CN111795946A - 一种全介质bic结构的相位传感及荧光/拉曼增强芯片 - Google Patents

一种全介质bic结构的相位传感及荧光/拉曼增强芯片 Download PDF

Info

Publication number
CN111795946A
CN111795946A CN202010562120.6A CN202010562120A CN111795946A CN 111795946 A CN111795946 A CN 111795946A CN 202010562120 A CN202010562120 A CN 202010562120A CN 111795946 A CN111795946 A CN 111795946A
Authority
CN
China
Prior art keywords
phase
dielectric
fluorescence
raman
sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010562120.6A
Other languages
English (en)
Other versions
CN111795946B (zh
Inventor
何赛灵
刘振超
曹顺
郭庭彪
董红光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010562120.6A priority Critical patent/CN111795946B/zh
Publication of CN111795946A publication Critical patent/CN111795946A/zh
Application granted granted Critical
Publication of CN111795946B publication Critical patent/CN111795946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N2021/4173Phase distribution

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种全介质BIC结构的相位传感及荧光/拉曼增强芯片,分为3层,依次为透明介质基底、介质薄膜、周期性排列的超表面介质纳米结构阵列;通过调整超表面介质纳米结构阵列的结构参数,获得可调节的BIC模式的高Q值谐振峰;高Q值谐振峰处伴随着剧烈的相位突变,可应用于高灵敏的折射率相位传感;谐振峰处的局域电场得到的增强,可应用于增强荧光/拉曼的检测信号,增强对超低浓度分子的检测能力;谐振峰的波长可通过调节超表面介质纳米结构阵列的结构参数来改变,可应用于可见光至近红外范围的相位传感及荧光/拉曼增强。应用本发明可实现高灵敏的折射率相位传感及荧光/拉曼增强,对多模式生物检测、疾病诊断、药物研发等领域具有重要意义。

Description

一种全介质BIC结构的相位传感及荧光/拉曼增强芯片
技术领域
本发明属于光学传感领域,涉及一种全介质BIC结构的相位传感及荧光/拉曼增强芯片,可应用于生物检测及疾病诊断治疗等领域。
背景技术
超表面是指由周期或非周期排列的亚波长结构单元构成的具有超常电磁性能的一种新型人工光学材料。超表面技术的广泛应用是基于微纳加工技术的发展与进步,为人类操控光及电磁波提供了新的途径,现在已经成为超灵敏生物化学传感器、纳米光子学等领域的研究热点。在折射率传感器领域,通常需要传感器拥有较大的Q值,这也就意味着谐振峰的半高全宽非常小。而超表面具有自然界常规媒质所不具备的奇异电磁特性,可以通过合理设计实现高Q值的谐振峰,对折射率传感领域意义重大。通常获得小线宽谐振峰的手段为Fano共振超表面,但其调节线宽能力有限。
相较于SPR(表面等离子体共振)折射率传感器,SPR传感器的检测原理是基于金属-介质界面自由电子的集体振荡效应,共振激发下反射光的物理特性(相位、强度)受界面折射率影响。但是金属的材料损耗较大,因此SPR共振峰的线宽一般都比较大,不利于进行折射率传感。而超表面可由全介质材料结构构成,材料损耗较低,因此能够获得非常窄的线宽,并且参数调节方便,在折射率传感领域具备较大优势。
同时,超表面可以将入射光场局域在其周围近场区域,从而达到局域场增强。但是通常的超表面局域场的电场增强不大,并且一般而言,模斑较小且都集中分布结构边缘,并且增强程度难以调节,限制其应用及推广。
BIC是辐射态中的奇异值,尽管在背景中存在着可以耦合的辐射通道,其能量依然束缚在超表面结构内。
发明内容
为了克服现有技术的不足,本发明提出了一种全介质BIC结构的相位传感及荧光/拉曼增强芯片,可实现高灵敏的折射率相位传感及荧光/拉曼增强。
本发明公开了一种全介质BIC结构的相位传感及荧光/拉曼增强芯片,包括透明介质基底、介质薄膜以及周期性排列的超表面介质纳米结构阵列;芯片结构分为3层,最底层为透明介质基底,透明介质基底上为第二层的介质薄膜,第三层为周期性排列的超表面介质纳米结构阵列;通过调整超表面介质纳米结构阵列的结构参数,可以获得可调节的BIC模式的高Q值谐振峰;高Q值谐振峰处伴随着剧烈的相位突变,可应用于高灵敏的折射率相位传感;谐振峰处的局域电场得到极大的增强,可应用于增强荧光/拉曼的检测信号,增强其对超低浓度分子的检测能力;谐振峰的波长可通过调节超表面介质纳米结构阵列的结构参数来改变,可方便的应用于可见光至近红外范围的相位传感及荧光/拉曼增强。
更进一步具体实施中,透明介质基底包括石英玻璃、普通玻璃。
更进一步具体实施中,介质薄膜包括Si3N4、TiO2、ZnO、Si等高折射率低损耗的介质材料;介质薄膜的厚度为50-300nm。
更进一步具体实施中,超表面介质纳米结构阵列的材料包括Si3N4、TiO2、ZnO、Si等高折射率低损耗的介质材料。
更进一步具体实施中,周期性排列的超表面介质纳米结构阵列,每个周期单元形状为两个相同尺寸的长方形,其长为a,宽为b;每个周期单元的两个长方形的中心间距为d;每个周期单元的两个长方形的高度为h;每个周期单元的两个长方形的围绕各自中心的旋转角度分别为θ、-θ;周期单元的晶格常数分别为Px和Py。
更进一步具体实施中,周期性排列的超表面介质纳米结构阵列3,通过调节方形的围绕各自中心的旋转角度θ、-θ变小,面内对称性恢复,谐振峰更加趋向于BIC模式,谐振峰的Q值迅速增大。
更进一步具体实施中,高Q谐振峰处伴随着剧烈的相位突变,并且随着结构参数的调整,Q值进一步增大,相位突变更加剧烈;控制入射光波长不变,相位随外界环境折射率改变,可应用于高灵敏度的折射率相位传感。
更进一步具体实施中,高Q谐振峰处伴随着剧烈的相位突变,并且随着结构参数的调整,Q值进一步增大,相位突变更加剧烈;控制入射光波长不变,相位随外界环境折射率改变,可应用于高灵敏度的折射率相位传感;可通过测量透射光或者反射光进行高灵敏度的折射率相位传感。
更进一步具体实施中,高Q谐振峰处存在强烈的局域场增强,并且随着结构参数的调整,场增强进一步增大,可进一步增大荧光/拉曼的增强程度;芯片表面可以涂敷含有荧光标记的检测样品或者含有拉曼探针的检测样品。
更进一步具体实施中,介质薄膜的存在使得结构能够更好的将光场局域在结构表面,具备更高的表面灵敏度,从而更适用于生物分子的折射率相位传感及荧光/拉曼增强的应用。
本发明的有益效果:
本发明基于周期性纳米结构阵列以及BIC模式下高Q值谐振峰,同时伴随着剧烈的相位突变,可应用于超灵敏的折射率相位传感。周期性纳米结构阵列对光场极强的束缚能力,能够极大的增强局域电场,可同时应用于增强荧光/拉曼信号,增强对超低浓度分子的检测能力。基于本结构可实现高灵敏的折射率相位传感及荧光/拉曼增强,对多模式生物检测、疾病诊断、药物研发等领域具有重要的意义。
附图说明
图1为本发明一种全介质BIC结构的相位传感及荧光/拉曼增强芯片的结构示意图。
图2为全介质BIC结构的相位传感及荧光/拉曼增强芯片的透射谱。
图3为全介质BIC结构的相位传感及荧光/拉曼增强芯片的透射谱线宽变化图。
图4为高Q值谐振峰反射光的剧烈相位突变图。
图5为谐振峰处的局域电场增强图。
附图标记说明:透明介质基底1、介质薄膜2、周期性排列的超表面介质纳米结构阵列3。
具体实施方式
下面结合附图和实施例对本发明做进一步阐述。
如图1所示,一种全介质BIC结构的相位传感及荧光/拉曼增强芯片,芯片结构分为3层,从底到顶依次为透明介质基底1、介质薄膜2、周期性排列的超表面介质纳米结构阵列3;通过调整超表面介质纳米结构阵列3的结构参数,略微破坏面内对称性,获得可调节的BIC模式的高Q值quasi-BIC(准-连续束缚态)谐振峰;高Q值谐振峰处伴随着剧烈的相位突变,可应用于高灵敏的折射率相位传感;同时由于周期性纳米结构阵列以及BIC模式的对光极强的束缚能力,谐振峰处的局域电场得到的增强,可应用于增强荧光/拉曼的检测信号,增强对超低浓度分子的检测能力;谐振峰的波长可通过调节超表面介质纳米结构阵列3的结构参数来改变,可应用于可见光至近红外范围的相位传感及荧光/拉曼增强。
透明介质基底1包括石英玻璃、普通玻璃。
介质薄膜2为高折射率低损耗的介质材料,包括Si3N4、TiO2、ZnO、Si;介质薄膜2的厚度为50-300nm。
所述的超表面介质纳米结构阵列3的材料为高折射率低损耗的介质材料,包括Si3N4、TiO2、ZnO、Si。
所述的周期性排列的超表面介质纳米结构阵列3,每个周期单元形状为两个相同尺寸的长方形,长为a,宽为b;每个周期单元的两个长方形的中心间距为d;每个周期单元的两个长方形的高度为h;每个周期单元的两个长方形的围绕各自中心的旋转角度分别为θ、-θ;周期单元的晶格常数分别为Px和Py。
周期性排列的超表面介质纳米结构阵列3,通过调节方形的围绕各自中心的旋转角度θ、-θ变小,面内对称性恢复,谐振峰趋向于BIC模式,谐振峰的Q值迅速增大。
所述的高Q谐振峰处伴随着剧烈的相位突变,并且随着结构参数的调整,Q值进一步增大,相位突变更加剧烈;控制入射光波长不变,相位随外界环境折射率改变,可应用于高灵敏度的折射率相位传感。
高Q谐振峰处伴随着相位突变,并且随着结构参数的调整,Q值进一步增大,相位突变更加剧烈;控制入射光波长不变,相位随外界环境折射率改变,可应用于高灵敏度的折射率相位传感;可通过测量透射光或者反射光进行高灵敏度的折射率相位传感。
所述的高Q谐振峰处存在局域场增强,并且随着结构参数的调整,场增强进一步增大,可进一步提高荧光/拉曼的增强程度;芯片表面涂敷含有荧光标记的检测样品或者含有拉曼探针的检测样品。
所述的介质薄膜2的存在使得结构能够更好的将光场局域在结构表面,具备更高的表面灵敏度,从而更适用于生物分子的折射率相位传感及荧光/拉曼增强的应用。
实施例1
一种全介质BIC结构的相位传感及荧光/拉曼增强芯片,周期性排列的超表面介质纳米结构阵列3的参数可以选择为a=270nm,b=100nm,h=400nm,d=240nm,Px=470nm,Py=560nm,介质薄膜2厚度为180nm。图2为全介质BIC结构的相位传感及荧光/拉曼增强芯片的透射谱,存在多个高Q值谐振峰,且波长已经基本调到上转化荧光分子的激发和发射波段,也可根据不同的荧光分子或者拉曼探针分子进行调整,可以实现双荧光增强/拉曼增强。
实施例2
一种全介质BIC结构的相位传感及荧光/拉曼增强芯片,通过调节方形的围绕各自中心的旋转角度θ、-θ变小,面内对称性恢复,谐振峰更加趋向于BIC模式,谐振峰的Q值越来越大。图3为全介质BIC结构的相位传感及荧光/拉曼增强芯片的透射谱线宽变化图,可以看到当θ从30°变化到3°时,谐振峰的线宽越来越小,Q值越来越高。
实施例3
一种全介质BIC结构的相位传感及荧光/拉曼增强芯片,周期性排列的超表面介质纳米结构阵列3引起的高Q值的谐振峰处,发射光存在着剧烈的相位突变,并且可以通过调整结构参数,实现更剧烈的相位突变,因此可以用于进行折射率的相位传感。当外界环境折射率改变时,高Q值的谐振峰将发生波长漂移,从而在控制入射光波长不变的同时,引起反射光相位发生剧烈变化。因此可以用于超灵敏的折射率相位传感。图4为高Q值谐振峰处的反射光存在的剧烈的相位突变图。
实施例4
一种全介质BIC结构的相位传感及荧光/拉曼增强芯片,周期性排列的超表面介质纳米结构阵列可以对光场产生极强的束缚能力,实现一个极强的局域电场增强,这种超强的局域场能够作用在荧光物质上使得荧光效率大大提高,也可以作用在拉曼探针上,增强拉曼信号的检测。图5为谐振峰处的电场增强图,电场增强倍数分别可以达到180倍和200倍,并且电场模斑较大,增强效率较高,非常适用于进行双荧光增强/拉曼增强。并且局域电场增强主要分布在介质薄膜表面附近,具备较高的表面灵敏度。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种全介质BIC结构的相位传感及荧光/拉曼增强芯片,其特征在于,芯片结构分为3层,从底到顶依次为透明介质基底、介质薄膜、周期性排列的超表面介质纳米结构阵列;通过调整超表面介质纳米结构阵列的结构参数,获得可调节的BIC模式的高Q值谐振峰;高Q值谐振峰处伴随着剧烈的相位突变,可应用于高灵敏的折射率相位传感;谐振峰处的局域电场得到的增强,可应用于增强荧光/拉曼的检测信号,增强对超低浓度分子的检测能力;谐振峰的波长可通过调节超表面介质纳米结构阵列的结构参数来改变,可应用于可见光至近红外范围的相位传感及荧光/拉曼增强。
2.根据权利要求1所述的全介质BIC结构的相位传感及荧光/拉曼增强芯片,其特征在于,透明介质基底包括石英玻璃、普通玻璃。
3.根据权利要求1所述的全介质BIC结构的相位传感及荧光/拉曼增强芯片,其特征在于,介质薄膜为高折射率低损耗的介质材料,包括Si3N4、TiO2、ZnO、Si;介质薄膜的厚度为50-300nm。
4.根据权利要求1所述的全介质BIC结构的相位传感及荧光/拉曼增强芯片,其特征在于,所述的超表面介质纳米结构阵列的材料为高折射率低损耗的介质材料,包括Si3N4、TiO2、ZnO、Si。
5.根据权利要求1所述的全介质BIC结构的相位传感及荧光/拉曼增强芯片,其特征在于,所述的周期性排列的超表面介质纳米结构阵列,每个周期单元形状为两个相同尺寸的长方形,长为a,宽为b;每个周期单元的两个长方形的中心间距为d;每个周期单元的两个长方形的高度为h;每个周期单元的两个长方形的围绕各自中心的旋转角度分别为θ、-θ;周期单元的晶格常数分别为Px和Py。
6.根据权利要求1所述的全介质BIC结构的相位传感及荧光/拉曼增强芯片,其特征在于,周期性排列的超表面介质纳米结构阵列,通过调节方形的围绕各自中心的旋转角度θ、-θ变小,面内对称性恢复,谐振峰趋向于BIC模式,谐振峰的Q值迅速增大。
7.根据权利要求1所述的全介质BIC结构的相位传感及荧光/拉曼增强芯片,其特征在于,所述的高Q谐振峰处伴随着剧烈的相位突变,并且随着结构参数的调整,Q值进一步增大,相位突变更加剧烈;控制入射光波长不变,相位随外界环境折射率改变,可应用于高灵敏度的折射率相位传感。
8.根据权利要求1所述的全介质BIC结构的相位传感及荧光/拉曼增强芯片,其特征在于,高Q谐振峰处伴随着相位突变,并且随着结构参数的调整,Q值进一步增大,相位突变更加剧烈;控制入射光波长不变,相位随外界环境折射率改变,可应用于高灵敏度的折射率相位传感;可通过测量透射光或者反射光进行高灵敏度的折射率相位传感。
9.根据权利要求1所述的全介质BIC结构的相位传感及荧光/拉曼增强芯片,其特征在于,所述的高Q谐振峰处存在局域场增强,并且随着结构参数的调整,场增强进一步增大,可进一步提高荧光/拉曼的增强程度;芯片表面涂敷含有荧光标记的检测样品或者含有拉曼探针的检测样品。
10.根据权利要求1所述的全介质BIC结构的相位传感及荧光/拉曼增强芯片,其特征在于,所述的介质薄膜使得结构能够更好的将光场局域在结构表面,具备更高的表面灵敏度。
CN202010562120.6A 2020-06-18 2020-06-18 一种全介质bic结构的相位传感及荧光/拉曼增强芯片 Active CN111795946B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010562120.6A CN111795946B (zh) 2020-06-18 2020-06-18 一种全介质bic结构的相位传感及荧光/拉曼增强芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010562120.6A CN111795946B (zh) 2020-06-18 2020-06-18 一种全介质bic结构的相位传感及荧光/拉曼增强芯片

Publications (2)

Publication Number Publication Date
CN111795946A true CN111795946A (zh) 2020-10-20
CN111795946B CN111795946B (zh) 2024-07-05

Family

ID=72803413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010562120.6A Active CN111795946B (zh) 2020-06-18 2020-06-18 一种全介质bic结构的相位传感及荧光/拉曼增强芯片

Country Status (1)

Country Link
CN (1) CN111795946B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741065A (zh) * 2021-09-09 2021-12-03 安徽大学 一种旋光与极化可调的方形晶格超表面谐振器
CN113805436A (zh) * 2021-06-11 2021-12-17 赣州中盛隆电子有限公司 一种基于超材料的曝光机
CN113805258A (zh) * 2021-06-11 2021-12-17 赣州中盛隆电子有限公司 一种可调控超材料复眼透镜装置及其加工方法
CN113916832A (zh) * 2021-11-18 2022-01-11 巴沃(镇江)光电子科技有限公司 全介质缺陷圆柱高品质因数折射率传感器及其制作方法
CN114295601A (zh) * 2021-12-31 2022-04-08 厦门大学 一种基于连续体束缚态的表面拉曼增强传感结构
CN115061224A (zh) * 2022-05-15 2022-09-16 复旦大学 一种基于介质-金属混合体系的BICs超构表面结构传感器
CN115824977A (zh) * 2022-09-26 2023-03-21 厦门大学 一种中红外全介质超表面手性分子传感器
CN118624585A (zh) * 2024-08-14 2024-09-10 浙江大学 一种超宽带表面增强拉曼散射芯片及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825568A (zh) * 2010-03-31 2010-09-08 中国科学院半导体研究所 一种利用光谱强度变化检测介质折射率变化的装置
EP2469598A2 (en) * 2010-12-24 2012-06-27 Seiko Epson Corporation Sensor chip, detection device, and method of manufacturing sensor chip
CN103196867A (zh) * 2013-04-01 2013-07-10 中山大学 局域等离子体谐振折射率传感器及其制造方法
JP2014190915A (ja) * 2013-03-28 2014-10-06 Seiko Epson Corp 検出装置及び電子機器
CN106153597A (zh) * 2015-04-21 2016-11-23 常熟浙瑞亘光电技术有限公司 基于天线辅助的双波长多功能传感元件、制备方法及应用
CN109374591A (zh) * 2018-12-17 2019-02-22 浙江大学 基于全介质人工微结构超表面的荧光增强芯片
CN109507157A (zh) * 2018-11-16 2019-03-22 浙江大学 一种结合荧光成像的新型spr传感器
CN111208114A (zh) * 2020-03-07 2020-05-29 浙江大学 表面增强拉曼散射/荧光结合spr传感的检测方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825568A (zh) * 2010-03-31 2010-09-08 中国科学院半导体研究所 一种利用光谱强度变化检测介质折射率变化的装置
EP2469598A2 (en) * 2010-12-24 2012-06-27 Seiko Epson Corporation Sensor chip, detection device, and method of manufacturing sensor chip
JP2014190915A (ja) * 2013-03-28 2014-10-06 Seiko Epson Corp 検出装置及び電子機器
CN103196867A (zh) * 2013-04-01 2013-07-10 中山大学 局域等离子体谐振折射率传感器及其制造方法
CN106153597A (zh) * 2015-04-21 2016-11-23 常熟浙瑞亘光电技术有限公司 基于天线辅助的双波长多功能传感元件、制备方法及应用
CN109507157A (zh) * 2018-11-16 2019-03-22 浙江大学 一种结合荧光成像的新型spr传感器
CN109374591A (zh) * 2018-12-17 2019-02-22 浙江大学 基于全介质人工微结构超表面的荧光增强芯片
CN111208114A (zh) * 2020-03-07 2020-05-29 浙江大学 表面增强拉曼散射/荧光结合spr传感的检测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
范振凯 等: "基于表面等离子体共振效应的光子晶体光纤折射率传感器的研究进展", 《 激光与光电子学进展》, vol. 56, no. 7, 30 April 2019 (2019-04-30), pages 070004 - 1 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805436A (zh) * 2021-06-11 2021-12-17 赣州中盛隆电子有限公司 一种基于超材料的曝光机
CN113805258A (zh) * 2021-06-11 2021-12-17 赣州中盛隆电子有限公司 一种可调控超材料复眼透镜装置及其加工方法
CN113741065A (zh) * 2021-09-09 2021-12-03 安徽大学 一种旋光与极化可调的方形晶格超表面谐振器
NL2030632A (en) * 2021-09-09 2023-03-20 Univ Anhui Square lattice metasurface resonator with adjustable optical rotation and polarization
CN113916832A (zh) * 2021-11-18 2022-01-11 巴沃(镇江)光电子科技有限公司 全介质缺陷圆柱高品质因数折射率传感器及其制作方法
CN114295601A (zh) * 2021-12-31 2022-04-08 厦门大学 一种基于连续体束缚态的表面拉曼增强传感结构
CN114295601B (zh) * 2021-12-31 2024-01-30 厦门大学 一种基于连续体束缚态的表面拉曼增强传感结构
CN115061224A (zh) * 2022-05-15 2022-09-16 复旦大学 一种基于介质-金属混合体系的BICs超构表面结构传感器
CN115824977A (zh) * 2022-09-26 2023-03-21 厦门大学 一种中红外全介质超表面手性分子传感器
CN118624585A (zh) * 2024-08-14 2024-09-10 浙江大学 一种超宽带表面增强拉曼散射芯片及应用

Also Published As

Publication number Publication date
CN111795946B (zh) 2024-07-05

Similar Documents

Publication Publication Date Title
CN111795946B (zh) 一种全介质bic结构的相位传感及荧光/拉曼增强芯片
Ahmadivand et al. Photonic and plasmonic metasensors
Zhang et al. Spoof localized surface plasmons for sensing applications
Rakhshani et al. Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection
Khan et al. Optical sensing by metamaterials and metasurfaces: from physics to biomolecule detection
Sarychev et al. Light concentration by metal-dielectric micro-resonators for SERS sensing
Chen et al. Dual-band ultrasensitive terahertz sensor based on tunable graphene metamaterial absorber
Patel et al. Review on graphene-based absorbers for infrared to ultraviolet frequencies
CN109374591B (zh) 基于全介质人工微结构超表面的荧光增强芯片
Patel et al. Development of surface plasmon resonance sensor with enhanced sensitivity for low refractive index detection
Zhang et al. Plasmonic chiral metamaterials with sub-10 nm nanogaps
CN106842389B (zh) 一种三环结构的等离激元诱导透明光学材料及应用
CN110926667A (zh) 一种基于非对称周期表面等离激元晶格共振的压力传感器件
Gryb et al. Two-dimensional chiral metasurfaces obtained by geometrically simple meta-atom rotations
Anik et al. Numerical investigation of a gear-shaped triple-band perfect terahertz metamaterial absorber as biochemical sensor
Cao et al. Tunable dual-band ultrasensitive stereo metamaterial terahertz sensor
Zhang et al. Polarization-independent multi-resonance with high Q-factor for highly sensitive terahertz sensors based on all-dielectric metasurface
Ramani et al. Rectangular-shape cladding-based photonic crystal fiber surface plasmon resonance-based refractive index sensor
Zhang et al. A dual-band terahertz metamaterial sensor with high Q-factor and sensitivity
Liang et al. Resonant metasurfaces for spectroscopic detection: physics and biomedical applications
CN110361362B (zh) 一种基于介质纳米天线生物传感器、制备方法及应用
Wang et al. Engineering high-performance dielectric chiral shells with enhanced chiral fields for sensitive chiral biosensor
CN117074365A (zh) 一种基于金属超表面的太赫兹高品质因子折射率传感器
Liu et al. Improving plasmon sensing performance by exploiting the spatially confined field
Liang et al. Highly sensitive and polarization-insensitive terahertz microfluidic biosensor based on gap plasmon model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant