CN111801553A - 一种厚度测量装置及使用方法 - Google Patents

一种厚度测量装置及使用方法 Download PDF

Info

Publication number
CN111801553A
CN111801553A CN201980016413.XA CN201980016413A CN111801553A CN 111801553 A CN111801553 A CN 111801553A CN 201980016413 A CN201980016413 A CN 201980016413A CN 111801553 A CN111801553 A CN 111801553A
Authority
CN
China
Prior art keywords
oil
sensor
electrodes
thickness
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980016413.XA
Other languages
English (en)
Inventor
伊马德·H·埃尔哈吉
丹尼尔·H·阿斯马尔
迈赫迪·萨利赫
加桑·韦达特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American University of Beirut
Original Assignee
American University of Beirut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American University of Beirut filed Critical American University of Beirut
Publication of CN111801553A publication Critical patent/CN111801553A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/08Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/08Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means
    • G01B7/085Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means for measuring thickness of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2405Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by varying dielectric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本文提供了用于基于电容阵列的厚度测量装置的系统、方法和设备。

Description

一种厚度测量装置及使用方法
技术领域
本发明总体上涉及一种测量装置。
背景技术
在文献中已经提出了几种用于测量浮油厚度的感测技术。用于油检测和厚度估算的大多数现有技术要么太昂贵、不准确、对一区域内的厚度进行宽泛估算、受环境条件的影响,要么无法提供连续的监测能力。
用于对油进行估计/检测的技术可以分为两种类型:远程测量或基于接触。远程测量技术包括视觉方法,其中专家根据颜色提供浮层(slick)厚度的估计值。通过来自空运交通工具或卫星的高光谱成像、雷达和热成像增强了该技术。这些技术有助于提供相对总体的厚度评估,并且受光照和大气条件的影响很大,价格昂贵或无法连续进行。另一方面,基于接触的方法具有提供局部化和连续厚度测量的潜力。这些方法包括最传统的仪器方法:电导率、电容、光阵列、电磁和视觉。然而,该领域中的现有传感器仍然存在误差,对照明条件、油类型、环境条件、结垢效应以及波浪条件的敏感性。存在很少的商用传感器,并且大多数旨在简单地检测泄漏或在密闭容器中发挥作用,而不是测量开放的水中的油厚度,特别是在传感器不固定的情况下。本发明试图解决这些问题以及其他问题。
发明内容
本文提供了用于基于电容阵列的厚度测量装置的系统、方法和设备。该方法、系统和设备在下面的描述中部分地阐述,并且部分地从该描述中将是明显的,或者可以通过实践该方法、设备和系统而获知。该方法、设备和系统的优点将通过所附权利要求中特别指出的元件和组合来实现并获得。应当理解,前面的一般描述和下面的详细描述都仅仅是示例性和解释性的,并且不限制所要求保护的方法、设备和系统。
附图说明
在随附附图中,在本发明的若干优选实施方式中,相同的元件由相同的附图标记标识。
图1A是厚度测量装置的一个实施方式的俯视图(基本设计-没有引脚)。图1B是图1A中所示的装置的连接示意图。图1C示出了厚度测量装置的处理和通信单元。图1D是带有引脚的传感器设计的一个实施方式的侧视图。
图2A是检测水上的油层的厚度的条(strip)之间的示意图的侧视图。图2B是带有引脚的增强型传感器设计的侧视图。图2C示出了实现的带有引脚的增强型传感器设计原型。图2D示出了带有防水外壳的完整感测单元。图2E是示出了传感器电极的相对差的表I。图2F是示出了与校准的相对差的图。图2G是电极之间的比率的图。图2H是根据一个实施方式的算法的流程图。图2I是例示了在不同位置处的竖向电容阵列的示意图。
图3A是电容传感器设计的示意图的侧视图;图3B是电容传感器设计的轨道的示意图的仰视图;以及图3C是电容传感器设计的示意性电极的俯视图。
图4是MPR121分支板的一个实施方式的透视图。
图5是MPR121电压测量周期的实施方式的图。
图6是电容传感器控制电路的示意图。
图7A是电容控制器电路+GPS&无线的俯视图;图7B是电容传感器和电极的俯视图。图7C是电容传感器和轨道的仰视图;且图7D是电容传感器PCB的整体视图。
图8是空中传感器的实验1的图。
图9是轻油/水的实验2的图。
图10是空气/轻油的实验3的图。
图11是燃料油实验1-定位油/水界面的图。
图12是燃料油实验2-定位空气/油界面的图。
图13是C与△Ct的图。
图14是示出K均值算法结果的图。
图15是表XV:界面检测算法-数值实验结果。
图16是示出界面检测算法-比率的图。
图17A-图17C是示出传感器输出与时间灰度表示的曲线图,其中采样率:50毫秒(图17A);采样率100毫秒(图17B);以及采样率200毫秒(图17C)。
图18是多情况算法流程图的示意图。
图19是封装原型的一个实施方式的透视图。
图20是封装原型的一个实施方式的透视图。
图21A是等距分解视图,图21B是等距视图,图21C是前平面剖面。
图22A是主视图,图22B是仰视图,且图22C是右视图。
图23A是电容卡,图23B是控制板,图23C是弹簧加固的搭扣锁。
图24和图25示出了实验测试台(箱)的设计。
图26是具有振动机构的电容传感器的俯视图。
图27是示出在安装振动器之前和之后的E1电压降的图(电压(ADC)与时间(秒))。
图28是示出在安装振动器之前和之后的E2电压降的图(电压(ADC)与时间(秒))。
图29是示出在施加纳普泰(Nanoprotech)电绝缘材料之前和之后的E35和E36电压降的图(电压(ADC)与时间(秒))。
图30是示出在用超干(空气)涂覆之前和之后测量的电压(ADC)之间的比较的图。
图31是示出在用超干材料涂覆之前和之后在空气/油/水的情况下的平均百分比差之间的比较的图。
图32是在电池供电和USB供电的情况下由El测量的电压之间的比较。
图33是用于电容传感器调谐实验的实验装置的正视图。
图34是电流调谐-图(电压(ADC)与电流(μA))的图。
图35是时间调谐-图(电压(ADC)与时间(0.5-32μs)的图。
图36是组合调谐图(delta(Δ)与时间和电流)的图。
图37是用于浸渍测试的实验装置的图片(Ohmsett)。
图38是添加受控量的油-量筒的图片。
图39是浸渍测试(1-8)/柴油的图(静态和动态曲线)。
图40是油浮层-Hoops(胡佛海上石油管道系统)(风化)下的传感器本体的涂层的图片。
图41是示出浸渍测试(9-16)/Hoops(风化)(静态和动态曲线)的图。
图42是示出测试9(静态)-Hoops(风化)(3.175mm)的图。
图43是示出浸渍测试(17-25)/Hydrocal(静态和动态曲线)的图。
图44是示出浸渍测试(26-33)/Calsol(静态和动态曲线)的图。
图45是显示电容传感器-桥式安装实验装置的图片。
图46是示出通道中所含的油-风效应的图片。
图47是示出动态测试(34-35)-Hydrocal的曲线图。
图48是示出安装至DesmiTermite撇取器(skimmer)的传感器#1的图片。
图49是根据一个基于引脚的实施方式的单个感测单元的示意图。
图50是根据一个基于引脚的实施方式的分离的感测单元的示意图。
图51是示出根据一个基于引脚的实施方式的相邻的感测单元的示意图。
图52是示出所测量的电容(pF)与材料厚度(mm)-从基于三个引脚的设计(单个单元、三个单元以及具有11个引脚的完整行)获得的结果的比较的图。
图53是PCB原型的替代实施方式-基于共面的设计和基于引脚的设计的主视图。
图54:是实验评估-所测量的电容与模拟值的图。
具体实施方式
通过以下结合随附附图对示例性实施方式的详细描述,本发明的前述以及其他特征和优点将变得显而易见。详细描述和附图仅是对本发明的例示而不是限制,本发明的范围由所附权利要求及其等同物限定。
现在将参考附图描述本发明的实施方式,其中,相同的附图标记始终表示相同的元件。本文中所呈现的描述中使用的术语并不旨在以任何限制或约束性的方式来解释,这仅因为其与本发明的某些特定实施方式的详细描述结合使用。此外,本发明的实施方式可以包括若干新颖的特征,其中没有任何一个单独特征单独负责其期望的属性或者对于实施本文所述的发明是必不可少的。本文应用词语近端和远端来表示本文所述器械的组件的特定端。当使用器械时,近端部是指器械靠近器械操作者的端部。远端部是指组件远离操作者的端部。
除非另有说明,或者与上下文明显矛盾,否则在描述本发明的上下文中,术语“一”、“一个/一种”和“该”以及类似引用的使用应解释为涵盖单数和复数。将进一步理解的是,当在本文中使用时,术语“包括”、“包括的”、“包含”和/或“包含的”指存在所述特征、整数、步骤、操作、元件和/或组件,但不排除存在或增加一个或更多个其他特征、整数、步骤、操作、元件、组件和/或其组合。
除非在本文中另有说明,否则本文中数值范围的引用仅旨在用作分别指代落入该范围内的每个独立值的速记方法,并且每个独立值都被并入说明书中,如同在本文中单独叙述。当附有数值时,词语“大约”应解释为表示与所述数值的最大偏差为10%。除非另外声明,否则本文提供的任何和所有示例或示例性语言(“例如”或“诸如”)的使用仅旨在更好地阐明本发明,并且不对本发明的范围构成限制。说明书中的任何语言都不应解释为表示任何未要求保护的元素对于实施本发明是必不可少的。
对“一个实施方式”、“一种实施方式”、“示例实施方式”、“各种实施方式”等的引用可以指示如此描述的本发明的(一个或更多个)实施方式可以包括特定的特征、结构、或特性,但并非每个实施方式都必须包括该特定的特征、结构或特性。此外,重复使用短语“在一个实施方式中”或“在一种示例性实施方式中”不一定指相同的实施方式,然而它们也可以指相同的实施方式。
如本文所使用的,术语“方法”指用于完成给定任务的方式、手段、技术和过程,包括但不限于化学、生物、生化和传感领域的从业人员已知的或容易根据已知的方式、手段、技术和过程所开发的那些方式、手段、技术和过程。
厚度测量装置包括传感器,该传感器能够测量在至少两种介质之间浮动的流体(诸如,在水上浮动的油,其中上面是空气下面是水)的厚度。传感器是电容阵列,具有并排或上下叠置的至少两个传导板,如图1A和图1D所示。根据一个实施方式,传导板可以不是平行板。介电材料放置在板之间的空置的空间中,其中流体面向每个板,并且每种材料类型具有不同的介电常数。例如,在室温下,空气的介电常数为1左右,润滑油的介电常数约为2.1至2.4,而水的介电常数为80左右。通过测量阵列的条之间的电容变化,浮动液体厚度测量装置可以识别空气/油界面以及油/水界面。一旦识别出了界面并给定了传感器尺寸,浮动液体厚度测量装置就会计算出浮动液体的厚度。
介电材料实质上是绝缘体,这意味着在施加电压时不会有电流流过该材料。然而,某些变化确实会发生在原子标度下。在介电物体上施加电压时,它会极化。因为原子是包括带正电的原子核和带负电的电子,所以极化是一种将电子朝向正电压稍微偏移的作用。它们的行进不足以产生流过材料的电流——偏移是微小的,但具有非常重要的作用,尤其是在处理电容器时。一旦电压源从材料上移开,它要么返回到其原始的非极化状态,要么在材料中的分子键较弱时保持极化。术语电介质和绝缘体之间的区别不是很好定义。所有介电材料都是绝缘体,但良好的电介质是易于极化的电介质。
当向物体施加一定电压时发生的极化的量影响存储在电场中的电能的量。这由材料的介电常数描述。介电常数不是介电材料的仅有属性。在给定应用中,其他属性(诸如介电强度和介电损耗)在选择电容器的材料时同样重要。
材料的介电常数,也称为材料的电容率,表示材料使静电通量线集中的能力。用更实际的术语来说,它代表了在存在电场的情况下材料存储电能的能力。当放置在电场中时,所有材料(包括真空)都会存储能量。真空的电容率定义为物理常数ε0,其大约为ε0=8.854x 10-12法拉每米。这个常数出现在许多电磁公式中。
由于大多数电容器不是由真空制成的,因此定义每种材料的电容率是有意义的。材料的电容率定义为ε=εrε0,其中ε是绝对电容率,而εr是相对电容率。εr是始终大于1的数,这意味着当经受电场时,所有材料比自由空间存储更多的能量。该属性在电容器应用中非常有用。应注意的是,相对电容率取决于许多因素,诸如温度、压力甚至频率,这就是为什么在某些应用中偏爱介电常数更稳定的材料,但是所公开的传感器对此属性是不敏感的。
水的介电常数(20℃下为80)比油的介电常数(约2.1-2.4)高得多,因此,测量介电常数是用于区分它们以及每一者的厚度的一种方便的方法。水和碳氢化合物的电导率之间存在很大差异。该差异通常用作检测这两种流体之间的界面及其相对厚度的基础。
图1B所示的传感器板包括4层PCB,其中传感器焊盘(电极)安装在PCB的顶层和底层上,并且连接轨道安装在PCB的两个内层中。传感器焊盘(电极)通过嵌入PCB的内层中的插入式通孔连接至连接轨道。为了驱动电源并确保与处理和通信单元中的微控制器的数据连接(图1C),使用了4引脚连接器(线)。为了覆盖四十八个感测电极,使用了四个MPR121分支板,每个分支板都连接至十二个电极。在图1B中示出了描述电路的连接和寻址的电气设计示意图。该示意图示出了四个MPR121分支板与标记为1至48的感测焊盘(电极)之间的连接。通过改变MPR121分支板中的每个MPR121分支板中包含的ADD引脚的连接,可以对MPR121板进行寻址。四个MPR121分支板中的地址引脚(ADD)连接至GND,3.3V,SDA,SCL。因此,安装的四个MPR121控制器具有以下独特的I2C地址,分别为:0x5A、0x5B、0x5C和0x5D。
图1C中所示的处理和通信单元的组件被描述如下:首先,除了用于信号平滑的两个电容器(0.47uF和22uF)之外,还通过低电压降线性稳压器(LM2940)将范围在6-26VDC之间的输入功率转换为5VDC。使用包含ATmega328微控制器的“Arduino Nano”开发板进行处理。选择该模块的原因在于它的低成本、低功耗和简单的可编程性。无线通信由带有IPEX天线的“TB394”RF模块完成。无线RF模块通过其串行连接引脚(RX,TX)连接至Arduino Nano板,并通过充当开关的晶体管(2N3904)用稳压器输出(5V)供电。GPS模块(SKM53)连接至数字I/O Arduino引脚(D3,D2),软件串行库用于复制这些引脚上的串行连接功能。此外,GPS模块通过充当开关的晶体管(2N3904)用稳压器输出(5V)供电。电阻器(1KΩ)用于限制Arduino数字引脚与晶体管基极连接器之间的电流。添加了四线连接器以将电源与数据引脚连接至图1A所示的感测单元。包括6.35mm母形电源插孔,以用于连接至电源单元(9VDC电池)。
界面的检测
根据一个实施方式,传感器不限于仅检测液体层之间的界面的水平;取而代之的是,传感器可以检测具有不同介电常数的不同介质之间的界面,而不论介质的状态(气体/液体)如何。对于溢油厚度测量应用,传感器检测空气(气体)与油(液体)之间的界面,然后检测油(液体)与水(液体)之间的界面。因为电极暴露于液体混合物,由于水的高电导率,位于水区域中的电极将被短路。与文献中的许多其他电容传感器相反,在所公开的传感器的情况下,电极的短路不是问题,因为不需要电容的绝对值来计算厚度。传感器检测到由于水接触而导致的短路电极,这是因为它们的电压值极低,并且与在空气中获取的基线校准值相差较大。因此,这些电极被分类为水电极,并从感测阵列移除。在从测量阵列移除被分类为水中的指数电极后,该算法通过以下方式进行:识别浸入空气和油中的其余电极并基于电极之间的相对差来检测这两种介质之间的界面电极。在这种情况下,由于油是非传导液体,因此电极不会被短路,并且获得每个电极的实际电容。由于该算法依靠电极之间的相对差来找到界面,因此电容值的实际正确性不是必需的。
通过若干实验证实了该技术在检测界面以及计算油厚中的有效性。在一个实验中,在温度为23℃、相对湿度为60%下,将传感器放置在包含润滑剂轻油(10W单级)和水的液体混合物中。实际的油厚度为16mm左右,并且不同数量的电极被空气、油和水包围。为了计算油厚度,通过使用相对比率来检测空气/油界面以及水/油界面。如图2E中的表I所示,计算出每个电极的相对差(RD)。通过将下一个电极的值除以当前电极的值V(k+1)/V(k)来获得比率,其中k是当前电极指数。图2F和图2G中所示的图表示每个电极与校准值和比率值的相对差。
使用一种算法来检测两个界面。在计算出比率之后,该算法通过找到具有最大比率的电极的指数来进行。在这种情况下,在E4和E11处检测到两个界面。算出界面之间的电极数量,并将其用于估算油厚度(TH)为TH=NxW+(N-l)x(G),其中N是被油覆盖的电极数量,计算为N=11-4=7,且W是电极宽度=2mm,且G=0.5mm是电极之间的间隙宽度。油厚度被计算为(14)+(3)=17mm。
在一个实施方式中,浮动液体厚度测量装置包括电容传感器100,该电容传感器包括至少48个传导条110,每个传导条的高度为2mm,并且在竖向地V1彼此分开1mm,如图1A所示。高度和竖向间距的具体范围应对于预期的应用是合理的,在大约1mm至大约10mm之间;可替代地,在大约0.1mm至大约3mm之间。传导条被分配到具有四十八个条的至少一列中。测量电路在单独的印刷电路板(PCB)上实现,该印刷电路板保持微控制器和通信模块(GPS,无线)200,该通信模块包括无线通信模块、用于连接至感测单元的通信和电源引脚、以及输入稳压器,如图1C所示。
感测技术依赖于对条之间的电容的相对变化进行测量,以便动态地、实时地识别浮动液体厚度。
几何电容感测(阵列)的概念
基于上述电容感测原理,所提出的电容传感器包括一组传导板(电极),所述一组传导板形成实施在矩形PCB平面上的电容器阵列。为了检测所处材料的类型(空气/油/水),独立测量由周围材料的介电常数的变化引起的每个电极处的电容的变化。通过电极形成的电场在感测平面上方延伸,由此允许检测传感器周围液体的介电常数的变化。除了电极宽度和电极之间的间隙外,电场距离还取决于充电参数(电流和时间)。图2A示出了电容传感器设计的剖面。由于油比水轻,因此油上升到水表面的顶部并浮动,从而形成薄的油膜。由于海水波浪和保持传感器的平台的运动,被检查的液体的高度可能会通过传感器板上下变化,从而改变电极的周围介质(空气/油/水),由此改变在每个电极处测量的电容。竖向电容感测阵列的主要优点是,无需在现场针对不同类型的油/水进行校准,因为传感器是基于电极之间的电容差而不是基于绝对电容值来起作用的。
通过使用垂直电容传感器阵列设计,所提出的传感器可以区分水/油界面以及油/空气界面。可以确定油的厚度,而不管该厚度是沿传感器的哪个位置出现的。换句话说,与在文献中发现的使用浮子将传感器保持在液体表面顶部的固定位置的若干种实现的电容液位传感器相比,所提出的传感器不需要关于其相对于液体表面位置的任何假设。如果传感器可以确定不同介质之间的两个界面,则仍可以计算厚度(在传感器的分辨率之内)。除了容纳电子设备和电池的盒子的防水以外,此传感器的应用不需要任何特殊的封装考虑。
在一个实施方式中,厚度测量装置在开阔海洋中的撇取操作期间测量油的厚度。通过使用这种厚度测量装置,清洁人员可以实时评估他们正在清洁的区域的油厚度,并因此决定他们应该继续或停止该区域中的清洁操作。
在另一实施方式中,厚度测量装置测量介于不同密度中的两个其他不同密度之间的任何介质,只要介质具有不同的电介质即可。该厚度测量装置甚至可以扩展为测量任何分层介质,例如土壤中潮湿层的厚度。例如,在土壤湿度测量应用中,土壤的介电常数(矿物土壤:4,有机物:4,空气:1)受到具有更高介电常数的含水量(水:80)的影响。
为了解决现有技术的局限性,可以在撇取操作期间使用厚度测量装置传感器,其中,传感器被拖入水中,同时测量顶部的油的厚度。该厚度测量装置是新颖的,因为它通过依靠电容条的阵列来提供油厚度估算,并且依靠“相对”读数而不是绝对读数,从而使得传感器读数对制造缺陷是不敏感的。此外,厚度测量装置传感器在具有波浪、不同类型的油、盐/淡水、不同的环境条件(光照、温度、湿度等)的动态环境中工作。该厚度测量装置设计使具有薄刀状设计的结垢效应最小化。对于具有不同介电常数的不同材料,该参数根据诸如激励频率和温度之类的条件而变化。在一个实施方式中,水的介电常数在88至55左右之间的范围内,而温度在0至100℃之间变化。假定在室温(20℃)下水的介电常数为80左右。对于其他常见材料,真空度为1,气体在一个大气压下最多为1.00左右,在20℃下己烷为1.8865,在20℃下苯为2.285,且在室温下润滑油在2.1至2.8之间,其决于油的粘度。使用过的润滑油可能比未使用的润滑油具有更高的介电常数。
本文提出了用于在动态波浪条件下测量油的算法。算法设计和大量测试数据。已经准备并测试了若干原型板和封装材料。
带有引脚的增强型传感器设计
为了减少对传感器的结垢效应并增加传感器灵敏度,在一个实施方式中,多个水平引脚120可操作地耦接到感测阵列的条,如图1D所示。另外,感测电极110被添加到传感器的两侧,并且连接轨道130被嵌入4层PCB设计中。添加的引脚120能够穿透覆盖传感器条的厚油层。当传感器浸入被检查的含有油层和水层的液体中时,由于水的传导性,位于传感器的水部分的引脚会被短路。位于油部分中的上引脚完全浸入油中,因此所测量的电容与油的介电常数有关,油的介电常数不同于水和空气。基于此增强型设计,传感器使用的实际感测方法可以表示为电容感测与传导感测技术之间的混合,因为短路是在传感器的水分区中完成的,并且电容感测在传感器的空气部分和油部分中(由于其绝缘属性)均是可操作的。图1D例示了增强型传感器设计,其示出了以下部分:(a):感测电极110(b):连接轨道130(c):防结垢引脚120(d):PCB。实现的带有引脚的传感器原型如图2C所示。包括防水外壳的完整传感器单元如图2C-图2D所示。
传感器实现
所实现的电容传感器原型包括感测单元(电极阵列)和处理单元(微控制器)。图1A所示的感测单元包含:安装在双面四层PCB上的一组传导电极和四个电容触摸控制器模块“MPR121”。每个电极的高度为2mm,且两个相邻电极之间的竖向间隙为1mm。电极在PCB上从上到下顺序地放置,以覆盖所有目标感测范围(10cm)。电容触摸控制器通过在特定持续时间期间用DC电流对每个感测电极进行充电和放电来工作。在每个电极的激励和测量期间,所有其他电极都接地。在每个充电和放电周期结束时,将所测量的电压转换为数字值,并对结果应用若干层数字滤波,以提高在不同环境条件下的抗噪性。位于图1C所示的处理单元处的微控制器(Arduino Nano)接收数字电压值,应用厚度估算算法以计算并报告实际油厚度。最后,将厚度结果无线发送到基站。
流体力学设计
为了在将传感器拖入水中时保持精确的测量,将传感器设计为非常扁平的(类似刀的设计),以使其具有最小的抵抗力和阻力。在一个实施方式中,传感器盒本体的宽度在大约1.0mm至2.0mm之间;可替代地,在大约1.2mm至1.8mm之间;可替代地在大约1.4mm至1.6mm之间。这样,无论是直行操作还是转弯操作,它都可以“割”穿水和油。由于感测阵列安装在带有尖锐边缘的纤细的PCB板上,因此在拖动时水容易从传感器本体掉下来,从而减少了油在感测条上的积聚。而且,添加到感测电极的水平引脚在提高感测阵列的清洁率中起主要作用。
本文介绍了用于在动态波浪条件下测量油的算法。
尽管本文主要是针对海上溢油进行描述的,但应理解,本发明的系统和方法可以适于与在咸水或淡水环境中、在码头、加油区、石油钻井平台、港口和加工厂中或周围收集油,以及针对沿海环境防止油和其他石油化工产品的自然发生和/或人为释放相结合地使用。另外,虽然主要是关于从水中收集油来描述的,但是应理解,本发明的系统和方法可以适于将任何较低密度的材料与较高密度的材料分离,例如在特殊的化学处理、肉类加工厂中的油脂提炼、来自植物的精油收集、采矿中的矿石颗粒分离以及各种其他应用和工业过程中。其中第一材料与第二材料之间存在密度差。也需要电介质差来进行测量。因此密度和电介质存在差异以允许测量。
测量算法
测量算法旨在找到位于具有不同介电常数的材料之间的界面处的电极的指数。根据一个实施方式,并且基于传感器几何属性,检测位于水/油界面以及空气/油界面处的电极,并且将其用于计算静态条件和动态条件下的油厚度。该算法对电压测量的直接数值具有低的依赖性,并且可以在具有有限计算资源量的装置上工作。该系统通过使用电容触摸控制器和多路复用器以顺序方式测量所有电极的电压值开始。微控制器读取从每个电极获取的数字电压值,并应用若干层数字滤波以增强测量的稳定性。
为了归一化所获取的电压值,针对每个电极计算与基线校准值的相对百分比变化。当传感器完全干燥并在露天放置特定持续时间后,获取校准值。该算法使用计算出的相对百分比变化来确定每个电极的状态(空气/油/水)。由于每个比率都分配给它的电极指数,并且知道传感器的几何尺寸(电极之间的间隔),因此计算出油的实际厚度。
为了处理传感器上升或下降的动态情况(由于容器的升起或降低或由于波浪),使用了两步算法。第一步骤是检测传感器运动的方向:通过使用每个测量周期处的所有电压测量值的平均值,可以确定传感器运动的方向。为了减少结垢效应,当传感器在特定时间间隔期间达到其最高运动点时,应用“最高点”测量算法。处理结垢效应的另一种方法称为“校正的最低点”算法,是检测传感器运动的最低点并应用校正方法以从检测到的油电极中去除结垢电极的数量。通过使用时间插值,校正机制通过在计算实际厚度之前找到结垢电极的数量并将其从油间隔中减去来工作。基本上,针对结垢是主要问题的高粘度油类型,校正机制(校正的最低点算法,Corrected Lowest Point Algorithm)是优选的。当处理轻油类型时或当传感器不运动时(静态情况),结垢效应最小,因此不需要校正步骤,并且使用“最高点”算法。总体算法的工作流程在图2H所示的流程图中例示。
对于轻油类型(例如柴油),应用“最高点算法”;该方法包括使用当传感器通过所存储的阵列达到其最高点(波峰)时获取的一组值来测量厚度。这样做是因为从油运动到空气的被轻油结垢的条将相对快地清洁,并且在底侧被结垢的条最小(如果有的话),因为在最高点处大多数被结垢的条都回到了油中。由于最高点将是阵列中的正则点,因此在静态情况下也使用这种算法。
第二种方法更适用于结垢的负面影响更有效的重油类型(例如Hydrocal,Calsol)。这种方法称为“校正的最低点算法”。它通过如下方式工作:对传感器到达所存储的阵列中的最低点(最小)时所获取的测量进行检测,并对它们应用校正方法以去除结垢电极的数量。通过使用时间插值,校正机制通过在计算实际厚度之前找到结垢电极的数量并将其从检测到的油间隔中减去来工作。采用这种方法的原因是,由于当传感器位于顶部时油很厚,空气中被结垢的条将需要很长的时间才能清理干净。因此,替代地考虑将传感器浸在最深的位置,因为最结垢的条将位于水中的底部处。在这种情况下,该算法将由于结垢而高估油厚度,并且需要校正步骤,在该步骤中将检测被结垢的条并将其从厚度中去除。
算法详细描述:校准
在传感器完全干燥并且在露天放置预设的持续时间时获取校准电压值。针对每个电极,所有测量的电压的平均值存储在一维阵列中。在操作时,使用以下公式(1)计算每个为指数“i”的电极的相对电压差(R):
Figure BDA0002659187000000141
有效性检查
在每个测量周期处,对获取的值应用有效性检查,以检查传感器是否处于有效感测位置。当传感器阵列中的最后一个电极浸入水中时,感测位置设置为有效。计算最后一个电极的相对变化,并将其与阈值(50%)进行比较,以确定电极是否位于水中。如果计算出的相对变化大于50%,则认为该测量有效。否则,该测量被视为无效,并且不会存储在测量阵列中。此外,文本消息(无效)被发送到基站以通知用户传感器状态。这将允许检测传感器不在水中的情况。
界面检测(检测-界面)
为了检测两种不同介质之间的界面,该算法使用一种称为“检测-界面”的投票方法,其描述如下:
通过创建大小为N的一维阵列(票数)来进行检测-界面(相对差向量),其中票数=零(1,N)(初始为零,一行,N列)。然后,从指数=2开始计算每个电极的票数,而(指数<N),票数(指数)=(均值(相对差(指数+1:N))-均值(相对差(1:指数)))-(相对差(指数)/2)。然后,得到具有最大票数值的界面的指数,其中Max_Value=MAX(票数),而Interface=getIndex(Max_Values)(得到具有最大投票值的电极的指数)。并返回界面的指数,其中“N”为电极的总数,“指数”为电极指数。
为了测量油厚度,界面检测方法被迭代地应用两次。找到水界面后,将其下面的所有电极(指数更大)都去除,并且将该方法应用于其余的电极以找到油/空气界面。
最高点算法由将计数器初始化为零开始,其中c=0,而(c<50)。然后,进行测量以获得相对变化,它检查有效性,且如果(测量有效),则将其添加到测量阵列。测量阵列(c)=测量;其中增量计数器为c=c+1。如果且当测量阵列为Full,其中临时向量=零(48)时,该算法结束。然后,对于(k=l,k<48,k++),它从各列(电极)获得最小相对差。临时向量(k)=MIN(测量阵列(K));然后结束计算厚度。它基于上述“检测-界面”方法(检测油/水界面,从临时向量中去除油/水界面及其下面的所有电极(指数更大),并检测空气/油界面,并使用位于两个界面之间的电极的数量来计算油厚度)得到厚度(临时向量)。
校正的最低点算法由将计数器初始化为零开始,c=0,而(c<50)。然后,进行测量并获得每个电极的相对差。然后,它检查有效性,且如果测量有效,则将其添加到测量阵列。测量阵列(c)=测量;其中增量计数器c=c+1。如果且当测量阵列为Full,其中临时最大向量=零(48),临时最小向量=零(48),且临时振幅向量=零(48)时,它结束。然后其得到最大值、最小值和振幅。对于(k=l,k<48,k++),临时最大向量(k)=MAX(测量阵列(k));临时最小向量(k)=MIN(测量阵列(k));并且临时振幅向量=临时最大向量(k)-临时最小向量(k)。为了检测油电极,检测水界面,其中水界面=检测水界面(临时最大向量),然后通过相对变化=((均值(临时最大向量)-均值(临时最小向量))/均值(临时最大向量))(100)来计算传感器运动的相对变化。然后,如果相对变化>3%,则认为传感器移动,并且通过减小水界面指数而同时(临时振幅向量(水界面)>均值(临时振幅向量(0:水界面的指数;水界面指数之前的振幅的平均值))而将校正步骤应用于水界面。如果相对变化<3%,则检测到传感器是静态的,且水界面不被校正。然后,校正的水界面以及所有下面的电极(更大的指数)从临时最大向量中被去除,油界面=检测油界面(临时最大向量);且油间隔=水界面-油界面。然后通过得到厚度(油间隔)来计算厚度,其中厚度=(油间隔)(2)+(油间隔-1)(1)。然后其返回厚度。
动态液体条件下的运动跟踪
如前所述,该算法的目的是检测最佳的一组测量值以应用分析。运动检测过程识别传感器的动态状态(固定/运动)和运动方向(向上/向下)。当传感器向下运动时,大多数相对差会增加,因为更多的电极将浸入被检查的液体中。从油移动到水的电极以及从空气移动到油的电极将与在空气中获得的基线校准值具有更大的相对差。相反,当传感器向上运动时,相对差将减小。计算每个测量周期处的所有电极的平均相对差,并将其用作传感器运动的指标。对于静态情况,由于没有运动发生,因此平均值应在随机误差间隔内相对于时间而变化。在动态情况下,平均值将基于传感器运动或波浪的方向而增加或减少。如果传感器被固定就位,则平均值用于跟踪液体撞击传感器的运动。为了证明这种能力,将每个测量周期处的所有电极的相对差存储在2D阵列中,并转换为灰度图像,如图17C、图17B和图17A所示。其中y轴对应于电极指数,且x轴对应于时间。相对于传感器在波浪中的竖向移动,观察到图像中颜色强度的明显变化。较亮的强度反映了由于与水接触而导致的相对差的增加。根据该图,可以确定波浪的振幅和频率,因为采样时间和几何传感器属性是已知的。
为了检测在传感器移动的最高点处进行的一组测量,选择每个电极在一定时间间隔期间呈现的最小相对差。相反,为了检测在最低点处进行的测量,选择最大相对差。
传感器的离散设计概念依赖于分类电极的几何属性以计算油厚度,从而使其在这种情况下与传统的连续电容测量技术相比更加可靠。
相比于连续电容感测技术,离散测量概念的另一优点是,由于在液位计算中未使用实际电容值,因此不需要针对不同油/水类型的校准。这一事实使传感器能够针对不同的液体类型(重油和轻油/淡水和咸水)起作用而无需重新校准。这一点的重要性在于,传感器可以在如下情况下工作:在工作时间期间若干种类型的液体可能混合在一起(诸如在溢油应用中)。相反,在这种应用中(未知油类型的混合物),连续电容感测技术和需要针对不同液体类型进行校准的其他感测技术可能并不被认为是可靠的。
形状差异也很重要,因为传感器被设计成就像刀一样,即使在被拖动或摆动时也可以将水切开。连续电容感测技术中的传感器的测量(其使用浮子将传感器的固定位置保持在液体表面的顶部)会导致油积聚,并且如果竖向地移位将无法正常工作。
然而,所公开的传感器安装设计不需要浮子将传感器的位置保持在特定位置(图2I)。为了处理动态条件,传感器使用相对差来检测空气/液体界面,并从测量阵列中移除空气分类的电极。基于离散测量设计,尽管存在不同的波浪和拖动条件,也可动态地检测并去除空气分区。在此重要的是要注意,传感器可以从其中央固定到任何安装机构,其中传感器电极从空气部分开始到水下部分可以自由地竖向移动通过被检查的液体。
在所公开的传感器中使用的电容测量技术是与现代电容触摸控制器一起使用的。系统中使用的多输入、低成本且低功率电容触摸控制器顺序地测量每个电极的电容,并在将相应的电压发送至微控制器之前将其转换为数字值。电容控制器通过在特定持续时间期间用DC电流对每个感测电极进行充电和放电来工作。在每个充电和放电周期结束时,将测量的电压转换为数字值,并将若干层数字滤波应用于结果,从而提高针对不同环境条件的抗噪性。微控制器接收数字电压值,并将它们提供给相对厚度估计算法,以计算实际油厚度。
基于传感器的尺寸来计算浮动流体的厚度是基于离散测量原理的,其中浮动流体的厚度是在检测浸入液体中的电极的数量之后并使用其几何属性而不是实际电容测量值来计算的。
由于该测量算法相对地依赖于所有电极的电流值之间的差而不是校准值,因此温度和相对湿度以及光照的变化对该测量算法没有任何影响。
该传感器旨在测量开放水中不同液体层的厚度(除了密闭容器之外),而无需特殊的安装平台或浮动平台。如前所述,该传感器可以检测并处理空气介质厚度,这使其免于特殊的安装要求和浮动要求。
所公开的传感器使用离散测量原理,并且不需要参考传感器,因为在厚度估计算法中未使用实际电容值。所公开的传感器在测量之前不需要对液体的确切电容率有任何了解。在此必须注意,在溢油期间,不同类型的油可能会混合在一起,从而限制了使用预定义的介电常数值来计算实际油厚。因此,所公开的传感器的主要优点是不需要在操作之前针对不同液体进行预校准。所公开的传感器可以基于仅在空气中获取的基本值来针对不同的油类型(重/轻)和水类型(淡/咸)起作用。
所公开的传感器不使用任何绝缘材料。所有电极均暴露于被检查的液体。顺序地测量电极并使用离散测量技术得到厚度,而不使用实际电容值(连续测量)。
所公开的传感器通过检测传感器的空气部分来适应波浪运动,从而允许其在动态条件和波浪条件下使用。
所公开的传感器被设计成除了容器之外还可以在开放的水环境中工作,并且具有相对高的分辨率(几毫米)。所公开的传感器设计可以通过依靠离散测量技术并连续检测传感器的空气部分来处理动态条件和波浪。
所公开的传感器不使用实际电容值来转换为厚度。替代地,它使用离散测量技术,以允许其通过使用传感器的几何属性检测界面(空气/油——油/水)来在若干种介质之间进行区分,而无需知道被检查的液体的实际介电常数。在此重要的是要注意,由于结垢现象,尤其是在处理高粘度液体(例如重质原油)时,使用实际测量的电容值来获取厚度将在动态条件下受到很大影响。
所公开的传感器可以通过检测具有不同介电常数的不同类型(气体/液体)的若干种介质之间的多个界面来工作。在油厚度应用中,所公开的传感器通过检测两个界面来工作。第一个界面在空气与油之间(空气/油界面),第二个界面在油与水之间(油/水界面)。此外,可以扩展界面的数量以满足所需的应用。
所公开的传感器独立地测量每个电极的电容,并且使用相对算法以基于百分比变化值而不依赖任何阈值来检测若干种介质之间的界面。
电容传感器:传感器设计
电容传感器包括一组传导板(电极),所述一组传导板形成实施在平面PCB上的电容器阵列。对于由介电常数的变化引起的每个电极处的电容变化进行独立测量,以检测周围材料的类型(空气/油/水)。由电极形成的电场在感测平面上方延伸,因此允许检测传感器周围液体的介电常数的变化。电容传感器包括感测单元和处理单元。
电容感测单元
该感测单元包含三十七个传导电极,这些传导电极在双面PCB的顶层上从上到下等距分布(图3A-3C)。在一个实施方式中,该电极具有以下尺寸:宽度:约2mm,长度:约50mm,竖向分隔间隙:约0.5mm。PCB的底层包含将电极连接至连接插座的轨道。选择37引脚D类超小型PCB连接器[7、8]将感测单元连接至处理单元中的电容控制器模块(MPR121)。选择D类超小型连接器是因为其大小紧凑,并且它们提供的引脚的数量很多。感测单元涂有由“Nanoprotech”[9]提供的透明电绝缘材料,该材料包括以下成分:高纯度矿物油、防腐添加剂、抗氧化剂链烷烃和环烷烃。该材料的推荐工作温度在大约-20℃至大约+35℃之间,并且在大约-80℃至大约+140℃的温度范围内保持其属性。
电容处理单元
电容处理单元包含用于测量电容值的电容传感器控制器模块MPR121(图4)和用于控制测量过程并计算油厚度的微控制器板(Arduino Nano)。MPR121是触摸和接近度感测应用中使用的电容传感器控制器。它支持十二个感测电极,并且可以连接至配备有I2C通信通道的微控制器。该模块通常在大约-40℃至大约+85℃的温度范围内使用1.6V与3.3V之间的输入电压工作。它在约16ms的采样率下具有约29μA左右的低电流消耗。地址引脚(ADD)用于设置芯片的I2C地址。默认情况下,ADD引脚连接至GND,从而将I2C地址设置为0x5A。可以通过如下方式连接ADD引脚来将该芯片配置为三个其他I2C地址:ADD至3.3V=0x5B/ADD至SDA=0x5 C/ADD至SCL=0x5D[10]。
在为每个模块分配唯一的I2C地址之后,在控制器板上使用三个MPR121模块。每个模块通过使用两条电源线和两条I2C通信线(3.3V-3.3V/SCL-A5/SDA-A4/GNG-GND)连接至Arduino控制器板。感测引脚从上到下顺序地连接至感测卡中的电极。代码迭代地扫描每个电极,并读取由内部10位模数转换器(ADC)所提供的经滤波的电压值。
MPR121可以以大约0.01pF的分辨率来测量约10pF至约2000pF左右的电容范围。芯片测量的电压与电容成反比,电容受到每个电极中存储的电荷量的影响。在施加固定持续时间的恒定电流量之后,测量每个电极的电压(图5)。电极的电容由于被检查的液体的介电常数的变化而变化,从而改变所测量的电压。电流量(I)和充电时间(T)被配置为设定施加到电极的电荷量。在对每个电极顺序地进行充电之后,测量峰值电压。电容(C)被计算为C=Q/V=IxT/V,其中Q为以库仑为单位的电荷量,V为以伏特为单位的电压量。
芯片包含一组不同的寄存器,该组寄存器用于配置操作参数并从装置获得输出数据。所公开的系统中使用的主要寄存器列出如下:
电极滤波数据寄存器(0x04-0xlD):
该寄存器保持与范围为0至1024的第二滤波器的输出相对应的滤波输出数据。该数据是通过测量每个通道的电压值并使用内部10位ADC将其从模拟转换为数字而获得的。每个ESI x SFI都更新该寄存器,并且该寄存器是只读寄存器。
滤波器/全局CDC配置寄存器(0x5C)
该寄存器的前两位用于设置第一滤波器的迭代次数(第一滤波器迭代-FFI),并可以设置为以下值:00(6个样本-默认),01(10个样本),10(18个样本)和11(34个样本)。其余六位用于配置施加到电极的充电电流量。该电流配置部分称为充电放电电流(CDC),并且可以设置为0到63(000000(禁用),1(1μA),010000(16μA)(默认)和111111(63μA))之间的值的范围。
滤波器/全局CDT配置寄存器(0x5D)
该寄存器的前三位用于配置充电时间(充电-放电时间-CDT),两位用于设置针对第二滤波器所进行的采样数(第二滤波器迭代-SFI),并且三位用于设置采样时间(电极采样间隔-ESI)。可以通过将位设置为111来将CDT设置为大约32μs,并且可以通过使用000来禁用CDT。可以使用以下等式设置其他值:CDT=2^(n-2),其中n是三位二进制值的十进制编码。CDT位的默认值为001,其对应于0.5μs。可以将SFI设置为以下值:00(4个样本-默认),01(6个样本),10(10个样本)和11(18个样本)。可以使用以下等式将ESI设置为与lms至128ms之间的时段值相对应的在000至111之间的值:时段=2^n ms,其中n是所用的3位二进制值的十进制编码。0x5C寄存器和0x5D寄存器是用于配置MPR121装置的两个主要寄存器。使用这两个寄存器来设置所有全局滤波参数和充电参数。如果禁用了自动配置选项和单独的充电/放电特征,则所有电极都将使用所应用的设置。
选择Arduino Nano板,是因为它具有低成本、简单的可编程性和I2C通信的能力。图6示出了Arduino与MPR121模块之间的连接示意图。来自每个MPR121模块的十二个输入通道连接至感测单元的电极。具有在约1.71V至约3.6V之间的工作电压范围的MPR121的主电源(VDD)连接至Arduino板调节器中的约3.3V输出引脚,并通过0.1μF电容器被去耦(decouple)至GND。GPS模块(SKM 53)和无线收发器(2.4GHz)通过硬件和软件串行通信连接至Arduino。晶体管(2N3904)由微控制器控制,并用作对GPS和无线模块进行接通/断开供电的开关。图7A-图7D示出了电容传感器的硬件实现。
示例
在不同条件下并且使用不同的油类型(重/轻)进行了若干实验以评估所提出的电容传感器的输出。在实验过程中,将传感器浸入被检查的液体(油/水)中,并将电压测量值无线发送到基站。开发了一种软件应用程序来自动接收和保存所测量的电压值。
油类型
燃料油
进行了实验以评估所提出的电容传感器在与重质燃料油一起工作时的性能。然而,使用在我们实验室中可用的粘度计测量了采购的重质燃料油的粘度,且结果在3300至3500cP的范围内。使用以下程序测量燃料油的粘度:将指定直径的主轴浸入油中,并以RPM的精确速度旋转,所测量的阻力给出了介质的粘度。结果在表I中示出。
表I:所测量的粘度(燃料油)
主轴 速度(RPM) 粘度(cP.)
SP R4 10 3446.4
SP R4 20 3456.1
SP R4 30 3381.7
SP R4 50 3332.6
平均值 3404.2
如表I所示,所测量的粘度以厘泊(cP.)为单位,其代表油的绝对粘度。运动粘度以厘沲(cSt.)表示。这两个单元之间的主要差异在于cSt(运动学)表示液体密度与其绝对粘度cP的比率。为了从绝对的(cP)转换为运动学(cSt),应将所获得的值(cP.)除以液体的密度。大多数碳氢化合物(燃料或润滑油)的密度在0.85至0.9之间。为了计算该燃料油的平均运动粘度,将所测量的绝对粘度(3400cP.)的平均值乘以油的密度。对于约0.85的密度,运动粘度为约4000cSt。对于约0.9的密度,运动粘度为约3777cSt。可用燃料油的运动粘度在室温(约25℃)下测量在约3777至约4000cSt.之间。
轻油/中油
选择了在黎巴嫩当地市场上可获得的三种不同的单级油类型以用于轻油和中油实验,每种具有不同的粘度,如表II所示。
表II:轻油和中油样品的粘度
粘度(cSt) 名称 描述
680cSt BP安能高GR-XP 680 工业极压齿轮油
140cSt 动力齿轮140W 汽车齿轮油
10cSt 动力10W 机油
初步实验
首先对所提出的电容传感器进行实验,以评估其在空气、水与油之间进行区分的能力。MPR121模块的配置参数设置为16μA充电电流,0.5μ秒充电持续时间,以及1ms时段时间。
实验1-空气中传感器
在该实验中,仅将传感器浸入空气中,每五秒测量并记录前十二个电极的值。实验结果的实例在表III中示出,并且相应的图在图8中示出。
表III:实验1(空气)-数值
时间 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12
10:25:30 180 170 168 172 170 175 172 175 169 171 166 170
10:25:35 180 170 168 173 171 176 172 175 170 171 166 169
10:25:40 180 170 167 173 170 176 172 176 170 172 165 170
10:25:45 180 170 168 173 171 176 172 175 169 171 166 169
10:25:50 180 169 167 173 170 177 172 175 169 171 166 169
10:25:55 180 170 167 172 170 176 172 175 169 171 166 169
10:26:00 180 170 167 173 170 176 172 175 169 171 166 170
平均值 180 170 167 173 170 176 172 175 169 171 166 169
注意结果是如何显示当置于相同介质(空气)中时每个电极所测量的绝对电压之间的差异的。这种差异主要归因于每个电极之间不可避免的制造不一致性,包括诸如迹长、焊接和连接器之类的问题。然而,由于油厚度估计算法基于相对而非绝对电压测量,因此所测量的值之间的差异不会影响结果的准确性。更重要的是所测量的值随时间的稳定性和可重复性。
实验2-对油/水界面(轻油)进行定位
实验的目的是监测油对每个电极所测量的实际电压值的影响。最初将传感器放置在水中,并且逐渐将轻油(10cSt)添加到容器中;该程序可确保在浸入期间油不会与底部传感器电极接触。因此,来自传感器的顶部的前六个电极被油覆盖,其余的电极浸入水中。每五秒测量前十二个电极的电压值;表IV中示出了实验结果的实例,并且相应的图在图9中示出。
表IV:实验2(轻油/水)-数值
时间 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12
11:11:03 168 157 157 162 159 162 53 6 6 6 5 6
11:11:08 167 157 158 162 159 162 53 6 6 6 5 6
11:11:13 167 157 158 162 159 162 53 6 6 6 6 6
11:11:18 168 157 158 162 159 162 53 6 6 6 6 6
11:11:23 168 157 157 162 159 162 53 6 6 6 6 6
11:11:28 168 157 158 162 160 162 53 6 6 6 6 6
11:11:33 167 157 157 162 159 162 53 6 6 6 6 6
11:11:43 168 157 157 162 159 162 53 6 6 6 5 6
11:11:48 168 157 157 162 159 162 53 6 6 6 5 6
11:11:53 168 157 158 162 159 162 53 6 6 6 6 6
11:11:58 167 157 157 162 159 162 53 6 6 6 6 6
平均值 168 157 157 162 159 162 53 6 6 6 6 6
如图9所示,结果表明,底部五个电极(E8-E12)所测量的电压远低于其他电极所测量的电压。该结果是可以预期的,因为水的介电常数(80)远高于其他非传导介质的介电常数(空气=1,油=2.1)。另外,前五个电极(被油覆盖)的电压低于放置在空气介质中时相同电极所读取的电压(实验1)。由于第七电极(E7)位于油和水的界面处,且相应地被部分地浸入油中,因此E7所测量的电压被部分地降低。这些结果证明了所公开的方法在估计油厚度中的可行性。
实验3-对油/空气界面(轻油)进行定位
实验3的目的是在传感器在空气介质与油介质之间移动时监测传感器电极所测量的电压之间的差异。在传感器在两种介质之间竖向移动时记录传感器的前十二个电极所测量的电压。每秒记录一次测量。实验结果的实例在表V中示出,并且相应的图在图10中示出。
表V:实验3(空气/油)-数值
Figure BDA0002659187000000241
实验表明了在油介质与空气介质之间移动时所测量的电压的即时变化。注意,尽管差异很小,但在空气中所测量的电压总是比在油中的高。
处理油结垢
涂覆电容传感器
在电容传感器上使用超疏水涂层既可用作针对铜条的保护,又可防止传感器的表面上的任何油残留。测试了Ultratech[14]提供的超干(Ultra-Ever-Dry)产品[13]。
燃料油实验
实验1-对油/水界面进行定位
在该实验中,将传感器浸入燃料油和水中,每一秒测量并记录三个电极的值。该实验的目的是在传感器电极在燃料油与水之间移动时监测传感器电压读数。该实验中的一个实验的结果在表VI中示出,相应的图在图11中示出(温度:23℃,RH:60%)。
表VI:燃料油实验1-数值
Figure BDA0002659187000000251
Figure BDA0002659187000000261
该结果示出了在燃料油与水之间移动时每个电极所测量的绝对电压之间的差异。图11中所示的高值与在电极处于燃料油中时所测量的值相对应,而低值与在水中所测量的值相对应。尽管在首次将传感器电极浸入燃料油后传感器电极完全被一薄层的油覆盖(由于其高粘度),但电极在浸入油中时所测量的电压值与在水中(尽管被燃料油覆盖)所测量的值不同。该差异在算法中用于在油/水界面之间进行区分。
实验2-对油/空气界面进行定位
该实验的目的是在传感器电极在燃料油与空气之间移动时监测传感器电极所测量的电压之间的差异。每一秒测量两个电极的电压值;该实验中的一个实验的实验结果在表VII中示出,且相应的图在图12中示出。(温度:23℃,RH:60%)。
表VII:燃料油实验2-数值
Figure BDA0002659187000000262
该结果表明,当在燃料油与空气之间移动时,两个电极(E6-E7)所测量的电压是不同的。在实验的最后部分中,运动速率增加了,因此产生了更高频率的信号,如图12所示。该结果表明,该传感器适用于高粘度类型的油,诸如所测试的燃料油。
环境条件影响
为了评估环境条件(温度和相对湿度)对测量的影响,进行了两个实验。在第一实验中,将传感器放置在露天中,并且每30秒记录读数。在16小时的实验期间,相对湿度在72%至58%之间变化,且温度范围为2l℃至24.7℃。每个电极的测量的跨度非常有限,且在最坏的情况下不会超过3.8%。
在第二实验中,将传感器放置在封闭的房间中,其中温度和湿度由于空调而变化相对较快。在该实验期间,相对湿度在约60%至约46%之间变化,且温度在约21.2℃至约24.7℃之间变化。每个电极的测量的跨度非常有限,且在最坏的情况下不会超过2.7%。
这些结果提供了在不同环境条件下将有高的传感器可重复性的初步证据。
用于估计油厚度的算法
测量算法旨在产生被检查的液体的竖向轮廓。在对浸入油中的电极数量进行计数后,基于传感器几何尺寸计算出油厚度。对若干种方法进行了评估以检测在所有情况下(静态/动态)估算油厚度的更准确和可靠的方法。以下各节介绍了主要评估方法。
K均值(K-means)算法
在实施任何算法以估算油厚度之前,将实验结果绘制在C与△Ct图上,其中C是每个条的基线电容(空气中)与该条在所驻留的介质中的电容之间的差;△Ct是C的瞬态变化,表示油从条上滑落的速度(图13)。
在该图中,根据数据点所在的介质注意到数据点明显聚类。因此,组数据点基于包括C和△Ct的特征向量使用K均值[15]作为聚类方法,因为已知当事先知道聚类数量时会产生良好的结果。这里,选择了三个聚类,分别代表空气、油和水。为了实时地实现该算法,使用Microsoft Windows Forms.Net(C#)框架开发了软件。在该应用程序的图形用户界面中显示了测量算法的结果,包括估计的油厚度(mm)和每个聚类中包括的电极的指数以及原始电压测量(图14)。
如图14所示,激活的电极(前十个)被分为三个不同的组(空气/油/水)。在图14中示出了被分类为三个聚类中的一个聚类的每个电极的指数。将传感器从空气介质竖向浸入油介质/水介质中。注意,如所预期的那样,底部两个电极(E8和E9)的减小的值不会影响分类决策,因为变化率被视为聚类的第二属性。在这种情况下,油电极的估计数量(4)与视觉上观察到的浸入油中的电极的实际数量相同。
尽管在传感器不移动的情况(静态情况)时K均值算法的结果是准确的,但是该结果可能会受到传感器连续竖向移动(动态情况)的严重影响,因为这种情形可能会引入不同的情况,包括在介质之间过渡的条。
基于界面检测的厚度估算
实施和测试了另一种方法以基于空气/油界面与油/水界面之间的差来检测油厚度。为了测试该算法,使用1/300毫秒的采样率来进行实验。使用的油类型是轻机油(10W-40)。将传感器浸入油厚度为1cm的油/水混合物中。该实验是在实验室中,在温度为24℃、且相对湿度为59%下实现的。表XV(图15)中所示的实验结果表示在空气中获取的每个电极电压测量值与校准值的百分比差。
为了得到油厚度,一种方式是计算位于油/水界面处的电极的指数与位于空气/油界面处的电极的指数之间的差异。为此,应通过基于相对电极行为的算法来识别界面。根据表XV图15)中所示的结果,注意到电极E5之前和之后的值之间存在明显差异。此外,电极E9显示出类似的行为。在计算出每个电极所呈现的读数的平均值之后,引入一新的参数,称为“比率”,其是通过将指数“i”的每个电极的平均值除以指数“i+1”的其相邻电极而计算的,在表XV的图(图15)的最后一行示出。由于该比率是通过进行除法运算来计算的,因此该算法将零值替换为一,以避免除法错误。图16示出了所计算的比率向右移位一个电极的图。
如图16所示,位于界面层处的电极(E6和E10)显示出所计算的比率的严重下降。为了得到每个界面电极的指数,该算法通过得到比率序列的前两个最小值进行。然后,计算出两个最小电极的指数之间的差(E10-E6=4)。该差用于基于电极几何尺寸来计算油厚度。
该方法被证明仅在静态情况下给出准确的结果,因为在传感器竖向移动通过被检查的液体时进行针对若干次迭代的测试之后,由于空气与油之间的介电常数的小差异以及由于运动而降低的信噪比,在检测空气/油界面时观察到了高的误差。
基于从前两种方法获得的结果,该算法必须检测静态情况与动态情况,并关注表现出变化的条,因为那些条将是在介质之间过渡的电极。
静态情况下的不确定性分析(轻油)
在实现测量算法之后,以静态模式测试电容传感器,并且在进行一组厚度测量之后计算出准确性结果。基于以迭代方式找到最大空间梯度,检测了空气/油和水/油界面,并使用位于它们之间的电极的数量来计算厚度。在该实验中测试了两种情况。第一种情况表示在不使用任何取平均值的情况下将测量算法应用于每个电压读数。在第二种情况下,在应用测量算法之前使用电压读数的移动平均值。为了计算移动平均值,将每个新的电压读数添加到之前进行的电压测量中,并且除以2。以下是测量准确性的结果。在每种情况下,均取三百次左右测量的平均值。所使用的油是粘度为10cSt的轻油。该实验是在室内24℃左右的温度下进行的。第一种情况的结果在表VIII中示出,而第二种情况的测量值在表IX中示出。
表VIII:电容静态实验结果(情况1)
Figure BDA0002659187000000291
表IX:电容静态实验结果(情况2)
Figure BDA0002659187000000292
实验结果表明,在应用移动平均值(情况2)之后,百分比误差从5%降低到4%。注意,由于传感器的性质依赖于宽度为2mm、竖向间隙为0.5mm的离散电极,因此可以接受该准确度。注意,在情况1中,由于两种介质的介电常数的差很小,因此在检测空气/油界面时发生了误差。
动态情况分析
为了增强测量的可视化,将电压存储在二维阵列中并转换为灰度图像。如图17A、17B和17C所示,随着传感器的移动,观察到颜色的明显变化。该观察结果给出了诸如波的幅度和频率之类的波属性。注意,每个图的第一行中的图像是原始图像,第二行中的图像是在应用直方图均衡以产生更好的对比度之后获得的。y轴对应于电极指数(从顶部开始),且x轴对应于时间。y轴表示所有条的电容的相对差,从顶部处的空气中的条(黑色)开始,到油中的条(灰色)和水中的条(白色)。
在对所获得的图像进行分析之后,开发了多情况算法以在所有情况下检测油厚度。下一节将描述新算法。
多-情况(静态或动态)
在选择用于测量实际厚度的合适标准之前,多-情况算法处理从传感器获取的电压值并确定传感器状态。该算法使用两种不同的方法以基于传感器动态状态来检测油电极。第一种方法依赖于实时电压值与校准电压值之间的差。当传感器处于固定模式时使用此方法。第二种方法仅基于原始传感器值之间的暂时差,而不使用校准值。当传感器相对于被检查的液体内的油进行竖向移动时应用第二种方法。图18所示的流程图总结了多情况算法。
校准
在传感器完全干燥并被放置在露天中一段预设的持续时间时,获取校准电压值。对于每个电极,所有的所测量的电压的平均值存储在一维阵列中。在工作时,使用以下公式计算指数‘i’的每个电极的相对电压差(R):
Figure BDA0002659187000000301
检测水界面
在一定时间间隔期间,获取所有电极的一组电压测量值并将其存储在二维阵列中,其中列的数量对应于激活的电极的数量,而行的数量对应于在该时间间隔内进行的测量的数量。在存储测量向量之前,对获取的值应用有效性检查,以检查测量是否是在传感器处于有效感测位置时进行的。当底部传感器电极中的至少一个底部传感器电极与校准存在相对高的百分比差(例如,大于50%)时,表明该传感器浸入水中,则将感测位置设置为有效。
对于每次测量,计算水界面并将其存储在称为水平(Level)的单独阵列中。由于所获得的值的主要差异在于浸入水中的电极与被空气或油围绕的其他电极之间,因此使用以下称为检测-界面的方法来计算每次测量的水界面(K):
检测-界面(值-向量),然后创建大小为N的一维阵列(投票)。票数=零(1,N)。然后以指数=2计算每个电极的票数。而(指数<N)。票数(指数)=均值(值(指数+1:N)-均值(值(1:指数-1))。Max_Value=MAX(票数)。然后得到具有票数最大值的界面的指数。界面=get.Index(Max_Values)。然后返回界面的指数。返回界面,其中“N”是电极的总数,“I”是电极指数,且“K”是测量指数。
检测传感器状态
基于存储在“Levels”阵列中的检测到的水界面,传感器状态被检测为动态或静态。对于每种状态,当传感器处于相同状态时,创建新的二维阵列来存储每个电极的电压值。当检测到状态变化时,应用该测量方法以得到油厚度。在下节中将描述针对每种情况(静态/动态)的测量方法。为了确定传感器的状态,对于每个测量(K),应用以下过程:
对于动态情况:当levels发生变化(增大或减小)时。当((Levels(K)!=Levels(K-1))时。则将值(Values)向量存储在称为动态(Dynamic)的临时矩阵中。Dynamic(K)=Values(K);如果状态已变化,则清除(动态)。获得每个电极的最大值,并将其存储在新向量中。Max=MAX(动态)。获得每个电极的最小值并将其存储在新向量中。Min=MIN(动态)。然后调用动态算法来计算油厚度。油厚度=动态-算法(Max,Min)
对于静态情况:计数器=1。当传感器不移动时。当(Levels(K)==Levels(K-1))时。将值向量添加到临时矩阵。静态Static(K)=Values(K)。如果(计数器>20){中断},则更改状态或值的数量>20。清除(静态),然后计算每个电极值的平均值并将其存储在新向量中。平均值Average=Mean(静态)。然后调用静态-算法以计算实际油厚度。其中油厚度=静态-算法(平均值)
其中,“K”是测量指数,且“动态/静态”是临时二维矩阵,用于在传感器处于相同状态时对值进行存储。每次改变状态时都会创建Max和Min,并在临时矩阵(动态/静态)内携带每个电极的最大值/最小值。通过在检测到状态变化或静态记录的数量超过预设阈值后计算每个电极的平均值来获得平均值Average向量。
计算油厚度
油电极的数量用于通过以下等式估算油厚度(TH):其中N是被油覆盖的电极的数量,W是电极宽度=2mm,且G=0.5mm是电极之间分隔的间隙宽度。
动态-算法用于在检测到动态状态变化之后得到油厚度。该方法将“Max”向量和“Min”向量作为输入,并返回实际油厚度。该方法可以总结如下:
动态-算法(Max,Min):计算Max向量和Min向量中每个值之间的差。差(Diff)向量=(Max)-(Min)。然后分配阈值以用于检测固定的和改变的电极阈值=MAX(Max)-MAX(Min)。然后得到改变的介质的电极的数量,指数=1;K=0;而(指数<=N)。如果(Diff向量[index]>阈值)。改变的[C]=指数。K=K+1。指数=指数+1。C=长度(改变的)。然后得到仍然处于油中的电极的数量,指数=1;C=0;而(指数<=N)。然后将油电极放置在改变的电极之间,如果((Diff[index]<=阈值)以及(index!>MAX(改变的)以及(index!<Min(改变的))。固定的[C]=指数。C=C+1。指数=指数+1。间隔=长度(改变的/2)+长度(固定的)。如果每个电极的宽度为2mm,且电极之间的竖向间隙为0.5mm,则厚度=(间隔)(2)+(间隔-l)(0.5)。返回(厚度)。
在静态情况下,电压测量之间的暂时性差值不能用于计算厚度,因为传感器没有移动,并且值不会改变,除非在噪声范围内。替代地,与校准的相对差用于迭代地检测空气/油和油/水界面。静态-算法将Average向量作为输入参数,并返回实际油厚度。使用上面描述的检测-界面方法的方法可以总结如下:
静态-算法(Average):检测油/水界面,其中WI=检测-界面(Average)。然后去除大于水界面的所有电极指数。SV=Average(1:(WI-1))。然后检测空气/油界面。AI=检测-界面(SV);计算油电极的数量。间隔=WI-AI;计算油厚度,其中厚度=(间隔)(2)+(间隔-l)(0.5),然后返回(厚度)。
多-情况算法的结果
将多-情况算法应用于在传感器以随机速率竖向移动时进行的一组测量,模拟了随机波浪的真实-情况的情景,在错误分类的电极的最大数量等于一时——这意味着最大误差约为传感器分辨率的情况下,所估算的厚度是可接受的。实验结果在表XVI中示出。
表XVI:多-情况算法-实验结果
Figure BDA0002659187000000331
如表XVI所示,使用多-情况算法测量的油厚度的平均值为26.75mm。基于实际厚度(27毫米),百分比误差计算为0.95%,这是可接受的。
封装;电容传感器;初步设计
已经进行了初步设计迭代;已对每种设计进行了修改,以适合易于制造和密封封装的最终描述。图19是最先设计制成的CAD模型,它没有考虑密封和锁定。图20表示第一次迭代,它包含密封腔室和带有用于固定目的的侧支架的密封盖,该迭代已进行3D打印和评估。图21A、21B、21C表示第二次迭代,该迭代考虑了用于电池存储和密封措施的空间。
最终设计迭代
图22A、图22B、图22C中的最终迭代考虑了制造过程,并且可以在可用的CNC铣床上实现该设计内的公差,通过在橡胶O形环和垫圈上施加压力来实现密封。图23A、图23B、图23C提供了控制板、电容条、以及被选择用于在壳体垫圈上施加压力的搭扣锁的特写。
电容传感器封装位于大学的制造车间处,封装所选择的材料是用作硬橡胶/强塑料的聚酰胺,并且单独的部件将通过来自McMaster的弹簧加强型搭扣锁对O形环和橡胶垫圈使用40%压缩的压缩密封而装配在一起。
测试台:波浪箱
以下是初始波浪箱设计,其顶部示出了线性导轨。
所选择的用于产生波浪的泵模型是VENOTEC德国制造的Abyzz A200,其可以以5.4m/s的最大速度提供高达17l/h的流量,最大扬程为8.8m,并且最大压力为1.5bar,功率范围为4至200W。
如图24、图25所示,制造大的波浪箱并将其交付到测试位置。进行检查箱对波浪的阻力的测试。泵首先在0%到100%(200W)功率的正模式下运行,在随机功率输送下以随机流向测试了随机模式;以变化的流向时间(对称轮廓和非对称轮廓)测试了波浪模式。此外,以最小负流向(从0%到100%变化)以及正向(最小,到全功率正流向)测试了泵。箱通过了所有测试,针对泄漏检查了焊缝以及透视窗,未检测到泄漏。
波浪箱致动器
已经为波浪箱组装了线性致动器,以便在不同情况下使电容传感器在波浪中来回滑动,该致动器是OPENBUILDS V-槽1.5m同步皮带致动器。由于箱长3m,因此使用长度为3.1m的4x4 cm的方形梁制造了扩展件,以便在两侧具有5cm的悬垂部,在扩展件上焊接有塞子,以在测试期间将其保持到位,并避免滑动或掉落到箱中。使用角铁支架将致动器安装在扩展件上,其中两个角铁支架焊接在扩展梁上,另外两个角铁支架用于进行拉直。
实验室箱
已选择3相无刷直流马达(BLDC)来致动齿条和小齿轮机构,其用于使传感器竖向地移动通过油/水混合物,装配在实验室箱(树脂玻璃容器50x50cm)上,马达规格如下:工作电压:12V;马达额定转速:3700rpm;马达直径:36mm;变速箱:行星齿轮减速器;速度:约150rpm/s。轴长:20mm;减速比:27:1;信号周期脉冲数:2*27;控制模式:PWM速度控制,方向控制;反馈脉冲输出
马达使用Arduino Mega 2560与MATLAB Simulink进行接口,以运行实时外部模式模拟,其中所有速度曲线均归一化到PWM范围。在对马达进行了若干用于参数识别的实验之后,已注意到马达速度在150至255的PWM范围内达到最大值150rpm。
向传感器添加高频振动机构
尽管最初始测试阶段证明了电容传感器确定其所处于的介质的能力,但观察到一个问题,在油浮层水平下面的水中存在电极的油污,同时传感器上下颠簸。尽管油最终会从这些条滑落并上升到表面,但是对于厚油来说,该过程的动力学相对较慢,并且有影响对油/水界面的确定的风险。为了解决这个问题,传感器配备有振动器模块(图26),以帮助加快从被结垢的条上除油。为了评估振动器模块的效果,进行了两个实验;在激活振动器之前和激活振动器之后。在执行两个实验时使用了相同的程序。传感器从固定位置穿过薄的浮动油层竖向地浸入水中。记录由电容条测量的电压。为了解释实验结果,记录并比较了在穿过油层时从初始位置(空气)到结束位置(水)的两个条的电压降。实验结果的实例在表30中示出,并且显示了两个条相对于时间的电压降的相应的图在图27和图28中示出。
表30:振动器实验(电压(ADC)与时间(秒))
时间(sec) E1(ADC) 具有振动器的E1(ADC) E2(ADC) 具有振动器的E2(ADC)
1 144 144 161 162
2 136 135 148 148
3 133 137 140 142
4 127 111 132 111
5 132 89 137 54
6 118 76 122 65
7 108 76 88 49
8 90 64 86 40
9 81 65 74 46
10 80 59 66 39
11 76 58 72 35
12 73 54 64 41
13 68 54 58 39
14 69 50 56 36
15 71 49 60 37
16 66 47 58 29
17 62 42 50 33
18 59 44 52 31
19 58 41 54 33
20 59 37 52 30
21 60 38 51 33
22 57 36 49 30
23 54 36 48 28
24 55 33 48 30
25 51 32 50 27
26 51 33 49 27
27 53 33 50 31
28 52 34 50 25
29 50 34 47 27
30 48 1 46 26
实验结果表明,使用振动器有助于增加两个电极的电压降的速率。该结果支持使用振动系统的理念,因为加快电压降对于降低油-结垢效应至关重要。
用Nanoprotech材料涂覆所完成的初步工作
除了以上提出的振动器之外,还测试了若干种涂覆材料。首先,传感器涂有由“Nanoprotech”[9]提供的透明电绝缘材料,该材料包括以下成分:高纯矿物油、防腐添加剂、抗氧化剂链烷烃和环烷烃。该材料的推荐工作温度为-20℃至+35℃,并且其在-80℃至+140℃的温度范围内保持其性能。用Nanoprotech材料喷涂传感器盒是手动完成的,且在第一次使用前,将板保持在空气中干燥二十四小时左右。干燥过程完成后,喷涂过程的留在传感器的本体上的多余物(液体残留物)被去除。该材料是完全透明的,并且覆盖传感器的所有组件,包括引脚、条和连接轨道。
为了比较在施加Nanoprotech涂层之前和之后的传感器性能,进行了两个相同的实验。在这两个实验中,传感器从水表面上方的固定位置开始浸入油/水混合物中。为了监测材料对油-结垢过程的影响,记录并分析了从空气层直至到达水层时最后两个电极(E35和E36)的电压降。浸入实验的实验结果在图29中示出。
]如图29所示,当传感器从油浸入水中时,Nanoprotech涂层提高了所测量的电压的变化率。这可以从浸入开始后立即记录的E35和E36电压的严重下降中确定出来。相反,如图所示,在施加涂层之前,变化率要慢得多。为了更详细地解释结果,数值对应于所有测量的电压(ADC)。
在实验结束时,当电压几乎稳定时,由涂覆的传感器所测量的值低于未涂覆的传感器记录的值。例如,在涂覆之前,E35和E36所测量的电压在7和8(ADC)之间。涂覆后,E35和E36的电压下降到2和3左右(ADC)。这种减少证实了涂层在增强电极的电导率中起了作用。
除了油-结垢评估实验之外,还进行了若干实验以分析在所有条件(空气-油-水)下涂层对传感器响应的影响。电极在浸入空气和水中时(具有涂层或没有涂层)所测量的电压在表31中示出。
表31:在用Nanoprotech绝缘材料涂覆之前和之后在空气和水中测量的电压
Figure BDA0002659187000000371
如表31所示,传感器电极所测量的电压几乎等于在涂覆之前和之后的空气和水的情况。然而,注意到在水的情况下,涂覆后测量的电压比涂覆前测量的电压略低且更稳定。该结果证实了先前实验中得到的结论,即Nanoprotech涂层提高了在其他情况下(在空气情况下为相等值)的条的传导性,而不会影响传感器的性能。
另外,为了检查Nanoprotech涂层对油检测的效果,在涂覆传感器盒之前和之后进行了两个相同的实验。最初,传感器被部分浸入水中,其中前五个电极被空气包围。然后,从水表面上方的固定位置向水容器中添加油。该方法的目的是在不受传感器运动影响的情况下直接接触电极的同时对油效果进行监测。另外,该实验的主要目的是检查涂层是否对油检测能力产生影响。表32中显示了实验结果,包括所测量的电压(ADC)和电压的百分比相对变化。
表32:用Nanoprotech绝缘材料涂覆之前和之后的在油情况下的相对差(%)
Figure BDA0002659187000000381
实验结果表明,由于油接触,百分比相对变化在两种版本下是相似的(4-6%);已涂覆的和未涂覆的。因此,可以得出结论,涂层对油检测能力没有任何负面效果。
结果,以上示出的实验结果表明,Nanoprotech涂层有助于减少油-结垢过程,同时不影响空气和油检测能力。另外,在视觉上观察到Nanoprotech材料的使用,以减少浸入水中时传感器板的湿度。然而,关于该材料的实际组成以及增强电极的电导率背后的原因产生了若干问题。基于这种材料的主要作用是使电气部件在水中绝缘而不是增强电导率这一事实,需要澄清该材料的实际作用。然而,将对这些结果进行进一步的调查。
使用超干(Ultra-Ever-Dry)材料涂覆所完成的初步工作
在尝试减少条的油-结垢时,对Ultratech[14]提供的超干产品[13]进行了测试。首先,在用两种产品成分(基部涂层和顶部涂层)喷涂传感器后,将传感器浸入一组水/油混合物(包括轻油、中油和重(燃料)油样品)并从中移除若干次。结果,在大多数试验中,观察到从被检查的液体中移除传感器后,油立即脱落。然而,在某些情况下,尤其是在处理重油类型(燃料)时,观察到浸渍后留在传感器板上的一些油残留物。
为了更准确地分析效果,进行了几次实验。在施加涂层之前和之后,使用相同的传感器板进行实验。通过手动喷涂将超干材料分两个阶段施加。在第一阶段中,传感器盒被底部涂层材料喷涂。然后,将板保持在空气中干燥15分钟左右。在第二阶段中,通过手动喷涂将顶部涂层材料施加到板上。施加顶部涂层后,在首次使用之前,将传感器保持在空气中干燥二十四小时左右。喷涂过程在专门的通风橱下进行。该通风橱是自包含的、经过滤的实验室外壳,用于去除喷涂过程所产生的有害蒸气和颗粒。重要的是要注意,喷涂是基于规则的运动迭代完成的,以使传感器表面上的涂层材料的量均匀且均等地分布。然而,由于喷涂是手动(手工)完成的,因此在传感器表面观察到了涂层分布的一些差异。在第一个实验中,将传感器设置在空气中的固定位置的同时,记录传感器电极所测量的电压。为了评估这种材料对传感器的影响,将施加涂层之后获得的电压值与施加涂层之前存储的相应的值进行比较。表33中示出了实验结果的样本,其示出了由前十二个激活的电极测量的一组电压的平均值,并且相应的图在图30中示出。
表33:用超干涂覆之前和之后的在空气情况下的相对差(%)和电压(ADC)
Figure BDA0002659187000000391
实验结果表明,在空气情况下电容条所测量的电压在施加超干材料后减小。由于电压与电容成反比,因此可以得出结论,附加涂层增加了条的基部电容(basecapacitance)。为了用数字方式评估电压降,计算了百分比相对差,并将其在表33中示出。条之间的百分比差在1.85%至7.88%之间变化。这种变化是由于涂层材料在传感器表面上的分布不同引起的。平均百分比差为3.77%左右。
为了监测在油和水情况下的涂层材料的效果,进行了另一个实验。在该实验中,将传感器部分地浸入油/水混合物中。在施加涂层之前,将三十六个激活的电极按如下方式分布在油/水混合物中:E1至E16:空气;E17至E21:油;E22至E36:水。
表34中示出了除百分比相对差外,在浸入被检查的液体之前和之后的针对未涂覆的传感器所测量的电压。
表34:未涂覆的-电压(ADC)和R.D(%)。——部分地浸入油/水混合物中
Figure BDA0002659187000000401
用超干材料涂覆传感器后,重复相同的实验。除百分比相对差之外,所有电极测量的电压(ADC)在表35中示出。
表35:涂覆的(超干)-电压(ADC)和R.D(%)。——部分地浸入油/水混合物中
Figure BDA0002659187000000411
为了评估涂层材料对三种情况(空气/油/水)中的每种情况的效果,针对先前的两个实验(表34和表35)中的每种情况所计算的百分比相对差的平均值在表36中示出,且相应的图在图31中示出。
表36:在涂覆之前和之后在空气/油/水情况下的平均百分比差之间的比较
Figure BDA0002659187000000412
该实验表明,在施加超干涂层之后,在水情况下的相对百分比变化减小了。从理论上讲,此结果是期望的,因为涂层在将电极与水隔离中起着重要作用。没有涂层,电极由于水的传导性而被短路,因此,电势差降低到零左右。相反,在施加涂层之后,将附加层(电介质)添加到电极,从而增加了基部电容并降低了传感器灵敏度。此外,观察到浸入油中的电极的相对变化减小。
在处理超干材料时记录了若干重要的注意事项。首先,注意到手动喷涂技术(手工)导致传感器表面上涂层厚度的不规则分布。因此,观察到不均匀的涂层,从而不一致地影响电极的基部电容。基于此,建议在涂覆过程期间使用更一致的方法。此外,观察到超干涂层的添加降低了传感器的灵敏度。该结论是在观察到将电极中的每个电极浸入水和油中时所计算出的百分比相对差降低后得出的。可以对这种涂料和超疏水材料的性能进行进一步研究。
评估不同电源对传感器性能的影响
在传感器的初始测试期间,使用了两个主要电源为电路供电。首先,控制电路由笔记本电脑上的USB端口供电。USB端口用于为Arduino模块供电,并从MPR121模块检索所测量的电压。USB端口为Arduino提供5VDC,且Arduino通过3.3V嵌入式稳压器为MPR121控制器提供3.3VDC。在运行期间,笔记本电脑连接至电源适配器,插入AC电源线(220VAC)中。用于为传感器供电的第二个电源是12VDC的独立铅酸电池。为了评估两个电源对由电容条测量的电压的影响,将传感器放置在固定位置处,并记录由所有电极测量的一组电压。将传感器设置在固定位置处(被空气包围),并记录250个测量值的样本。分析由前十二个电极测量的电压,并将其呈现在表37中。此外,示出在两种情况下由第一电极E1测量的电压的图在图32中示出。
表37:电压(ADC)-电池与USB端口电源
Figure BDA0002659187000000431
该实验示出,使用USB端口作为电源,为测量的电压信号引入额外的噪声。这可以从表38所示的增加的标准偏差值以及图32所示的引入到E1电压信号中的高频振荡而推断出来。基于该实验结果得出结论,不建议将装置连接至AC电源,以避免为传感器测量插入额外的噪声。
电容传感器调谐实验
如前所述,MPR121控制器用于测量感测单元中的每个电极的电容。由于MPR121模块使用DC充电技术来测量电容,因此在操作之前需要配置电流充电和充电持续时间参数。基于此,进行了调谐实验,以找到用于最终传感器设计的充电电流和持续时间的最佳组合。调谐过程的主要目的是选择在空气与油之间的差异方面使传感器灵敏度最大化的组合(电流/时间)。调谐实验中使用的电压测量值是在MPR121控制器的第二个滤波器的输出处获得的。在该项目中,MPR121控制器的第三滤波器输出被忽略,因为它将原始电压测量值与主要用于电容触摸应用的基线值进行比较。充电电流可以取1μA至63μA之间的值,并且充电持续时间被设置为0.5μ秒至32μ秒之间的值。在进行调谐的实验期间,传感器被固定在室内箱上,并浸入包含一层厚度为20mm的重油(燃料)的液体中(参见图33)。
电流调谐实验
通过将充电持续时间设置为0.5μ秒的固定值并将充电电流量以1μA的增量从1μA至63μA进行改变来执行电流调谐。实验结果在表38中示出,且相应的图在图34中示出。电极按以下方式分为三个不同的组(空气/油/水):E1至E25:空气;E26:空气/油;E27至E33:油;E34至E40:水,被油的薄层覆盖(结垢效应);以及E41至48:水。
表38:电流调谐实验(电压(ADC)与电流(1-62μA)
Figure BDA0002659187000000441
Figure BDA0002659187000000451
基于调谐结果,观察到空气电极与油电极之间的差以成正比的方式随着电流而增加。从理论上讲,由于电容与持续时间和电流的乘积直接相关,因此该结果是预期的。然而,为了避免MPR121中包含的10位ADC的饱和,需要考虑附加调谐实验来分配合适的持续时间参数。
时间调谐实验
与电流调谐实验相反,在时间调谐实验中,电流量被设置为1μA的固定值,并且充电持续时间从0.5μ秒逐渐变为32μ秒。为此,将MPR121控制器中包含的CDT寄存器设置为不同的值,以便设置所需的充电时间值(参见表39)。传感器电极的状态与上面的电流调谐实验部分所呈现的状态类似。实验结果示在表40中示出,且相应的图在图35中示出。
表39:表示不同充电时间配置的十六进制值
充电时间(μs) 十六进制值
0.5 0x20
1 0x40
2 0x60
4 0x80
8 0xA0
16 0xC0
32 0xE0
表40:时间调谐实验(电压(ADC)与时间(0.5-32μs))
Figure BDA0002659187000000461
实验结果表明,所测量的电压随时间以正比例的方式增加。
组合调谐实验
基于电流和时间调谐实验的结果,以及为了在灵敏度方面选择电流和时间的最佳组合,从空气介质和油介质中选择两个电极作为参考。在测试所有可能的组合时,将两个电极中的每个电极(E25-E27)所测量的电压之间的绝对差用作要监测的灵敏度因子。针对所有可能的组合来计算两个电极之间的差(delta(Δ))并在表41中示出,且相应的图在图36中示出。
表41:组合的调谐-数值结果
Figure BDA0002659187000000471
Figure BDA0002659187000000481
基于调谐的实验结果,选择了2μ秒充电持续时间和32μA充电电流量的组合,因为它允许油与空气之间的最大差因子,同时获得了在达到饱和水平之前的相对高的采样率以及可接受的功耗。
油与有害物质的模拟海洋环境试验池(Ohmsett)测试
为Ohmsett进行了广泛测试。测试包括:1-在箱中进行电容传感器室内测试(静态,竖向运动和水平运动);2-在大型箱中进行电容传感器室外测试(在无波浪情况下被桥拖动,安装在撇取器上自由浮动且在有波浪和无波浪情况下被拖动)。
由Ohmsett提供的在实验中使用的油-类型的属性在表43中示出。
表43:预-测试实验室分析(Ohmsett)
Figure BDA0002659187000000491
该示例呈现了所有实验的详细结果以及分析。
浸渍测试(传感器#1-电容传感器)
浸渍测试被设计为保证不同值的相对准确的浮层厚度,其中可以使用四种不同的测试油对传感器进行测试。这些测试是在Ohmsett高湾区使用带有透明侧面的小型透明玻璃箱(12.875”x 12.875”)进行的,其中已知的油厚度是在约6英寸(152.4mm)的咸水上产生的。从具有最低粘度的油开始,按照测试矩阵,通过使用量筒分配适当的体积来增加厚度。按粘度增加的顺序分配油。传感器是由现场的AUB工程师针对每种条件手动部署的,并且在进入测试浮层时以规则的模式进行移位。首先将传感器保持稳定以获得初始的静态情况读数,之后是持续约一分钟的往复竖向运动的动态情况,然后在与油浮层平行的方向上进行约一分钟的横向运动。用于执行浸渍测试(静态情况和动态情况)的实验装置在图37中示出。
对于每种测试条件,以相对一致的方式重复此过程,同时AUB工程师经由与附近笔记本电脑的无线通信来记录数据。该系列测试包括四种类型的油:柴油、Hoops原油(风化)、Hydrocal 300和Calsol 8240。从最薄的浮层开始,分配每种油以产生八种不同的浮层厚度,范围从0.125英寸到3英寸(3.175到76.2mm)。在添加油时将传感器从箱中移除,但在测试之间未对传感器进行任何方式的清洁或改动。在测试之间使用不同类型的油将箱完全排空并清洁。
Ohmsett观察结果/注意事项:沿着箱壁周长观察到了在油浮层上方和下方的miniscus效应,可能会导致厚度偏斜。当分配更多的粘性油(Hydrocal300和Calsol 8240)时,残留的油会留在量筒壁上。结果,残留物会对分配的总体积产生累积影响,并且可能使厚度偏斜到小于目标。
用于进行浸渍测试的方法总结为以下几点:在小型箱中(在咸水上)制备(一个或更多个)浮层;手动地将传感器以任意高度放入浮层中,而无需目视或其他与油浮层的对齐,然后获取读数;以及去除传感器,增加厚度-重复。
对于所执行的所有浸渍测试,在表44中总结了用于获得所需厚度而增加的体积量(图38)。
表44:浸渍测试-目标厚度和体积
Figure BDA0002659187000000501
浸渍测试(1-8)-柴油
测试编号1至8使用的柴油的厚度为0.125英寸(3.18mm)至3英寸(76.20mm)。记录的水和油温度在69℉至7l℉之间。示出所测量的厚度与实际厚度的实验结果对于静态情况在表45中示出,并且对于动态情况在表46中示出。该结果是基于针对轻油类型(例如,柴油-Hoops)开发的“最高点算法”获得的。
表45:电容传感器浸渍测试(1-8)-柴油/静态
Figure BDA0002659187000000502
Figure BDA0002659187000000511
表46:电容传感器浸渍测试(1-8)-柴油/动态
Figure BDA0002659187000000512
如图39和表45所示,在静态情况下的测量厚度的绝对误差不超过所有执行的测试(1-8)中传感器的分辨率(3mm),除了在最后一次测试(8)中平均测量厚度为70.41mm左右且实际估计为76.2mm。这里重要的是要注意,在这种情况下,绝对误差(5.79mm)不超过由传感器PCB中包含的48个条中的两个条(6mm)的错误分类引起的误差。此外,重要的是要注意,5/8静态测试显示出极高的准确性,其中平均绝对误差小于1mm。
在动态情况下,要注意的是,如表46和图39所示,5/8的动态测试显示出极高的准确性,平均绝对误差小于1mm。然而,如所预期的那样,且由于传感器的动态运动(竖向运动和水平运动)增加,与静态情况相比,在某些情况下错误分类的带的数量增加,导致绝对误差增加。
基于实验结果,可以得出结论,尽管传感器以可接受的准确性通过了大多数静态测试和动态测试,但是在动态测试中少数电极的错误分类导致了绝对误差的突然增加,这是因为传感器电极的宽度相对高(3毫米)以及由于一些残留的结垢效应所致。为解决此问题,建议减小电极宽度以增加传感器分辨率,并减少错误分类的电极对测量厚度的影响。
浸渍测试(9-16)-Hoops(风化)
测试编号9到16使用的Hoops(风化)油的厚度范围为0.125英寸(3.18毫米)至3英寸(76.20毫米)。记录的水和油温度为70℉左右(69℉-7l.5℉)。在执行这些测试期间记录的一些评论是:观察到浮层下面的传感器上的油涂层(图40);观察到油容器上的弯月面效应(meniscus effect)(偏斜实际厚度)。
示出所测量的厚度与实际厚度的实验结果对于静态情况在表47中示出,并且对于动态情况在表48中示出。该结果是基于针对轻-油类型(例如,柴油-Hoops)开发的“最高点算法”获得的。
表47:电容传感器浸渍测试(9-16)-Hoops(风化)/静态
Figure BDA0002659187000000521
表48:电容传感器浸渍测试(9-16)-Hoops(风化)/动态
Figure BDA0002659187000000522
对于静态测试,如表47所示,三个测试(11、12和15)显示出极高的精度,其中绝对误差小于1mm。其余测试显示出可接受的精度,其中四十八个总电极中的大约一到两个电极的误差产生的绝对误差为大约1mm至5mm。要注意的是,在实际厚度为3.18mm左右的第一次测试(测试编号9)中发生了较大的误差。为了解释误差的原因,我们绘制了在执行第一次测试(测试编号9)时相对于时间获取的一组测量值(图42)。
图42中所示的曲线图描述了具有相对大的厚度测量平均值(15.05mm)而实际厚度为3.175mm左右的原因。在第一次将传感器浸入液体中时,由于结垢过程,大多数电极被一层油覆盖。因为结垢效应,传感器的初始读数相对地大(63mm-52mm-43mm)。此外,使用相对慢的移动平均速率有助于减少传感器测量值的变化。然而,很明显,传感器在(7:28:35PM)左右达到稳定状态,其中所有其余测量值均小于10mm,并在6mm处变得几乎稳定。值得注意的是,在静态情况下,由于传感器无法移动以将结垢“洗掉”,因此穿过油且进入水中的条的结垢可能是有害的。在正常的操作情况下,可以指示用户四处移动传感器以减少这种效应;然而,在我们所有的测试中都没有这样做以不使结果发生偏差。还需要重点注意的是,基于3mm左右的传感器分辨率(单电极宽度(2mm)+竖向间隙(lmm)),该结果被认为是可接受的。除了涂覆传感器外,还可以通过提高传感器分辨率并加快测量变化率来解决此问题。
对于动态情况,如表48和图39所示,由于传感器移动和结垢,误差略有增加。然而,在三个测试(10、11和12)中绝对误差小于一个电极(3mm),而在另外三个测试(13、14和16)中小于两个电极(6mm),结果被认为是可接受的。要指出的是,较大的误差在第一次测试(19)时发生,并且在执行这些测试期间,记录了浮层下面的传感器明显的结垢。对于第一次将传感器完全浸入薄油层的第一次测试,结垢效应非常高。此外,如测试者所报道的那样,实际厚度通过在油容器上注意到的弯月面效应而被略微偏斜。
尽管大多数结果是非常令人满意的,但是观察到在处理薄油层时结垢的效应是最大的(测试9)。因此,在该测量装置中将考虑减轻结垢问题。这可以通过与硬件设计和算法改进相关的若干种方法来完成。例如,可以通过增强引脚制造、添加高频振动器以及测试疏水性化学涂层来进一步开发包括水平引脚的防结垢机械结构。
浸渍测试(18-25)-Hydrocal 300
测试编号18到25使用的Hydrocal 300油的厚度范围为0.125英寸(3.18mm)至3英寸(76.20mm)。记录的水和油温度为70℉左右(69℉-7l℉)。在进行第一个测试(测试编号18)时,报告指出,难以用此厚度(0.125英寸)的油均匀地覆盖表面区域。通过用于重油的“校正的最低点算法”来获得测量结果。示出测量厚度与实际厚度的实验结果对于静态情况在表47中示出,并且对于动态情况在表48中示出。
表49:电容传感器浸渍测试(17-25)-Hydrocal 300/静态
Figure BDA0002659187000000541
表50:电容传感器浸渍测试(17-25)-Hydrocal 300/动态
Figure BDA0002659187000000542
表49所示的Hydrocal 300静态实验的结果显示出可接受的准确性,因为除第一个测试外,所有测试的绝对误差均小于3mm或为3mm左右,其表示单个电极的错误分类。如前所述,在这种情况下,具有最小油厚度的第一个测试具有最大的误差。在动态测试中,“校正的最低点算法”被证明产生良好的结果,因为如表50所示,所有动态测试均显示出平均绝对误差的范围为1mm左右到最大5.4mm,其表示在四十八个电极中少于两个电极的错误分类。相对于实际厚度的静态测试和动态测试的测量结果在图43中示出。
浸渍测试(26-33)-Calsol 8240
测试编号18到25使用的Calsol 8240油的厚度范围为0.125英寸(3.18mm)至3英寸(76.20mm)。记录的水和油温度在69℉至70.5℉之间。测量值是通过用于重油的“校正的最低点算法”获得的。
表51:电容传感器浸渍测试(26-33)-Calsol 8240/静态
Figure BDA0002659187000000551
表52:电容传感器浸渍测试(26-33)-Calsol 8240/动态
Figure BDA0002659187000000552
在静态情况和动态情况下测试Calsol 8240油的实验结果显示出针对不同厚度的高准确性。例如,静态情况测试的结果显示在
表51中,显示了绝对误差的范围为0.956mm(测试31)至5.823mm(测试26)。注意,该实验中的最大绝对误差不超过四十八个电极中两个以上电极的错误分类。对于动态情况,尽管由于结垢和随机传感器移动使误差略微增加,但绝对误差也在2mm左右至7mm左右的范围内变化,这表示仅一个或两个错误分类的电极。如前所述,通过使电极更薄并减小电极之间的竖向间隙来提高传感器分辨率有助于降低错误分类的影响。为了描述所有测试情况的行为,图44示出了在静态情况和动态情况下相对于实际厚度的测量厚度。
室外桥安装测试(电容传感器)
该测试旨在以一速度范围(其在部署到溢漏响应设备上或在快速水流中时是典型的)在表面浮层中前进的同时获取传感器数据。通过使用吊杆附接支架、端板和一部分泡沫被填充的24英寸吊杆,沿着测试池西壁制备通道,可以实现测试设置(图45)。最终通道尺寸为34英寸宽,58英尺-6英寸长。该标称面积用于包含由测试矩阵定义的变化的浮层厚度。该系列的浮层参数包括0.25、0.5、1.0和2.0英寸的厚度,使用测试油Hydrocal 300(测试34至测试61)。从沿西甲板定位的装运箱中分配测试油,并使用制造商换算表将使用物理深度探测法确定的体积转换为加仑。传感器附接至装配好的安装件(AUB),该安装件提供了使用铰链和拉绳将传感器从部署位置手动旋转到抬起位置(高于通道障碍物高度)的能力。这在技术人员进行测试的期间被监控,并在需要时作为安全措施实施,以避免传感器可能撞入障碍物中。AUB安装件和传感器附接至Ohmsett提供的安装件,该Ohmsett提供的安装件将传感器固定至主桥以进行竖向调节。图45示出了传感器安装设置,其中传感器抬高,吊杆附接支架和通道端板。
在以0.5和1.0knots(海里每小时)在北方向和南方向上行进的同时,执行多次通过并收集传感器数据。2.0knots及以上的通过仅在南方向进行。在Hydrocal 300油中进行测试时,总共记录了28个Ohmsett数据文件。
Ohmsett观察/注意事项:
风的影响显然导致所包含的浮层朝向风的向下方向堆叠更多。当存在时,风通常来自南方向,图46。
由于吊杆向外鼓起,目标浮层厚度偏斜到较小的厚度,尤其是2英寸的浮层,从而增加了表面积。前进的同时,传感器的前缘似乎会产生弓形波,这可能会使油转移离开传感器触点。
动态测试(34,60)-Hydrocal 300
使用四个浮层厚度和四个前进速度进行Hydrocal 300动态测试。测试区域为沿着测试池西壁的34”x~58.5’通道。在执行动态测试中使用的方法如下:
准备定义的浮层厚度;传感器以测试速度在油中向北行进,记录测量值,停止;反向,记录测量值。
将传感器抬起以离开测试区域,将传感器降低到清洁的池水中,以30英尺的测试速度记录测量行程,反向,在测试区域附近停止,抬起传感器以移动进入测试区域,重复南通过和北通过以及清洁的水通过3X。
执行这些测试时记录的环境天气条件示出在
表52中。表53中提供了动态实验的结果。测量值是通过用于重油的“校正的最低点算法”获得的。对于每个测试,提供所记录的测量厚度的平均值和标准偏差。图47示出了与实际(估计)厚度相比的平均测量厚度的曲线。
表52:环境天气条件-测试(34-60)
Figure BDA0002659187000000571
表53:电容感器动态测试(34-60)-Hydrocal 300
Figure BDA0002659187000000572
Figure BDA0002659187000000581
如表53和图47所示,在厚度范围为约6.35mm至约25.04mm之间以不同速度拖动时所执行的所有测试中的平均绝对误差,在最坏的情况下的范围为0.313mm至7.1mm之间。然而,这些测试中的大多数测试显示出绝对误差小于6mm的准确性令人印象深刻,其表示在48个电极中不到两个电极的错误分类。基于不同的测试场景(包括不同的速度和拖动条件),此结果被认为是可接受的。显然,对于实际估计厚度记录为50.08mm的最后三个测试编号53到60,出现了最大的绝对误差。然而,重要的是要注意,在这种情况下,并且基于Ohmsett提供的注意事项,由于吊杆向外鼓起增加了表面积,因此目标浮层厚度偏斜到较小的厚度,尤其是2英寸的浮层。此外,Ohmsett员工注意到在这种情况下,实际厚度是通过手动视觉工具测量的,为1.5英寸(38.lmm)。基于这个事实,并以38.lmm作为实际厚度,我们注意到这些测试中的实际绝对误差在4mm至5mm的范围内,因为测量的厚度的范围为33.06mm至34.60mm。
在波浪中的安装有撇取器的测试(电容传感器)
该测试的目的是在安装到典型的撇取器上时,在经历波浪条件并缓慢地进入波浪和逆着波浪行进时,收集浮层厚度数据。测试装置包括沿着测试池西壁的隆起区域,测量为10英尺x 34英尺。该传感器被牢固地安装到Desmi Termite撇取器框架上,并位于浮标中的两个浮标之间以及撇取器堰的前面。AUB和Ohmsett团队为竖向调整提供了安装件。在测试之前,将撇取器放入测试池中,并将传感器调整成使得水线接近测量范围的中央。
图48示出了安装在测试区域中的撇取器上的传感器。撇取器用绳索拴住;主桥和副桥中的每一者都布有一条绳索。从这些位置,技术人员手动控制撇取器的位置并将撇取器缓慢拽入波浪中。如图所示,波浪从右侧(测试池的南端)接近撇取器。对于这些系列的测试,提供了两种浮层厚度的Hydrocal测试油:1英寸和3英寸。在测试期间产生并调整了多种波浪条件,以提供不超过传感器的工作范围的波浪高度。总共记录了三个Ohmsett数据文件(测试90-92),其中捕获了表面轮廓数据。表面轮廓数据(用于波浪分析)是使用位于主桥上的向下看的距离传感器(称为西横幅(banner west))捕获的。由于传感器牢固地安装到撇取器,因此其受到撇取器在波浪中关于俯仰、升沉和横摇方面的响应。
使用Hydrocal 300油、两种厚度和变化的波浪条件进行了测试编号90、91和93的安装有撇取器的测试。用于执行这些测试的方法描述如下:
电容传感器经由AUB团队提供的支架安装到撇取器。用安装在水中的撇取器确立传感器的初始深度。主桥和副桥位于测试区域的相对端。撇取器将被拴住-控制绳索到达每个桥。获得固定读数;开始波浪条件,运行测试约15分钟,按照指导在区域中手动操纵撇取器。表55中总结了在这三个测试中使用的波浪特性。表54中示出了环境天气条件。
表54:环境天气条件-测试(90-92)
测试编号 平均水温(°F) 平均风速(mph) 平均风向(°) 平均空气温度(°F)
90 45.87 7.53 311.70 49.20
91 46.92 10.12 319.09 51.64
92 51.23 10.34 321.88 52.83
表55:安装有撇取器的测试-波浪条件
Figure BDA0002659187000000591
安装有撇取器测试-测试编号90
说明:安装有撇取器,手动拉入波浪,油厚度:1英寸(25.4mm),波浪条件:9:00am–第1设置:15cpm,3”;第2设置:25cpm,3”。
对于第一次测试,记录了三个日志文件。除了开始时间和结束时间外,还在表56中提供了根据每个波浪实验计算出的平均测量厚度。
表56:安装有撇取器的结果(电容-测试90)
Figure BDA0002659187000000601
表56所示的正弦测试90的结果表明,传感器的准确性主要受波浪的开始的影响,然后即使在第二个波浪被致动时,测量的绝对误差也会随着时间降低。这与两个主要因素有关。首先,由油积聚在传感器本体上引起的重油的结垢效应增加了测量厚度,尤其是在波浪的开始阶段,在该阶段发生从平静状态到波浪状态的突然转变。第二个因素与算法中使用的平滑速率有关。平滑由移动平均属性来控制,且基于当前设置,实现的移动平均速率相对缓慢。加快改变速率可以有助于增强恢复过程。
安装有撇取器的测试-测试编号91
测试编号91,港口斩波(Harbor chop)测试。波浪条件:10:00am–l5cpm,3”(过于激进,将cpm降低到30)
表57:安装有撇取器的结果(电容-测试91)
Figure BDA0002659187000000602
表57中所示的测试91的结果显示出,在平静条件下在开始的5分钟内具有非常高的精度,平均绝对误差为0.437mm。在产生波浪之后,基于Ohmsett工作人员记录的注意事项,传感器沉浸到水中。在这段时间期间,传感器针对一组测量记录了3mm。实际上,恒定的3mm测量被认为是无效的,因为在沉浸时传感器位于油层下面。此后,从10:31:22开始,传感器产生有效测量。基于第三种情况下进行的有效测量的平均值,平均绝对误差也是可接受的(3.54mm)。这里重要的是要注意沉浸问题。
安装有撇取器的测试-测试编号92
测试编号92,Harbor chop测试。波浪条件:1)10:55am-波浪开始,l5cpm,3”;2)11:08am–增加到25cpm,3”;3)11:18am–改变为25cpm,4.5”;4)11:21am–改变为35cpm,4.5”;5)11:25am–波浪停止
表58:安装有撇取器的结果(电容-测试92)
Figure BDA0002659187000000611
表58所示的实验结果表明,在前两种情况下,测量值的平均绝对误差是类似的(8mm)。然而,在第三种情况下,当波浪的振幅增加到4.5”时,误差增加到10mm左右。然而,在后两种情况下,平均误差随着波浪的停止而大大降低。这里重要的是要注意,尽管事实上传感器的准确性受到所呈现的波浪条件的影响,但在传感器分辨率方面,绝对平均误差被认为是可接受的(10mm=3个条)。再有,可以得出结论,必须通过将来的增强来进一步减轻结垢效应。
用于在结垢条件下进行感测的电极的替代设计
如前所述,当在动态条件下处理高粘度液体时,共面传感器的性能可能会受到影响。在这种情形下,在所谓的结垢的情况下,液体积聚在传感器本体上,导致测量电容出现误差。在该实施方式中,传感器电极可以显著减小结垢对传感器测量的影响。所提出的实施方式包括多行平行板结构。
所提出的实施方式包括一组针状引脚作为一结构,该结构可以穿透油结垢层并且将电场沿着z轴朝向目标区域聚焦。如前所述,在初始传感器实施方式的共面电极的中央设置单个引脚,从而解决了水中的油结垢问题。然而,在该实施方式中,共面电极完全被用作平行板电容器的引脚阵列代替。附接到每行的第一组引脚用于激励和测量,并用作电容器的第一传导板。靠着感测引脚安装的第二组引脚连接至电气接地,并用作平行板电容器的第二板。对感测引脚与接地引脚之间的间隙进行填充的非传导材料(即油)用作电介质。在诸如海水之类的传导液体的情况下,感测引脚与接地引脚被短路,从而导致测量电压的显著变化。
在一个实施方式中,引脚被安装成在彼此旁边或沿同一行位于分离的单元中。使用ANSYS 19.0软件中包括的Maxwell软件包,在3D模型中评估该实施方式的有效性,并通过一组有限元模拟进行了评估。在一个实施方式中,图49示出了使用包括三个引脚510、520、530的单个感测单元500的示例。中央引脚520用于激励和测量,并且相邻的引脚510和530连接至零电位以用于保护目的。图50示出了沿着同一行以约5mm的分隔距离D1分布的三个分离的感测单元500a、500b、500c,以及图51示出了使用一组相邻的感测单元的实施方式,其包括以约2.54mm的距离D2被相等地分离的11个引脚540。分离距离D1基于应用需求取决于传感器的可接受宽度。分离距离Dl不会影响测量原理,因为单元几乎彼此隔离。然而,分离距离D1可以在约2mm至约15mm之间变化。引脚540由铜制成并且具有约10mm的长度L1和约1mm的半径。引脚的半径和长度取决于允许的感测区域。在一个高分辨率测量实施方式中,半径可以在约0.5mm至约2mm之间变化,并且引脚以相对小的距离彼此分离。使引脚分离的距离D1的增加导致较弱的信号强度。在该实施方式中,引脚的长度可以在约2mm至约20mm之间变化。引脚的半径或长度的增加导致基部电容的增加,并且需要在测量仪器的设计中加以考虑。每个引脚在其基部连接有约2mm长且约0.05mm厚的方形铜片550。根据一个实施方式,保持引脚的PCB板560由FR4_环氧树脂材料构成,该材料具有约4.4的介电常数和约1.6mm的厚度。模拟的区域填充有空气。
在第一模拟中,没有材料被添加到PCB的顶表面,其旨在绘制电场的基本幅度分布。如图51所示,从左侧开始从1到11对引脚进行编号。引脚2、4、6、8和10的激励设置为2V。引脚1、3、5、7、9和11的激励设置为0V。基于此分布,由于每个感测引脚在其右侧和左侧都具有两个接地引脚,因此在感测行中包括五个感测单元。表示电场幅度的模拟结果在图49、图50和图51中示出。
第一模拟的结果表明,电场存在于感测引脚之间的空区域中并且终止于感测行的端侧。电场终止是由于接地引脚施加的保护作用所致。另外,电场沿着引脚的本体(沿z轴)分布,这对于解决油结垢问题是非常需要的。
第二模拟是厚度扫描模拟,其旨在评估不同材料厚度对感测设计实施方式的影响。在该模拟中,所使用的材料由相对电容率约为4的二氧化硅制成。置于PCB顶表面处的材料的厚度从约0mm到约15mm逐渐改变,增量为约0.2mm。与应用于单-单元设计和三-单元设计的厚度扫描模拟的结果相比,相对于材料厚度测量的电容在图52中示出。
厚度扫描模拟的结果显示出测量电容与材料的厚度之间的线性关系。另外,在设计实施方式中,传感器的灵敏度增加了,这从图52中所示的曲线的斜率确定出来。
与基于共面的设计相比,基于引脚的设计的实验评估
为了验证经由模拟进行的分析,实施并测试了若干实施方式。图53示出了已实施的PCB实施方式600-660,其包括一组基于共面的设计(交错600、螺旋610、同心620和平行630);以及三个基于引脚的设计,10个单元基于引脚的实施方式640、3个单元基于引脚的实施方式650和一个单元基于引脚的实施方式660。
根据以下标准测试了实施方式。首先,为了记录基部电容,使用LCR仪表仪器(BKPrecision 875B)来测量在空气中的实施方式中的电容。该测量是在室内在25℃左右的环境温度下进行的。然后,在完全浸入油中的同事,针对每个实施方式600-660测量最大电容。使用齿轮润滑油(SAE 140)进行实验。在实验中使用了直径为约8cm且高度为约9cm的圆柱形液体容器。在空气和油中测量的电容以及绝对差(A.D.)总结在图54中。
测量的结果表明,对于所有实施方式600-660,最大电容(油)小于模拟中记录的最大电容。这是因为油的介电常数(≈2)小于模拟中使用的材料(二氧化硅)的介电常数。基于共面的同心设计和平行设计的所测量的基部电容与模拟中记录的电容相匹配。此外,两种设计在浸入油中后遇到相同的电容变化(≈lpF)。该结果显示出与模拟结果的良好吻合,其中两个模型由于存在被测材料而显示出几乎相同的变化。
测量证明,与其他基于共面的设计相比,交错设计提供了最大的灵敏度。重要的是要注意,在模拟和测量中,交错设计的动态范围是平行设计和同心设计的动态范围的两倍。螺旋设计(未在模拟中使用)显示出与交错设计类似的灵敏度。然而,交错设计是优选的,因为其面积较小。
对于基于引脚的设计,测量表明它们的平均基部电容小于共面设计。例如,3个单元基于引脚的实施方式650具有比基于共面的平行设计和同心设计更高的灵敏度,以及具有较小的基部电容。此外,测量表明,当添加更多单元时,基于引脚的传感器的灵敏度会提高。
10个单元基于引脚的640实施方式具有最大的灵敏度和中等的基部电容。因此,该结果证明了基于引脚的实施方式在增强传感器区分不同介电材料的能力以及同时通过穿透传感器本体上积聚的油层来减轻油结垢问题方面的有效性。
如在本申请中使用的,术语“组件”和“系统”旨在指代与计算机有关的实体,或者是硬件、硬件和软件的组合、软件,或者是执行中的软件。例如,组件可以是但不限于:在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。作为例示,在服务器上运行的应用程序和服务器都可以是组件。一个或更多个组件可以驻留在进程和/或执行线程中,并且组件可以位于一台计算机上和/或分布在两台或更多台计算机之间。
通常,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、组件、数据结构等。此外,本领域技术人员将理解,可以用其他计算机系统配置来实践本发明的方法,包括单处理器计算机系统或多处理器计算机系统、小型计算机、大型计算机以及个人计算机、手持式计算装置、基于微处理器的或可编程的消费者电子设备等,它们中的每一者都可以可操作地耦接到一个或更多个相关装置。
还可以在分布式计算环境中实践本发明的所示方面,其中,某些任务由通过通信网络链接的远程处理设备执行。在分布式计算环境中,程序模块可以位于本地和远程内存存储装置中。
计算机通常包括各种计算机可读介质。计算机可读介质可以是计算机可以访问的任何可用介质,并且包括易失性介质和非易失性介质,可移动介质和不可移动介质。作为示例而非限制,计算机可读介质可以包括计算机存储介质和通信介质。计算机存储介质包括以用于存储诸如计算机可读指令、数据结构、程序模块或其他数据之类的信息的任何方法或技术实现的易失性介质和非易失性介质、可移动介质和不可移动介质。计算机存储介质包括但不限于:RAM、ROM、EEPROM、闪存或其他存储技术、CD-ROM、数字多功能磁盘(DVD)或其他光盘存储、盒式磁带、磁带、磁盘存储或其他磁存储装置、或可用于存储所需信息并且可由计算机访问的任何其他介质。
通信介质通常在诸如载波或其他传输机制之类的经调制的数据信号中体现计算机可读指令、数据结构、程序模块或其他数据,并且包括任何信息传递介质。术语“经调制的数据信号”是指具有以将信息编码在信号中的这种方式来设置或改变其特性中的一个或更多个特性的信号。作为示例而非限制,通信介质包括:诸如有线网络或直接有线连接之类的有线介质,以及诸如声学、RF、红外和其他无线介质之类的无线介质。以上任何内容的组合也应包括在计算机可读介质的范围内。
软件包括应用程序和算法。软件可以在智能电话、平板电脑或个人计算机中、在云中、可穿戴设备上或其他计算或处理设备上实现。软件可以包括日志、日记、表格、游戏、录音、通信、SMS消息、网站、图表、交互式工具、社交网络、VOIP(互联网协议语音)、电子邮件和视频。
在一些实施方式中,本文描述的并且由计算机程序执行的功能或(一个或更多个)进程中的一些或全部功能或进程由计算机程序执行,该计算机程序由计算机可读程序代码形成并且体现在计算机可读介质中。短语“计算机可读程序代码”包括任何类型的计算机代码,包括源代码、目标代码、可执行代码、固件、软件等。短语“计算机可读介质”包括能够由计算机访问的任何类型的介质,诸如只读存储器(ROM)、随机存取存储器(RAM)、硬盘驱动器、光盘(CD)、数字视频光盘(DVD)或任何其他类型的存储器。
本说明书中提到的所有出版物和专利申请都以相同的程度通过引用并入本文,就好像每个单独的出版物或专利申请均被明确地且单独地表明通过引用并入一样。
[1]Texas Advanced Optoelectronic Solutions Inc.,“TSL230R-LF,TSL230AR-LF,TSL230BR-LF Programmable Light-to-frequency Converters,”TAOS079A,October2006.
[2]RLX COMPONENTS s.r.o.Electronic Components Distributor,“Light toFrequency Board(MIKROELEKTRONIKA),”[Online].Available:http://rlx.sk/en/measurement-boards/448-light-tofrequency-board-mikroelektron ika.html.[Accessed:Feb-20l7].
[3]Mikroelektronika,“Light to Frequency Additional Board-UserManual,”2017.
[4]Electronics Katranji Trading(EKT),“412CH GPS SKM53MODULE,”[Online].Available:http://www.ekt2.com/products/productdetails/4l2_CH_GPS_SKM53_MODULE.[Accessed:Feb-2017].
[5]Electronics Katranji Trading(EKT),“412Arduino NANO 3.0 328CH340,”[Online].Available:http://www.ekt2.com/products/productdetails/412_ARDUINO_NANO_3.0_328_CH340.[Accessed:Feb-2017].
[6]Electronics Katranji Trading(EKT),“412Arduino WIRELESS TRANSCEIVER2.4Ghz,”[Online].Available:htp://www.ekt2.com/products/productdetails/412_ARDUINO_WIRELESS_TR ANSCEIVER_2.4Ghz.[Accessed:Feb-20l7].
[7]Electronics Katranji Trading(EKT),“8D37 MALE PCB,”[Online].Available:http://ekt2.com/products/productdetails/8_D37_MALE_PCB.[Accessed:Feb-20l7].
[8]Electronics Katranji Trading(EKT),“8D37 FEM PCB,”[Online].Available:http://ekt2.com/products/productdetails/8_D37_FEM_PCB.[Accessed:Feb-2017].
[9]Nano Protech,“Super Electrical Insulation Nano Protech,”[Online].Available:http://www.nanoprotech.mk/home-page/super-electrical-insulation/.[Accessed:Feb-20l7].
[10]Freescale Semiconductor,“Proximity Capacitive Touch SensorController MPR121,”Technical Data Sheet,2013.
[13]"Ultra Ever Dry|Slovenija".Ultraeverdry.si.N.p.,2017.Web.29Mar.2017.
[14]"Ultratech|Ultra-Ever Dry|Ultratech International".Spillcontainment.com.N.p.,2017.Web.29Mar.2017.
[15]Hartigan,J.A.et al."Algorithm AS 136:A K-Means ClusteringAlgorithm."Journal of the Royal Statistical Society.Series C(AppliedStatistics)28,no.1(1979):100-08.doi:10.2307/2346830.
F.N.Toth,et al.,“A planar capacitive precision gauge for liquid-leveland leakage detection,”IEEE Trans.Instrum.Meas.,vol.46,no.2,pp.644-646,1997.
S.C.Bera,et al.“A low-cost noncontact capacitance-type leveltransducer for a conducting liquid,”IEEE Trans.Instrum.Meas.,vol.55,no.3,pp.778-786,2006.
B.Kumar,et al.,“A Review on Capacitive-Type Sensor for Measurement ofHeight of Liquid Level,”Meas.Control,vol.47,no.7,pp.219-224,2014.
H.Canbolat,“A novel level measurement technique using threecapacitive sensors for liquids,”IEEE Trans.Instrum.Meas.,vol.58,no.10,pp.3762-3768,2009.
尽管已经结合各种实施方式描述了本发明,但是应当理解,本发明能够进行进一步的修改。本申请旨在覆盖总体上遵循本发明的原理的本发明的任何变型、使用或改编,并且包括在本发明所属领域内的已知和惯常实践中的与本公开偏离的内容。

Claims (20)

1.一种电容传感器,所述电容传感器包括:形成电容器阵列的多个传导板,其中,每个电极处的电容变化是独立测量的,以用于检测所述传导板周围的材料的类型;由所述电极形成的电场在感测平面上方延伸,并且允许检测所述传感器周围的液体的介电常数变化。
2.根据权利要求1所述的电容传感器,其中,由于所述传感器是基于电极之间的电容的差而不是基于绝对电容值来起作用的,因此在现场不需要针对不同类型的材料进行校准。
3.根据权利要求1所述的电容传感器,其中,所述电容传感器能够对水/油界面以及油/空气界面进行区分;并且无论是沿着所述传感器在哪个位置出现油的厚度均能够确定出所述厚度。
4.根据权利要求1所述的电容传感器,还包括:多个电容触摸控制器模块,所述多个电容触摸控制器模块可操作地耦接到所述多个传导板和处理单元;其中,所述电容触摸控制器是通过在特定持续时间期间用DC电流对每个感测电极进行充电和放电来工作的;并且在每个电极的激励和测量期间,所有其他电极均连接至接地。
5.根据权利要求4所述的电容传感器,其中,在每个充电和放电周期结束时,所测量的电压通过所述处理单元被转换为数字值,并且所述数字值被应用有数字滤波器,以提高在不同环境条件下的抗噪性。
6.根据权利要求5所述的电容传感器,其中,每个电极的高度为约2mm,并且两个相邻电极之间的竖向间隙为约1mm。
7.根据权利要求6所述的电容传感器,还包括微控制器,所述微控制器可操作地耦接所述处理单元以接收所述数字值,并且所述微控制器应用厚度估计算法来计算并报告实际的油厚度。
8.根据权利要求6所述的电容传感器,还包括多个水平引脚,所述多个水平引脚可操作地耦接到传导条;其中,所述多个水平引脚在位于水中时被短路;并且位于油中的所述多个水平引脚完全浸入油中,并且所测量的电容与所述油的介电常数有关。
9.一种用于找到位于具有不同介电常数的材料之间的界面处的电极的指数的测量方法,所述方法包括:
通过使用多个电容触摸控制器和多路复用器以顺序方式测量位于水/油界面以及空气/油界面处的所有电极的电压值;
读取从每个电极获取的数字电压值,并且应用多层数字滤波以增强所述数字电压值的稳定性;
对所获取的电压值进行归一化,并且针对每个电极计算与基线校准值的相对百分比变化;
使用所计算的相对百分比变化来确定每个电极的状态,其中,每个电极的状态是空气、油或水;以及
将每个比率分配给所述比率的电极指数,并且通过了解所述传感器的几何尺寸以及了解电极之间的间距,计算油的实际厚度。
10.根据权利要求9所述的测量方法,还包括:当所述传感器完全干燥并且露天放置特定的持续时间时取得校准值。
11.根据权利要求9所述的测量方法,还包括:处理传感器上升或下降时的动态运动;以及通过使用每个测量周期处的所有电压测量值的平均值来检测传感器运动的方向,并且确定出所述传感器运动的方向。
12.一种用于降低轻油中的结垢效应的测量方法,所述方法是通过应用权利要求9所述的测量方法经由在特定时间间隔期间应用而进行的。
13.一种用于降低重油中的结垢效应的测量方法,所述方法是通过应用权利要求9所述的测量方法进行的,并且所述测量方法检测所述传感器运动的最低点并应用校正方法以从所检测的油电极中去除结垢电极的数量;所述方法在计算所述实际厚度之前通过检测所述结垢电极的数量并且从油间隔中减去所述结垢电极的数量来使用时间插值。
14.根据权利要求9所述的测量方法,还包括:通过低电压值以及与基线校准值的高相对差来检测由于水接触而导致的电极短路;将短路的电极分类为水电极并且从感测阵列中去除;识别浸入空气和油中的其余电极,并基于所述电极之间的相对差来检测两种介质之间的界面电极。在这种情况下,由于油是非传导液体,因此所述电极不会短路,并且获取每个电极的实际电容。由于算法依赖于电极之间的相对差来找到所述界面,因此电容值的实际正确性不是必需的。
15.一种基于电容阵列的浮动液体厚度测量装置,所述测量装置包括:
传感器,所述传感器能够测量在至少两种介质之间浮动的流体的厚度;
其中,所述传感器是电容阵列,所述电容阵列具有至少两个传导板,所述至少两个传导板彼此相邻地布置成使得在所述至少两个传导板之间具有空置的空间;
包括不同介电常数的至少两种介电材料面向所述传导板;
通过测量所述传导板之间的电容变化,空气-油界面以及水-油界面被进行识别;以及
基于所识别的空气-油界面以及水-油界面和所述传感器的尺寸,浮动的所述流体的厚度被计算出。
16.根据权利要求15所述的测量装置,还包括在开阔海洋中的撇取操作期间使用所述浮动液体厚度测量装置或作为手持装置来使用所述浮动液体厚度测量装置。
17.根据权利要求15所述的测量装置,还包括在动态环境中使用所述传感器,所述动态环境具有波浪,运动/拖曳,不同类型的油,咸水/淡水,主要包括光照、温度和湿度的不同环境条件。
18.根据权利要求15所述的测量装置,其中,油厚度测量装置通过依赖于电容条阵列来提供油厚度估计,并且依赖于材料的相对读数而不是绝对读数,从而使得所述传感器读数对油的类型、环境条件和/或制造缺陷是不敏感的。
19.根据权利要求15所述的测量装置,其中,所述传感器设计包括薄刀状设计,以将对测量的结垢影响最小化并且改善流体力学性能。
20.根据权利要求15所述的测量装置,其中,所述传感器设计包括引脚阵列,所述引脚阵列是平行板电容器,所述平行板电容器包括:附接至每行的第一组感测引脚,并且所述第一组引脚用于进行激励和测量并且是所述电容器的第一传导板;靠着所述感测引脚安装的第二组接地引脚,所述第二组接地引脚连接至电气接地,并且用作所述平行板电容器的第二板,其中,对所述感测引脚与所述接地引脚之间的间隙进行填充的非传导材料用作电介质。
CN201980016413.XA 2018-02-02 2019-01-31 一种厚度测量装置及使用方法 Pending CN111801553A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862625736P 2018-02-02 2018-02-02
US62/625,736 2018-02-02
PCT/US2019/015994 WO2019152614A1 (en) 2018-02-02 2019-01-31 A thickness measurement device and methods of use

Publications (1)

Publication Number Publication Date
CN111801553A true CN111801553A (zh) 2020-10-20

Family

ID=67475441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980016413.XA Pending CN111801553A (zh) 2018-02-02 2019-01-31 一种厚度测量装置及使用方法

Country Status (4)

Country Link
US (1) US10976147B2 (zh)
CN (1) CN111801553A (zh)
CA (1) CA3089851A1 (zh)
WO (1) WO2019152614A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729093A (zh) * 2020-12-08 2021-04-30 广东化一环境科技有限公司 介质厚度检测方法、控制装置及存储介质
CN112729051A (zh) * 2020-12-08 2021-04-30 广东化一环境科技有限公司 介质厚度检测设备
CN113155008A (zh) * 2021-03-10 2021-07-23 广东化一环境科技有限公司 一种针对分层介质的厚度检测设备及检测方法
CN117091489A (zh) * 2023-10-16 2023-11-21 青禾晶元(天津)半导体材料有限公司 一种复合结构的顶膜厚度检测装置及检测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10837803B2 (en) * 2019-04-12 2020-11-17 Kla Corporation Inspection system with grounded capacitive sample proximity sensor
CN110455655B (zh) * 2019-08-23 2024-05-28 水利部杭州机械设计研究所 一种热喷涂涂层高通量检测装置及测试方法
US11796374B2 (en) * 2020-04-17 2023-10-24 Goodrich Corporation Composite water tank level sensor
US11561654B2 (en) * 2021-05-06 2023-01-24 Cypress Semiconductor Corporation Machine learning-based position determination

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648165A (en) * 1970-09-24 1972-03-07 Sun Oil Co Capacitance-measuring apparatus including means maintaining the voltage across the unknown capacitance constant
GB1419779A (en) * 1971-12-30 1975-12-31 Western Electric Co Monitoring of capacitance
DE2852212A1 (de) * 1978-12-02 1980-06-19 Vdo Schindling Einrichtung zur kapazitiven fuellstandsmessung
WO1988001747A1 (en) * 1986-09-03 1988-03-10 Extrude Hone Corporation Capacitor array sensors tactile and proximity sensing and methods of use thereof
US4806847A (en) * 1986-12-09 1989-02-21 Caterpillar Inc. Dielectric liquid level sensor and method
CA2215164A1 (en) * 1995-03-14 1996-09-19 Computational Systems, Inc. In-situ oil analyzer and methods using same, particularly for continuous on-board analysis of diesel engine lubrication systems
CA2176860A1 (en) * 1996-05-17 1997-11-18 Hiroshi Kawakatsu A method for measuring a fluid level and an apparatus thereof
US20050127908A1 (en) * 2003-10-10 2005-06-16 Jentek Sensors, Inc. Absolute property measurements using electromagnetic sensors
CA2549815A1 (en) * 2005-06-08 2006-12-08 Herdstar, Llc. Bin level monitor
JP2007298362A (ja) * 2006-04-28 2007-11-15 Yazaki Corp 静電容量式液面レベルセンサ
US20080231290A1 (en) * 2004-05-14 2008-09-25 Scientific Generics Ltd. Capacitive Position Sensor
CN101356424A (zh) * 2005-12-02 2009-01-28 特灵国际股份有限公司 电容式物位传感器中的变频电荷泵
CN102007465A (zh) * 2008-02-28 2011-04-06 纽约大学 用于给处理器提供输入的方法和设备以及传感器垫
JP2011117756A (ja) * 2009-12-01 2011-06-16 Ihi Corp 膜厚計測装置及び方法
CN102109940A (zh) * 2009-12-29 2011-06-29 三星电子株式会社 电容感测器件及其制造方法和电容感测系统
CN203163821U (zh) * 2012-12-12 2013-08-28 重庆德格科技发展有限公司 一种平行板多电极电容式油位传感器
US20130269431A1 (en) * 2012-04-12 2013-10-17 Yazaki Corporation Liquid level detecting device
US20140020463A1 (en) * 2012-07-23 2014-01-23 Aisan Kogyo Kabushiki Kaisha Liquid sensor
CN104236672A (zh) * 2014-09-30 2014-12-24 四川泛华航空仪表电器有限公司 多余度电容式油量传感器
CN104266712A (zh) * 2014-09-29 2015-01-07 深圳市爱普特微电子有限公司 基于电容式传感器的液体高度测量方法和装置
US20150125212A1 (en) * 2013-11-05 2015-05-07 Crystal Lagoons (Curacao) B.V Floating lake system and methods of treating water within a floating lake
US20150204708A1 (en) * 2012-08-16 2015-07-23 The University Of Bradford Device and method for measuring the depth of media
EP2908120A1 (en) * 2012-10-09 2015-08-19 Sun-a Corporation Fluid state identification device
WO2015183461A1 (en) * 2014-05-29 2015-12-03 Cypress Semiconductor Corporation Single layer touchscreen with ground insertion
CN105674869A (zh) * 2016-03-30 2016-06-15 华北理工大学 一种不同介质厚度的自动测量方法及其测量装置
CN106123765A (zh) * 2016-08-05 2016-11-16 南海西部石油油田服务(深圳)有限公司 一种用于三相分离器的介质乳化层厚度测量仪
CN106323416A (zh) * 2016-09-23 2017-01-11 惠州华阳通用电子有限公司 一种电容式油量测量装置
CN107076597A (zh) * 2014-05-30 2017-08-18 埃尔特克有限公司 用于检测介质的高度的传感器
US20170299416A1 (en) * 2014-09-15 2017-10-19 Eltek S.P.A. Sensor for detecting the level of a medium
US20190195819A1 (en) * 2017-12-22 2019-06-27 International Business Machines Corporation Micro-capacitance sensor array for sensing analytes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1321545A (fr) 1962-02-07 1963-03-22 Schlumberger Prospection Perfectionnements aux dispositifs pour l'étude de la composition des mélanges d'eau et de liquides isolants
FR2386811A1 (fr) 1977-04-06 1978-11-03 Elf Aquitaine Detecteur de niveau de separation entre deux liquides
GB8401221D0 (en) 1984-01-17 1984-02-22 Shell Int Research Level gauge
US5613399A (en) 1993-10-27 1997-03-25 Kdi Precision Products, Inc. Method for liquid level detection
US6237412B1 (en) 1997-07-16 2001-05-29 Nitta Corporation Level sensor
US8146421B2 (en) 2008-02-08 2012-04-03 Pulstone Technologies, LLC Method and apparatus for sensing levels of insoluble fluids
US20110284087A1 (en) 2010-05-18 2011-11-24 Auburn University Passive oil collection and recovery system

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648165A (en) * 1970-09-24 1972-03-07 Sun Oil Co Capacitance-measuring apparatus including means maintaining the voltage across the unknown capacitance constant
GB1419779A (en) * 1971-12-30 1975-12-31 Western Electric Co Monitoring of capacitance
DE2852212A1 (de) * 1978-12-02 1980-06-19 Vdo Schindling Einrichtung zur kapazitiven fuellstandsmessung
WO1988001747A1 (en) * 1986-09-03 1988-03-10 Extrude Hone Corporation Capacitor array sensors tactile and proximity sensing and methods of use thereof
US4806847A (en) * 1986-12-09 1989-02-21 Caterpillar Inc. Dielectric liquid level sensor and method
CA2215164A1 (en) * 1995-03-14 1996-09-19 Computational Systems, Inc. In-situ oil analyzer and methods using same, particularly for continuous on-board analysis of diesel engine lubrication systems
CA2176860A1 (en) * 1996-05-17 1997-11-18 Hiroshi Kawakatsu A method for measuring a fluid level and an apparatus thereof
US6101873A (en) * 1996-05-17 2000-08-15 Nohken Inc. Level sensor
US20050127908A1 (en) * 2003-10-10 2005-06-16 Jentek Sensors, Inc. Absolute property measurements using electromagnetic sensors
US20080231290A1 (en) * 2004-05-14 2008-09-25 Scientific Generics Ltd. Capacitive Position Sensor
CA2549815A1 (en) * 2005-06-08 2006-12-08 Herdstar, Llc. Bin level monitor
CN101356424A (zh) * 2005-12-02 2009-01-28 特灵国际股份有限公司 电容式物位传感器中的变频电荷泵
JP2007298362A (ja) * 2006-04-28 2007-11-15 Yazaki Corp 静電容量式液面レベルセンサ
CN102007465A (zh) * 2008-02-28 2011-04-06 纽约大学 用于给处理器提供输入的方法和设备以及传感器垫
JP2011117756A (ja) * 2009-12-01 2011-06-16 Ihi Corp 膜厚計測装置及び方法
CN102109940A (zh) * 2009-12-29 2011-06-29 三星电子株式会社 电容感测器件及其制造方法和电容感测系统
US20130269431A1 (en) * 2012-04-12 2013-10-17 Yazaki Corporation Liquid level detecting device
US20140020463A1 (en) * 2012-07-23 2014-01-23 Aisan Kogyo Kabushiki Kaisha Liquid sensor
US20150204708A1 (en) * 2012-08-16 2015-07-23 The University Of Bradford Device and method for measuring the depth of media
US20150260687A1 (en) * 2012-10-09 2015-09-17 Sun-A Corporation Fluid state identification device
EP2908120A1 (en) * 2012-10-09 2015-08-19 Sun-a Corporation Fluid state identification device
CN203163821U (zh) * 2012-12-12 2013-08-28 重庆德格科技发展有限公司 一种平行板多电极电容式油位传感器
US20150125212A1 (en) * 2013-11-05 2015-05-07 Crystal Lagoons (Curacao) B.V Floating lake system and methods of treating water within a floating lake
WO2015183461A1 (en) * 2014-05-29 2015-12-03 Cypress Semiconductor Corporation Single layer touchscreen with ground insertion
CN107076597A (zh) * 2014-05-30 2017-08-18 埃尔特克有限公司 用于检测介质的高度的传感器
US20170299416A1 (en) * 2014-09-15 2017-10-19 Eltek S.P.A. Sensor for detecting the level of a medium
CN104266712A (zh) * 2014-09-29 2015-01-07 深圳市爱普特微电子有限公司 基于电容式传感器的液体高度测量方法和装置
CN104236672A (zh) * 2014-09-30 2014-12-24 四川泛华航空仪表电器有限公司 多余度电容式油量传感器
CN105674869A (zh) * 2016-03-30 2016-06-15 华北理工大学 一种不同介质厚度的自动测量方法及其测量装置
CN106123765A (zh) * 2016-08-05 2016-11-16 南海西部石油油田服务(深圳)有限公司 一种用于三相分离器的介质乳化层厚度测量仪
CN106323416A (zh) * 2016-09-23 2017-01-11 惠州华阳通用电子有限公司 一种电容式油量测量装置
US20190195819A1 (en) * 2017-12-22 2019-06-27 International Business Machines Corporation Micro-capacitance sensor array for sensing analytes

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Proximity Capacitive Touch Sensor Controller", pages 1 - 3, Retrieved from the Internet <URL:https://www.nxp.com/docs/en/data-sheet/MPR121.pdf> *
DENKILKIAN, H: "Wireless Sensor for Continuous Real-Time Oil Spill Thickness and Location Measurement", 《IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT》, vol. 58, no. 12, 1 December 2009 (2009-12-01), pages 4001 - 4011, XP011278814, DOI: 10.1109/TIM.2009.2021641 *
RICKER, R: "A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data", 《CRYOSPHERE》, vol. 11, no. 4, 24 July 2017 (2017-07-24), pages 1607 - 1623 *
冯地直: "电阻率对电容法测硅片厚度的影响1", 《 第十二届中国科协年会 》, 26 May 2011 (2011-05-26), pages 1 - 5 *
黄健: "基于电容感测高温隔离触控模块的研制", 《宇航计测技术》, vol. 37, no. 5, 31 October 2017 (2017-10-31), pages 40 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729093A (zh) * 2020-12-08 2021-04-30 广东化一环境科技有限公司 介质厚度检测方法、控制装置及存储介质
CN112729051A (zh) * 2020-12-08 2021-04-30 广东化一环境科技有限公司 介质厚度检测设备
CN113155008A (zh) * 2021-03-10 2021-07-23 广东化一环境科技有限公司 一种针对分层介质的厚度检测设备及检测方法
CN117091489A (zh) * 2023-10-16 2023-11-21 青禾晶元(天津)半导体材料有限公司 一种复合结构的顶膜厚度检测装置及检测方法
CN117091489B (zh) * 2023-10-16 2023-12-22 青禾晶元(天津)半导体材料有限公司 一种复合结构的顶膜厚度检测装置及检测方法

Also Published As

Publication number Publication date
US20190242689A1 (en) 2019-08-08
RU2020128644A3 (zh) 2022-03-31
US10976147B2 (en) 2021-04-13
RU2020128644A (ru) 2022-02-28
CA3089851A1 (en) 2019-08-08
WO2019152614A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
CN111801553A (zh) 一种厚度测量装置及使用方法
Saleh et al. In situ measurement of oil slick thickness
US8926823B2 (en) Sub-coating coated metal corrosion measurement
EP2223081B1 (en) Electrochemical cell for eis
Trentin et al. Electrochemical characterization of polymeric coatings for corrosion protection: a review of advances and perspectives
CN205809241U (zh) 腐蚀检测电路以及电动机驱动装置
CN104880234A (zh) 一种液位传感器及液位检测方法
CN104076079A (zh) 一种多层涂层体系临界腐蚀损伤的快速评价方法
Ermakov et al. Damping of gravity-capillary waves in the presence of oil slicks according to data from laboratory and numerical experiments
CA2738450A1 (en) Method and system for non-destructive detection of coating errors
Denkilkian et al. Wireless sensor for continuous real-time oil spill thickness and location measurement
CN106404112A (zh) 一种电容式液位传感器的免标定测量方法和装置
CN111788478B (zh) 腐蚀测量装置
CN104990611A (zh) 一种用于检测储罐油水界面的光纤传感设备
RU2794610C2 (ru) Устройство измерения толщины и способы его применения
DE102009028044A1 (de) Feldgerät der Prozessautomatisierung
CN107850560A (zh) 结垢传感器
CN101246188A (zh) 有机涂层材料载流子密度的监测方法
Bande et al. Low–cost capacitive sensor for wells level measurement
CN204881766U (zh) 一种用于检测储罐油水界面的光纤传感设备
Babutzka et al. Investigation of the salinization of steel surfaces in marine environment
CN110770145A (zh) 精密的深度传感器
US11747186B2 (en) Device for capacitive measurements in a multi-phase medium
CH705731A2 (de) Vorrichtung und Verfahren zur kapazitiven Bestimmung eines Füllstandes eines Fluids in einem Behälter.
DE102008013530A1 (de) Kombinierter Füllstands- und Ethanolsensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination