样器140实现为可控制的开关(例如,晶体管),以将积分器120X的输出耦合到微分器125的输入,积分器120X的每R个样本一次(例如,每R个时钟周期一次)。如下文图5进一步描述的,微分器125配置为对下采样信号做微分运算,以生成CIC滤波器110的输出。至少在一些示例中,微分器125以时钟频率DECCLK接收并工作。
参见图4,示出说明性CIC滤波器400的示意图。在一些示例中,CIC滤波器400代表插值CIC滤波器。至少在一个示例性架构中,CIC滤波器400包括积分器220A、…、220X、微分器225和上采样器240。在一个示例中,积分器220A包括加法器405A和寄存器410A,并且积分器220X包括加法器405X和寄存器410X。虽然CIC滤波器400示出了积分器220A和积分器220X,但在各种示例中,CIC滤波器400包括位于积分器220A和积分器220X之间的任意数量的介入的积分器,其中前一积分器的输出耦合到下一积分器的输入。微分器225的输出耦合到上采样器240的输入,上采样器240的输出耦合到积分器220A的输入。上采样器240是能够对输入信号进行上采样以形成输出信号的任何合适的装置。
在CIC滤波器400工作的示例中,微分器225接收信号并取微分,如下面关于图5内容的进一步描述。至少在一些示例中,微分器225以时钟频率DECCLK接收并工作。上采样器240对微分后信号进行上采样,并将上采样的信号提供给积分器220A。在一些示例中,上采样器240配置为针对上采样器240接收到的每1个信号样本,向积分器220A提供微分器225的输出的R1个样本。在一些示例中,上采样器240通过执行零填充对微分器225的输出进行上采样,向积分器220A提供包括微分器225的输出和在微分器225的输出之间插入的多个零的信号。积分器220A,…,220X中的每一个接收信号,将接收到的信号添加到这些积分器的各自寄存器410A,…,410X的输出中,输出添加后的信号,并将添加后的信号存储到这些积分器各自的寄存器410A,…,410X中,以便在下一个时钟周期中进行加法。至少在一些示例中,寄存器410A,…,410X中的每一个都以时钟频率MODCLK接收和工作。
参见图5,示出说明性电路500的示意图。至少在一些示例中,电路500是微分器电路,或提供微分器或微分功能,使得电路500适于实现为图1和/或图3的微分器125和/或图2和/或图4的微分器225中的任何一个或更多个。例如,电路500适于至少在一些CIC滤波器架构中实现为反馈梳状滤波器。在一个例子中,电路500包括多路复用器505、寄存器510、减法器515和多个寄存器520A…520X,其中至少在一些示例中,X对应于包括电路500的CIC滤波器中的积分器数量。
在电路500的示例结构中,多路复用器505的第一输入耦合到寄存器510的输出和电路500的输出端525。多路复用器505的第二输入耦合到电路500的输入端530。多路复用器505的控制输入耦合到电路500的控制端535。多路复用器505的输出耦合到寄存器520A的输入和减法器515的第一输入。寄存器520A的输出耦合到寄存器520X的输入,并且寄存器520X的输出耦合到减法器515的第二输入。虽然电路500示出寄存器520A和寄存器520X,但在各种示例中,电路500包括位于寄存器520A和寄存器520X之间的任何数量的介入寄存器,其中前一寄存器的输出耦合到后一寄存器的输入。至少在一些示例中,与其它微分器电路(例如寄存器与减法器的比率为1:1的电路)相比时,电路500导致硅裸片上的占用面积减小。电路500通过先后耦合寄存器520A,…,520X和单个减法器515,至少部分地实现了这种改进。至少在一些示例中,寄存器510和寄存器520A,…,520X中的每一个都是接收DECCLK并响应于接收到的DECCLK上升沿而工作的时钟寄存器。例如,在接收到DECCLK的上升沿时,寄存器510和寄存器520A,…,520X中的每一个都在输出端输出当前存储的值,并存储存在于输入端的新值。
在工作的一个例子中,当电路500第一次开始工作时,多路复用器505在控制端535处接收控制输入(即Ctrl),控制端535选择多路复用器505的第二输入,用于通到多路复用器505的输出。随后,Ctrl选择多路复用器505的第一输入,用于在多个时钟周期通到多路复用器505输出,时钟周期的数量由寄存器520A,…,520X的个数X确定,如下文详述。多路复用器505的输出提供给寄存器520A和减法器515。减法器515将从多路复用器505接收的信号减去从寄存器520X接收的信号,并将所得信号提供给寄存器510。寄存器510和寄存器520A各自在DECCLK的下一上升沿存储各自接收的信号。类似地,寄存器520X将当前存储的信号输出到减法器515,并将从图5中所示的作为寄存器520A的前一寄存器接收到的信号存储在DECCLK的上升沿。至少在一些示例中,电路500以串行方式工作,处理针对DECCLK的周期数等于寄存器520A,…,520X的数目X(在图5中示出为X=2),其中DECCLK的每个附加周期的处理基本上类似于上述处理。
至少在一些示例中,电路500的处理适合于使用多个数学方程来描述在DECCLK的每个周期由寄存器510、寄存器520A、…、520X存储的值和/或由电路500输出的值。例如,假设寄存器520A的值为DIF2(n-1),寄存器520X的值为DIF1(n-1),并且在输入端530处的时刻n接收到的输入信号为IN(n),电路500的工作如下面表1的描述。
表1
Figure BDA0002658190540000071
如上面的表1以及图5所示,在DECCLK的X个周期之后,寄存器510存储的值是电路500的输出,该输出将在下一个DECCLK周期输出。在某些示例中,在DECCLK的X个周期之后由寄存器510存储的值在数学上是IN(n)的微分。这样,电路500从常规的微分结构中消除一个或更多个减法器,从而提供电路500的减少的表面占用面积和降低电路500的功耗,其中表面占用面积和功耗节省都随着X的增加而增加(例如,对于X=3,比传统架构少2个减法器,对于X=5,比传统架构少4个减法器,通常,节省X-1个减法器)。
参见图6,示出说明性信号的时序图600。图600代表电路中存在的至少一些信号,例如CIC滤波器300和/或CIC滤波器400。如图6所示,电路以两个时钟频率工作,一个MODCLK频率和一个DECCLK频率。至少在一些例子中,MODCLK频率高于DECCLK频率。例如,对于每R个MODCLK周期(在CIC滤波器300的情况下,或R1个MODCLK周期,在CIC滤波器400的情况下),都有X个DECCLK周期。因此在一些示例中,CIC滤波器300的积分器120A,…,120X或CIC滤波器400的积分器220A,…,220X接收MODCLK并以MODCLK频率工作,CIC滤波器300的微分器125或CIC滤波器400的微分器225接收DECCLK并以DECCLK频率工作。尽管在图6中示为2个DECCLK周期,但在一些示例中,DECCLK的周期数等于X,以提供与积分器120A,…,120X(或220A,…,220X)的并行工作相同数量的微分器125(或225)的串行工作。在各种示例中,DECCLK是根据任何合适的方法形成的,例如独立于MODCLK生成或通过分割MODCLK生成。在各种示例中,DECCLK在CIC滤波器300和/或CIC滤波器400中由一个或更多个未示出的组件形成,而在其他示例中,DECCLK由CIC滤波器300和/或CIC滤波器400从MODCLK单独接收。如图6中进一步所示,Ctrl在DECCLK的第一个周期中具有高值,对于DECCLK的其余周期具有低值。
参见图7,示出说明性方法700的流程图。在一些示例中,方法700由上文图5描述的电路500之类的电路实现。在一些示例中,方法700提供由电路对输入信号的微分,例如在CIC滤波器(例如图3的CIC滤波器300和/或图4的CIC滤波器400)中的电路接收的信号的微分。
在操作702,电路接收信号。在一些示例中,从抽取CIC滤波器(例如CIC滤波器300)中的下采样器接收信号。在其它示例中,从任何其他合适的组件接收信号,例如耦合到图4的CIC滤波器400的滤波器。在一些示例中,在电路的多路复用器处接收信号,并且基于应用于多路复用器的控制信号,在多路复用器的输出处提供该信号。
在操作704,接收到的信号保存在第一寄存器中,并由减法器从第二寄存器的输出中减去。同样在操作704中,第一寄存器的输出被保存到第二寄存器中。在电路的各种示例结构中,一个或更多个附加寄存器串联耦合在第一寄存器和第二寄存器之间。在这种结构中,在操作704,第二个寄存器之前的以耦合串联中的第一个寄存器开始以及最后一个寄存器结束的每个寄存器的输出被保存到串联耦合中的紧接着的后续寄存器中。
在操作706,减法器的输出被保存在第三寄存器中,第三寄存器的输出被保存在第一寄存器中,第一寄存器的输出被保存在第二寄存器中(或者在串联耦合中的紧接着的后续寄存器,如关于操作704所述),并且减法器从第三寄存器的输出减去第二寄存器的输出。
至少在一些示例中,操作706被重复一次或多次。至少在一些示例中,根据在第一寄存器和第二寄存器之间串联耦合的附加寄存器的数目来确定操作706的重复次数。例如,当Y个附加寄存器串联耦合在第一寄存器和第二寄存器之间时,操作706被重复Y+1次。
在操作708,电路提供输出信号。在一些例子中,输出信号是第三寄存器的输出。这样,至少在一些示例中,操作708基本上与操作706同时发生(例如,基本上与操作706的第三寄存器的输出的传输同时发生)。
在本说明书中,术语“耦合”是指间接或直接有线或无线连接。因此,如果第一装置、元件或组件耦合到第二装置、元件或组件,则该耦合可通过直接耦合或通过经由其它装置、元件或组件及连接的间接耦合。类似地,在第一组件或位置与第二组件或位置之间耦合的装置、元件或组件可以通过直接连接或通过经由其他装置、元件或组件和/或耦合的间接连接。“配置为”执行任务或功能的装置可由制造商在制造时配置(例如,编程和/或硬连线)以执行该功能和/或可由用户在制造后配置(或重新配置)以执行该功能和/或其他附加或替代功能。配置可以通过设备的固件和/或软件编程,通过硬件组件的构造和/或布局以及设备的互连,或其组合。此外,所阐述包括某些组件的电路或设备可以被配置成耦合到这些组件以形成所描述的电路或装置。例如,被描述为包括一个或更多个半导体元件(例如晶体管)、一个或更多个无源元件(例如电阻器、电容器和/或电感器)和/或一个或更多个源(例如电压源和/或电流源)的结构可以只包括单个物理装置内的半导体元件(例如,半导体裸片和/或集成电路(IC)封装),并且可以配置成耦合到至少一些无源元件和/或源,以在制造时或在制造之后,例如由终端用户和/或第三方来形成所述结构。
虽然本文将某些组件描述为特定工艺技术(例如,场效应晶体管(FET)、MOSFET、n型、p型等),但这些组件可交换为其他工艺技术的组件(例如,用双极结型晶体管(BJT)替换FET和/或MOSFET,将n型替换为p型,反之亦然,等等),并重新配置包括被替换的组件的电路,以提供至少部分类似于组件更换前可用功能的所需功能。此外,在本说明书中,短语“接地电压电位”的使用包括机箱接地、大地接地、浮动接地、虚拟接地、数字接地、公共接地和/或适用于或适合于本说明书的教导的任何其他形式的接地连接。除非另有说明,否则值前面的“大约”、“大概”或“基本上”是指声明值的+/-10%。
在权利要求书的范围内,描述的实施例可以进行修改,其他实施例也是可以修改的。

Claims (20)

1.一种电路,其包括:
多路复用器,其具有第一输入、第二输入、控制输入和输出;
第一寄存器,其具有耦合到所述多路复用器的所述输出的输入以及输出;
第二寄存器,其具有耦合到所述第一寄存器的所述输出的输入以及输出;
减法器,其具有耦合到所述多路复用器的所述输出的第一输入和耦合到所述第二寄存器的所述输出的第二输入;以及
第三寄存器,其具有耦合到所述减法器的所述输出的输入和耦合到所述多路复用器的所述第一输入的输出。
2.根据权利要求1所述的电路,其进一步包括耦合在所述第一寄存器和所述第二寄存器之间的第四寄存器。
3.根据权利要求1所述的电路,其进一步包括:
第一积分器,其具有输入和输出;以及
第二积分器,其具有耦合到所述第一积分器的所述输出的输入和输出。
4.根据权利要求3所述的电路,其进一步包括下采样器,所述下采样器具有耦合到所述多路复用器的所述第二输入的输出和耦合到所述第二积分器的所述输出的输入。
5.根据权利要求3所述的电路,其进一步包括:
耦合在所述第一积分器和所述第二积分器之间的一个或更多个附加积分器;以及
耦合在所述第一寄存器和所述第二寄存器之间的一个或更多个附加寄存器,其中所述一个或更多个附加寄存器的数目等于所述一个或更多个附加积分器的数目。
6.根据权利要求3所述的电路,其进一步包含耦合到所述第一积分器或所述第二积分器中的一个的Δ-∑调制器。
7.根据权利要求3所述的电路,其进一步包括上采样器,所述上采样器具有耦合到所述第三寄存器的所述输出的输入和耦合到所述第一积分器的所述输入的输出。
8.根据权利要求3所述的电路,其进一步包括滤波器,其耦合到所述第三寄存器的所述输出或所述第一积分器的所述输入中的一个。
9.一种电路,其包括:
滤波器,其具有输入和输出;
Δ-∑调制器,其具有输入和输出;以及
级联积分器梳状滤波器即CIC滤波器,其耦合到所述滤波器和所述Δ-∑调制器并且包括:
多路复用器,其具有第一输入、第二输入、控制输入和输出;
第一寄存器,其具有耦合到所述多路复用器的所述输出的输入和输出;
第二寄存器,其具有耦合到所述第一寄存器的所述输出的输入和输出;
减法器,其具有耦合到所述多路复用器的所述输出的第一输入和耦合到所述第二寄存器的所述输出的第二输入;以及
第三寄存器,其具有耦合到所述减法器的所述输出的输入和耦合到所述多路复用器的所述第一输入的输出。
10.根据权利要求9所述的电路,其中所述CIC滤波器进一步包括:
第一积分器,其具有输入和输出;以及
第二积分器,其具有耦合到所述第一积分器的所述输出的输入和输出。
11.根据权利要求10所述的电路,其中所述CIC滤波器进一步包括:
耦合在所述第一积分器和所述第二积分器之间的一个或更多个附加积分器;以及
耦合在所述第一寄存器和所述第二寄存器之间的一个或更多个附加寄存器,其中所述一个或更多个附加寄存器的数目等于所述一个或更多个附加积分器的数目。
12.根据权利要求10所述的电路,其进一步包括上采样器,所述上采样器具有耦合到所述第三个寄存器的所述输出的输入和耦合到所述第一个积分器的所述输入的输出。
13.根据权利要求10所述的电路,其进一步包括下采样器,所述下采样器具有耦合到所述第二积分器的所述输出的输入和耦合到所述多路复用器的所述第二输入的输出。
14.根据权利要求10所述的电路,其中所述Δ-∑调制器的所述输出耦合到所述第一积分器的所述输入,且其中所述第三寄存器的所述输出耦合到所述滤波器的所述输入。
15.根据权利要求10所述的电路,其中所述滤波器的所述输出耦合到所述多路复用器的所述第二输入,并且其中所述Δ-∑调制器的所述输入耦合到所述第二积分器的所述输出。
16.一种电路,其包括:
级联积分器梳状滤波器即CIC滤波器,其包括:
串联耦合的多个积分器,其中多个积分器中的第一积分器开始串联并且多个积分器中的第二积分器终止串联;
微分器,其包括:具有第一输入、第二输入、控制输入和输出的多路复用器;具有耦合到所述多路复用器的所述输出的输入和输出的第一寄存器;具有耦合到所述第一寄存器的所述输出的输入和输出的第二寄存器;具有耦合到所述多路复用器的所述输出的第一输入和耦合到所述第二寄存器的所述输出的第二输入的减法器;以及具有耦合到所述减法器的所述输出的输入和耦合到所述多路复用器的所述第一输入的输出的第三寄存器;以及
信号采样器,其具有耦合到所述多个积分器中的一个的第一端和耦合到所述微分器的第二端。
17.根据权利要求16所述的电路,其中所述信号采样器是下采样器,所述下采样器具有耦合到所述多个积分器中的第二个的输出的输入和耦合到所述多路复用器的所述第二输入的输出。
18.根据权利要求16所述的电路,其中信号采样器是上取样器,所述上取样器具有耦合到所述第三寄存器的输出的输入和耦合到所述多个积分器中的第一个的输入的输出。
19.根据权利要求18所述的电路,其中所述微分器包括耦合在所述第一寄存器和所述第二寄存器之间的一个或更多个附加寄存器,其中所述一个或更多个附加寄存器的数量等于所述多个积分器的数量少一个。
20.根据权利要求16所述的电路,其进一步包含耦合到所述CIC滤波器的Δ-∑调制器和耦合到所述CIC滤波器的滤波器。
CN201980016330.0A 2018-03-01 2019-03-01 微分电路 Pending CN111801896A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862636869P 2018-03-01 2018-03-01
US62/636,869 2018-03-01
US16/132,337 2018-09-14
US16/132,337 US10644677B2 (en) 2018-03-01 2018-09-14 Differentiator circuit
PCT/US2019/020378 WO2019169316A1 (en) 2018-03-01 2019-03-01 Differentiator circuit

Publications (1)

Publication Number Publication Date
CN111801896A true CN111801896A (zh) 2020-10-20

Family

ID=67767804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980016330.0A Pending CN111801896A (zh) 2018-03-01 2019-03-01 微分电路

Country Status (3)

Country Link
US (2) US10644677B2 (zh)
CN (1) CN111801896A (zh)
WO (1) WO2019169316A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015063A (zh) * 2021-02-24 2021-06-22 歌尔微电子股份有限公司 Cic滤波器、抽取滤波器及麦克风

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8019035B2 (en) * 2003-08-05 2011-09-13 Stmicroelectronics Nv Noise shaped interpolator and decimator apparatus and method
US6842129B1 (en) 2003-10-22 2005-01-11 Northrop Grumman Corporation Delta-sigma analog-to-digital converter
US7613760B1 (en) * 2004-03-18 2009-11-03 Altera Corporation Efficient implementation of multi-channel integrators and differentiators in a programmable device
CN102420614B (zh) 2011-11-22 2013-10-02 北京大学 Sigma-Delta调制器及包含其的Sigma-Delta模数转换器
US8421660B1 (en) 2011-11-25 2013-04-16 Hong Kong Applied Science & Technology Research Institute Company., Ltd. Configurable cascading sigma delta analog-to digital converter (ADC) for adjusting power and performance
GB2521820A (en) 2013-06-19 2015-07-08 Continental Automotive Systems Integral subtraction differentiator
CN103647513A (zh) 2013-12-24 2014-03-19 苏州国越信息科技有限公司 一种数字下变频器
US9954514B2 (en) * 2014-02-14 2018-04-24 Texas Instruments Incorporated Output range for interpolation architectures employing a cascaded integrator-comb (CIC) filter with a multiplier
JP6364077B2 (ja) * 2014-06-13 2018-07-25 アズビル株式会社 デジタルフィルタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015063A (zh) * 2021-02-24 2021-06-22 歌尔微电子股份有限公司 Cic滤波器、抽取滤波器及麦克风
CN113015063B (zh) * 2021-02-24 2022-09-16 歌尔微电子股份有限公司 Cic滤波器、抽取滤波器及麦克风

Also Published As

Publication number Publication date
US20190273482A1 (en) 2019-09-05
US20200266800A1 (en) 2020-08-20
WO2019169316A1 (en) 2019-09-06
US10644677B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
Keller et al. A comparative study on excess-loop-delay compensation techniques for continuous-time sigma–delta modulators
Su et al. A CMOS oversampling D/A converter with a current-mode semidigital reconstruction filter
Fujimori et al. A multibit delta-sigma audio DAC with 120-dB dynamic range
EP3104530B1 (en) Ultra low power dual quantizer architecture for oversampling delta-sigma modulator
US8325074B2 (en) Method and circuit for continuous-time delta-sigma DAC with reduced noise
EP2143208B1 (en) Improving performance of a/d converter and receiver
US8633843B2 (en) System and method for chopping oversampled data converters
US10924128B2 (en) VCO-based continuous-time pipelined ADC
EP2871778B1 (en) Integrator output swing reduction in a loop filter for a continuous-time sigma-delta analog-to-digital converter
US9647679B1 (en) Methods and apparatus for a delta sigma ADC with parallel-connected integrators
Tabatabaei et al. A two-path bandpass sigma-delta modulator with extended noise shaping
US10181860B1 (en) Reducing residue signals in analog-to-digital converters
US6697001B1 (en) Continuous-time sigma-delta modulator with discrete time common-mode feedback
US9793908B2 (en) Protection circuits for tunable resistor at continuous-time ADC input
US7474241B2 (en) Delta-sigma modulator provided with a charge sharing integrator
JPH11512274A (ja) 低電力デルタ・シグマ変換器
CN111801896A (zh) 微分电路
Márkus et al. An efficient/spl Delta//spl Sigma/ADC architecture for low oversampling ratios
Kumar et al. Multi-channel analog-to-digital conversion using a delta-sigma modulator without reset and a modulated-sinc-sum filter
Garcia-Sanchez et al. Multirate downsampling hybrid CT/DT cascade sigma-delta modulators
Ritoniemi et al. Fully differential CMOS sigma-delta modulator for high performance analog-to-digital conversion with 5 V operating voltage
TWI625044B (zh) 多階三角積分類比數位轉換器中之訊號轉移函數等化
Hao et al. A high-performance, low-power σ Δ ADC for digital audio applications
Sung et al. A third-order switched-current delta-sigma modulator with analog error cancellation logic and digital comb filter
KR102682610B1 (ko) 부분 직렬 구조를 이용한 데시메이션 필터 및 그를 포함하는 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201020