CN111795838A - Test system for fuel cell hydrogen injector - Google Patents
Test system for fuel cell hydrogen injector Download PDFInfo
- Publication number
- CN111795838A CN111795838A CN202010566774.6A CN202010566774A CN111795838A CN 111795838 A CN111795838 A CN 111795838A CN 202010566774 A CN202010566774 A CN 202010566774A CN 111795838 A CN111795838 A CN 111795838A
- Authority
- CN
- China
- Prior art keywords
- air
- valve
- air outlet
- communicated
- injector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 93
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 239000001257 hydrogen Substances 0.000 title claims abstract description 29
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 29
- 239000000446 fuel Substances 0.000 title claims abstract description 27
- 239000007789 gas Substances 0.000 claims description 82
- 238000004891 communication Methods 0.000 claims description 2
- 230000009286 beneficial effect Effects 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 230000006837 decompression Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000010998 test method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
- G01M99/005—Testing of complete machines, e.g. washing-machines or mobile phones
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fuel Cell (AREA)
Abstract
Description
技术领域technical field
本发明涉及氢燃料电池技术领域,具体涉及一种燃料电池氢气喷射器的测试系统。The invention relates to the technical field of hydrogen fuel cells, in particular to a test system for a hydrogen injector of a fuel cell.
背景技术Background technique
燃料电池是一种高效的发电装置,具有功率密度高、能量转换效率高以及工作过程安静等优点,并在汽车领域取得了成功应用。燃料电池在运行时需要分别向燃料电池的阳极通入氢气和向阴极通入氧气,现有对燃料电池阳极通入氢气的方式一般是通过喷射器控制输入燃料电池内氢气的压强和流量。Fuel cell is an efficient power generation device with advantages of high power density, high energy conversion efficiency and quiet working process, and has been successfully applied in the automotive field. The fuel cell needs to supply hydrogen to the anode of the fuel cell and oxygen to the cathode respectively during operation. The existing method of supplying hydrogen to the anode of the fuel cell is generally to control the pressure and flow of the hydrogen input into the fuel cell through an injector.
现有的喷射器在使用之前均需要进行参数标定和匹配性调试,现有标定的方式一般是直接将喷射器放置在整个燃料电池系统中进行测试。但是这样的测试方式存在因喷射器输出氢气的压强过大而对电堆造成损伤的现象。Before using the existing injector, parameter calibration and matching adjustment are required. The existing calibration method is generally to directly place the injector in the entire fuel cell system for testing. However, such a test method may cause damage to the stack due to the excessive pressure of the hydrogen output from the injector.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提供一种燃料电池氢气喷射器的测试系统,旨在解决现有的测试方式存在因喷射器输出氢气的压强过大而对电堆造成损伤的现象的技术问题。The main purpose of the present invention is to provide a test system for a fuel cell hydrogen injector, which aims to solve the technical problem that the stack is damaged due to the excessive pressure of the hydrogen output by the injector in the existing test method.
为解决上述技术问题,本发明提出一种燃料电池氢气喷射器的测试系统,该测试系统包括供气模块、电堆模拟器、采集模块以及中控模块,所述供气模块包括用于与气源连通的减压阀和与所述减压阀连通的进气电磁阀,且所述进气电磁阀的出气口可与被测喷射器的进气口连通;所述电堆模拟器的进气口可与所述被测喷射器的出气口连通;所述采集模块包括位于所述电堆模拟器进气口处的第一压力传感器和位于所述电堆模拟器出气口处的第二压力传感器;所述中控模块用于分别与所述进气电磁阀、被测喷射器和采集模块电性连接。In order to solve the above technical problems, the present invention proposes a test system for a fuel cell hydrogen injector. The test system includes a gas supply module, a stack simulator, a collection module and a central control module. The gas supply module includes a The pressure reducing valve communicated with the source and the intake solenoid valve communicated with the pressure reducing valve, and the air outlet of the intake solenoid valve can be communicated with the air inlet of the injector under test; the input of the stack simulator The gas port can be communicated with the gas outlet of the tested injector; the acquisition module includes a first pressure sensor located at the gas inlet of the stack simulator and a second pressure sensor located at the gas outlet of the stack simulator a pressure sensor; the central control module is used for electrically connecting with the intake solenoid valve, the injector under test and the acquisition module respectively.
优选地,所述供气模块还包括储气罐和瓶口角阀,所述瓶口角阀的进气口与所述储气罐的出气口连通,所述瓶口角阀的出气口与所述减压阀的进气口连通。Preferably, the air supply module further comprises an air storage tank and a bottle mouth angle valve, the air inlet of the bottle mouth angle valve is communicated with the air outlet of the air storage tank, and the air outlet of the bottle mouth angle valve is connected to the The air inlet of the pressure valve is connected.
优选地,所述采集模块还包括位于所述被测喷射器与电堆模拟器之间的气体流量计,且所述气体流量计与所述中控模块电性连接。Preferably, the acquisition module further includes a gas flow meter located between the tested injector and the stack simulator, and the gas flow meter is electrically connected to the central control module.
优选地,所述测试系统还包括气体排放模块,所述气体排放模块包括第一排气支路和第二排气支路,所述第一排气支路包括与所述电堆模拟器的出气口连通的第一导气管,且所述第二压力传感器位于所述第一导气管上,所述第二排气支路包括与所述电堆模拟器的出气口连通的出气电磁阀和与所述出气电磁阀的出气口连通的第一单向阀,且所述出气电磁阀与所述中控模块电性连接。Preferably, the test system further includes a gas exhaust module, the gas exhaust module includes a first exhaust branch and a second exhaust branch, and the first exhaust branch includes a connection with the stack simulator. a first air duct communicated with an air outlet, and the second pressure sensor is located on the first air duct, and the second exhaust branch includes an air outlet solenoid valve communicated with the air outlet of the stack simulator and A first one-way valve communicated with the air outlet of the air outlet solenoid valve, and the air outlet solenoid valve is electrically connected with the central control module.
优选地,所述气体排放模块还包括与所述减压阀的出气口连通的第一手动球阀,所述第一手动球阀的出气口与所述第一单向阀的出气口连通。Preferably, the gas discharge module further includes a first manual ball valve communicated with the air outlet of the pressure reducing valve, and the air outlet of the first manual ball valve is communicated with the air outlet of the first one-way valve.
优选地,所述供气模块还包括位于所述减压阀与所述电磁阀之间的第二手动球阀,所述气体排放模块还包括与所述进气电磁的进气口连通的安全阀,所述安全阀的出气口与所述第一单向阀的出气口连通,所述被测喷射器的进气口处设置有第三压力传感器,且所述第三压力传感器与所述中控模块电性连接。Preferably, the gas supply module further includes a second manual ball valve located between the pressure reducing valve and the solenoid valve, and the gas discharge module further includes a safety valve that communicates with the intake port of the intake solenoid. The air outlet of the safety valve is communicated with the air outlet of the first one-way valve, the air inlet of the injector under test is provided with a third pressure sensor, and the third pressure sensor is connected to the The central control module is electrically connected.
优选地,所述气体排放模块还包括与所述被测喷射器的安全泄压口连通的第二导气管,所述第二导气管的出气口与所述第一单向阀的出气口连通。Preferably, the gas discharge module further comprises a second air conduit communicated with the safety pressure relief port of the injector under test, and the air outlet of the second air conduit is communicated with the air outlet of the first one-way valve .
优选地,所述供气模块还包括位于所述进气电磁阀与所述被测喷射器之间的第二单向阀,且所述第二单向阀的进气口与所述进气电磁阀的出气口连通,所述第二单向阀的出气口与所述被测喷射器的进气口连通,所述第一导气管的出气口与所述第二单向阀的出气口连通。Preferably, the air supply module further includes a second one-way valve located between the intake solenoid valve and the tested injector, and the intake port of the second one-way valve is connected to the intake air The air outlet of the solenoid valve is communicated with the air outlet of the second one-way valve, the air outlet of the second one-way valve is communicated with the air inlet of the tested injector, and the air outlet of the first air duct is connected with the air outlet of the second one-way valve. Connected.
优选地,所述中控模块包括分别与所述进气电磁阀、被测喷射器和采集模块电性连接的控制器和与所述控制器通讯连接的智能终端。Preferably, the central control module includes a controller electrically connected to the intake solenoid valve, the injector under test and the acquisition module, respectively, and an intelligent terminal communicatively connected to the controller.
优选地,所述被测喷射器的出气口处设置有第四压力传感器,且第四压力传感器与所述中控模块电性连接。Preferably, a fourth pressure sensor is provided at the air outlet of the tested injector, and the fourth pressure sensor is electrically connected to the central control module.
本发明实施例提供的燃料电池氢气喷射器的测试系统,通过设置为被测喷射器供气的供气模块以及可模拟燃料电池真实运行的电堆模拟器,同时通过采集模块采集电堆模拟器进出气口处的气压值,从而方便中控模块检测被测喷射器的性能并可根据收集的数据对被测喷射器进行标定和调试,有利于避免出现测试时损坏电堆的现象。The test system for the fuel cell hydrogen injector provided by the embodiment of the present invention uses a gas supply module for supplying gas to the injector under test and a stack simulator that can simulate the real operation of the fuel cell, and collects the stack simulator through the acquisition module. The air pressure value at the air inlet and outlet is convenient for the central control module to detect the performance of the injector under test and can calibrate and debug the injector under test according to the collected data, which is beneficial to avoid damage to the stack during testing.
附图说明Description of drawings
图1为本发明中燃料电池氢气喷射器的测试系统一实施例的结构示意图;1 is a schematic structural diagram of an embodiment of a testing system for a fuel cell hydrogen injector in the present invention;
图2为本发明中燃料电池氢气喷射器的测试系统另一实施例的结构示意图;2 is a schematic structural diagram of another embodiment of a testing system for a fuel cell hydrogen injector according to the present invention;
图3为图2中所示的中控模块的结构示意图。FIG. 3 is a schematic structural diagram of the central control module shown in FIG. 2 .
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to be used to explain the present invention, but should not be construed as a limitation of the present invention. Based on the embodiments of the present invention, those of ordinary skill in the art will not make any creative work. All other embodiments obtained under the premise belong to the protection scope of the present invention.
本发明提出一种燃料电池氢气喷射器的测试系统,如图1和图2所示,该测试系统包括供气模块100、电堆模拟器200、采集模块300以及中控模块400,所述供气模块100包括用于与气源连通的减压阀110和与所述减压阀110连通的进气电磁阀120,且所述进气电磁阀120的出气口可与被测喷射器500的进气口连通;所述电堆模拟器200的进气口可与所述被测喷射器500的出气口连通;所述采集模块300包括位于所述电堆模拟器200进气口处的第一压力传感器310和位于所述电堆模拟器200出气口处的第二压力传感器320;所述中控模块400用于分别与所述进气电磁阀120、所述被测喷射器500和采集模块300电性连接。The present invention provides a test system for a fuel cell hydrogen injector, as shown in FIG. 1 and FIG. 2 , the test system includes a
本实施例中,供气模块100包括减压阀110和进气电磁阀120,其中减压阀110的进气口用于与气源连通,此处的气源可以是公共气源或独立气源,且优选减压阀110具备显示气体压力值功能,从而方便通过减压阀110将额定气压的气体输入被测喷射器500内,同时进气电磁阀120的进气口与减压阀110的出气口连通,而进气电磁阀120的出气口则与被测喷射器500的进气口连通。电堆模拟器200的进气口与被测喷射器500的出气口连通,从而即可通过电堆模拟器200模拟实际电堆在加载和降载过程中所需的氢气量,然后利用被测喷射器500输出对应的氢气量即可,电堆模拟器200主要用来模拟真实的燃料电池电堆内部环境,内部有接近电堆真实的阳极气体流道,具有一定阻力降。采集模块300包括第一压力传感器310和第二压力传感器320,其中第一压力传感器310位于电堆模拟器200的进气口处,第二压力传感器320位于电堆模拟器200的出气口处,从而方便检测进入电堆模拟器200内的氢气的压强数值和电堆模拟器200排出的氢气的压强数值,以此即可算出电堆模拟器200在某一流量下的压力降(即阻力降)来判断该电堆模拟器200的性能。此时,第一压力传感器310采集的氢气压强数值约等于被测喷射器500排出的氢气的压强数值,因此可判断被测喷射器500输出的氢气的压强数值在电堆模拟器200加载和降载过程中是否处于稳定状态。中控模块400分别与进气电磁阀120、被测喷射器500和采集模块300电性连接,从而方便控制进气电磁阀120的开闭和被测喷射器500的功率以及收集被测喷射器500和采集模块300的参数,从而方便中控模块400根据收集的数据对被测喷射器500进行调试。本实施例中,通过设置为被测喷射器500供气的供气模块100以及可模拟燃料电池真实运行的电堆模拟器200,同时通过采集模块300采集电堆模拟器200进出气口处的气压值,从而方便中控模块400检测被测喷射器500的性能并可根据收集的数据对被测喷射器500进行标定和调试,有利于避免出现测试时损坏电堆的现象。In this embodiment, the
在一较佳实施例中,如图2所示,供气模块100还包括储气罐130和瓶口角阀140,且瓶口角阀140的进气口与储气罐130的出气口连通,瓶口角阀140的出气口与减压阀110的进气口连通,从而方便通过储气罐130向被测喷射器500供气,以此方便测试系统可在任何地点完成测试。此时,优选储气罐130和瓶口角阀140为两组,其中一个储气罐130内用于存储氢气,另一个储气罐130内用于存储氮气,且两个储气罐130均分别通过瓶口角阀140与减压阀110的进气口连通,从而方便首先通过存储氮气的储气罐130向待测喷射器输送氮气以完成初级测试(如气密性等),然后通过存储氢气的储气罐130向待测喷射器输送氢气以完成终级测试。由于氢气的成本较高,所以采用氮气进行初级测试有利于降低被测喷射器500的检测成本。In a preferred embodiment, as shown in FIG. 2 , the
在一较佳实施例中,如图2所示,采集模块300还包括位于被测喷射器500与电堆模拟器200之间的气体流量计330,且该气体流量计330与中控模块400电性连接,从而方便中控模块400根据气体流量计330采集的流量数据来判断被测喷射器500输出气体的实际流量与理论输出流量之间的差值,从而方便中控模块400对被测喷射器500的参数进行调试。In a preferred embodiment, as shown in FIG. 2 , the
在一较佳实施例中,如图2所示,测试系统还包括气体排放模块600,气体排放模块600包括第一排气支路610和第二排气支路620。此时,第一排气支路610包括第一导气管,且第一导气管的进气口与电堆模拟器200的出气口连通,第一导气管的出气口则用于直接排放气体即可,当然还可以是在第一导气管的出气口设置气体处理装置,从而避免排出的氢气浓度过高而出现危险状况。同时,第二排气支路620包括出气电磁阀621和第一单向阀622,且出气电磁阀621的进气口也与电堆模拟器200的出气口连通,而第一单向阀622的进气口则与出气电磁阀621的出气口连通。其中,在对被测喷射器500进行测试时,出气电磁阀621间隔开启,例如在输出电流300A时出气电磁阀621开0.5秒,关20秒,循环进行;当输出电流在额定功率400A时,出气电磁阀621开0.5秒,关12秒,循环进行。第一单向阀622主要是防止出气电磁阀621打开过程中出现气体倒流的现象,此时第一排气支路610排出气体的量等于燃料电池实际消耗的氢气量,而第二排气支路620排出的气体量等于燃料电池尾气量。In a preferred embodiment, as shown in FIG. 2 , the test system further includes a
在一较佳实施例中,如图2所示,气体排放模块600还包括第一手动球阀630,且第一手动球阀630的进气口与减压阀110的出气口连通,而第一手动球阀630的出气口则与第一单向阀622的出气口连通,从而共用一个排气口,以方便对气体的管理。本实施例中,通过设置第一手动球阀630,从而有利于在利用减压阀110调节气压时泄压。In a preferred embodiment, as shown in FIG. 2 , the
在一较佳实施例中,如图2所示,供气模块100还包括第二手动球阀150,且第二手动球阀150的进气口与减压阀110的出气口连通,而第二手动球阀150的出气口与进气电磁阀120的进气口连通,从而方便在减压阀110进行调压时通过手动关闭第二手动球阀150来避免高压气体损坏进气电磁阀120。同时,气体排放模块600还包括安全阀640,且安全阀640的进气口与进气电磁阀120的进气口连通,而安全阀640的出气口则与第一单向阀622的出气口连通,从而共用一个排气口,以方便对气体的管理。此时,通过设置安全阀640,则有利于供气模块100输出的气体压力过高时,安全阀640就会自动起跳泄压,防止进气电磁阀120被损坏。进一步地,为了方便中控模块400在输入被测喷射器500的气体的压力较高时关闭进气电磁阀120,优选被测喷射器500的进气口处设置有第三压力传感器510,且第三压力传感器510还与中控模块400电性连接,从而在第三压力传感器510检测到气压过高时通过中控模块400关闭进气电磁阀120。In a preferred embodiment, as shown in FIG. 2 , the
在一较佳实施例中,如图2所示,气体排放模块600还包括第二导气管650,且第二导气管650的进气口与被测喷射器500的安全泄压口连通,而第二导气管650的出气口则与第一单向阀622的出气口连通,从而共用一个排气口,以方便对气体的管理,有利于被测喷射器500内的气压过大时通过安全泄压口排出内部的部分气体。同时,被测喷射器500的进气口处设置有温度传感器530,且该温度传感器530与中控模块400电性连接,从而方便在温度传感器530采集的数据超过预设数值时,利用中控模块400控制被测喷射器500的安全泄压口开启,从而排出被测喷射器500内的气体。In a preferred embodiment, as shown in FIG. 2 , the
在一较佳实施例中,如图2所示,供气模块100还包括位于进气电磁阀120与被测喷射器500之间的第二单向阀160,且第二单向阀160的进气口与进气电磁阀120的出气口连通,第二单向阀160的出气口与被测喷射器500的进气口连通。同时,优选第一导气管的出气口与第二单向阀160的出气口连通,从而方便对第一导气管排出的气体进行回收利用。In a preferred embodiment, as shown in FIG. 2 , the
在一较佳实施例中,如图3所示,中控模块400包括控制器410和智能终端420,其中控制器410可以以为专门用来测试被测喷射器500的控制器,也可以为燃料电池控制器(FCU),而智能终端420可以是电脑或其他智能设备。此时,控制器410分别与进气电磁阀120、被测喷射器500和采集模块300电性连接,以方便数据或信号的传输,而智能终端420则与控制器410通讯连接,具体可以是通过有线或无线的方式,而智能终端420通过控制器410控制被测喷射器500的方式可以是智能终端420上具有一个相应的程序,以方便对被测喷射器500的参数进行调试。In a preferred embodiment, as shown in FIG. 3, the
在一较佳实施例中,如图2所示,为了更加精确采集被测喷射器500输出的气体的压强数值,被测喷射器500的出气口处设置有第四压力传感器520,且第四压力传感器520还与中控模块400电性连接,从而方便中控模块400根据第四压力传感器520采集的压强数值来调试被测喷射器500。In a preferred embodiment, as shown in FIG. 2, in order to more accurately collect the pressure value of the gas output by the
值得说明的是,上述最优实施例中的测试系统的测试方式是:It is worth noting that the testing method of the testing system in the above-mentioned preferred embodiment is:
1、首先手动调节减压阀110,然后通过智能终端420上的控制界面控制打开进气电磁阀120,以使气体经进气电磁阀120到达被测喷射器500入口,喷射器的入口温度传感器530和第三压力传感器510会实时经控制器410反馈给智能终端420。若被测喷射器500入口处的气体超压或超温,智能终端420就会给控制器410发命令,控制器410就会控制关闭进气电磁阀120,同时控制被测喷射器500自动泄压,从而保护整个被测喷射器500。其中,通过减压阀110调节气压的方式为,减压阀110调压时利用第一手动球阀630来泄气,方便压力的调节(一直憋着气压力调节不下来)。通过减压阀110调节好压力之后第一手动球阀630就会一直关闭并不再打开,之后就是打开第二手动阀150让气体到达进气电磁阀120入口。1. First manually adjust the
2、如果智能终端420检测到被测喷射器500入口处的气体压力和温度正常,就会按照预设的程序进行测试。即模拟整个电堆的加载(电流从小变大直到额定电流)和降载过程中阳极氢气的流量和压力的变化,如加载过程中随着电堆电流的增大,需求的氢气流量和压力随之增加,智能终端420经控制器410控制被测喷射器500调节氢气的流量和压力(通过调节被测喷射器500内部的喷嘴开启频率及开度大小来实现)跟随增加,以满足电堆对整个燃料的需求。氢气流量增加的时候会引起管路气体压力下降,此时就要调节被测喷射器500的控制参数,使整个供气压力和流量跟随电流平稳增加,不会出现大幅波动。降载的过程恰好相反,要能控制被测喷射器500使氢气的压力和流量要跟随电堆电流的下降而平稳下降,不会出现大的波动。2. If the
3、整个测试过程中出气电磁阀621会间隔性的打开排气,开启的时间长度会随着加载电流的变化而变化,低电流下出气电磁阀621排气的周期时间(间隔时间)会长一些,大电流下会相应缩短排气周期。具体以燃料电池堆测试时的控制策略来决定。3. During the whole test process, the
4、通过出气电磁阀621周期性排气的过程中会引起上游电堆及被测喷射器500出口的气体压力波动,从而引起电堆的电压波动。此时就要调节被测喷射器500的控制参数,使出气电磁阀621排气时的供气压力保持稳定。4. During the process of periodically exhausting through the air
5、整个测试过程就是模拟燃料电池加载和降载时供氢气压力和流量的跟随变化,被测喷射器500主要是调节供气压力和流量的稳定,以满足整个燃料电池系统或电堆的供气需求。5. The whole test process is to simulate the following changes of the hydrogen supply pressure and flow rate when the fuel cell is loaded and de-loaded. The
以上的仅为本发明的部分或优选实施例,无论是文字还是附图都不能因此限制本发明保护的范围,凡是在与本发明一个整体的构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明保护的范围内。The above are only some or preferred embodiments of the present invention, and neither the text nor the accompanying drawings can therefore limit the scope of protection of the present invention. Equivalent structural transformation, or direct/indirect application in other related technical fields are all included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010566774.6A CN111795838A (en) | 2020-06-19 | 2020-06-19 | Test system for fuel cell hydrogen injector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010566774.6A CN111795838A (en) | 2020-06-19 | 2020-06-19 | Test system for fuel cell hydrogen injector |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111795838A true CN111795838A (en) | 2020-10-20 |
Family
ID=72803603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010566774.6A Pending CN111795838A (en) | 2020-06-19 | 2020-06-19 | Test system for fuel cell hydrogen injector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111795838A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112255002A (en) * | 2020-11-09 | 2021-01-22 | 济南嬴氢动力科技有限公司 | Test platform of hydrogen fuel cell hydrogen supply module |
CN112881024A (en) * | 2021-01-15 | 2021-06-01 | 中汽研汽车检验中心(天津)有限公司 | Hydrogen injector testing device and testing method for hydrogen fuel cell engine |
CN113506900A (en) * | 2021-06-18 | 2021-10-15 | 广西玉柴机器股份有限公司 | Hydrogen gas exhaust apparatus and control method for vehicle fuel cell system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006250049A (en) * | 2005-03-11 | 2006-09-21 | Isuzu Motors Ltd | Device and method for injector characteristic measuring test device |
CN107645003A (en) * | 2017-10-13 | 2018-01-30 | 浙江亚上科技有限公司 | Fuel-cell vehicle common rail sprays hydrogen system |
CN110838591A (en) * | 2019-12-18 | 2020-02-25 | 上海创胤能源科技有限公司 | A test system and test method for a fuel cell injector |
CN210243168U (en) * | 2019-09-03 | 2020-04-03 | 佛山市清极能源科技有限公司 | All-round fuel cell hydrogen system testboard |
CN212621513U (en) * | 2020-06-19 | 2021-02-26 | 深圳国氢新能源科技有限公司 | Test system of fuel cell hydrogen injector |
-
2020
- 2020-06-19 CN CN202010566774.6A patent/CN111795838A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006250049A (en) * | 2005-03-11 | 2006-09-21 | Isuzu Motors Ltd | Device and method for injector characteristic measuring test device |
CN107645003A (en) * | 2017-10-13 | 2018-01-30 | 浙江亚上科技有限公司 | Fuel-cell vehicle common rail sprays hydrogen system |
CN210243168U (en) * | 2019-09-03 | 2020-04-03 | 佛山市清极能源科技有限公司 | All-round fuel cell hydrogen system testboard |
CN110838591A (en) * | 2019-12-18 | 2020-02-25 | 上海创胤能源科技有限公司 | A test system and test method for a fuel cell injector |
CN212621513U (en) * | 2020-06-19 | 2021-02-26 | 深圳国氢新能源科技有限公司 | Test system of fuel cell hydrogen injector |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112255002A (en) * | 2020-11-09 | 2021-01-22 | 济南嬴氢动力科技有限公司 | Test platform of hydrogen fuel cell hydrogen supply module |
CN112881024A (en) * | 2021-01-15 | 2021-06-01 | 中汽研汽车检验中心(天津)有限公司 | Hydrogen injector testing device and testing method for hydrogen fuel cell engine |
CN113506900A (en) * | 2021-06-18 | 2021-10-15 | 广西玉柴机器股份有限公司 | Hydrogen gas exhaust apparatus and control method for vehicle fuel cell system |
CN113506900B (en) * | 2021-06-18 | 2022-10-04 | 广西玉柴机器股份有限公司 | Hydrogen gas exhaust control method for vehicle fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111082108B (en) | Device and method for testing start-stop accelerated life of fuel cell | |
CN106848352B (en) | Fuel battery air based on pile simulator supplies subsystem matching test method | |
CN112881024B (en) | Hydrogen injector testing device and testing method for hydrogen fuel cell engine | |
CN113067018A (en) | Fuel cell hydrogen circulation test system | |
CN112928307B (en) | Air supply system of fuel cell engine and control method | |
CN111082103B (en) | Low-temperature self-starting method of fuel cell system | |
CN113540512B (en) | Fuel cell air system and fuel cell air system control method | |
CN212621408U (en) | Fuel cell hydrogen test system | |
CN111795838A (en) | Test system for fuel cell hydrogen injector | |
CN115799568B (en) | Fuel cell cathode system and control method thereof | |
CN212621513U (en) | Test system of fuel cell hydrogen injector | |
CN210664949U (en) | Air tightness and back pressure tester | |
CN112242544A (en) | Simulation rack for fuel cell engine system component control joint debugging | |
CN212693974U (en) | Device for evaluating fuel cell stack start-stop durability | |
CN213902771U (en) | Pile leak detection structure and fuel cell test bench suitable for fuel cell test bench | |
CN101241997A (en) | Fuel battery gas supply and discharge control device with protective gas | |
CN211348563U (en) | Hydrogen safety protection device and electric pile test system | |
CN209658312U (en) | The pressure drop of fuel cell pile pressure and flow consume simulating test device | |
CN213933005U (en) | Performance test equipment for vehicle-mounted hydrogen supply system | |
CN215771232U (en) | Fuel cell voltage control system and fuel cell system | |
CN111653808B (en) | Circulating water pressure control system of fuel cell test platform and application method thereof | |
US20060051636A1 (en) | Fuel cell system | |
CN212303726U (en) | Circulating water pressure control system of fuel cell test platform | |
CN114858360A (en) | Fuel cell detection device and method | |
CN115524077A (en) | Fuel cell humidifier leakage test system, method and computer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |