CN111793856B - 一种Cu-Br掺杂钛酸锂纳米纤维材料及其制备方法与应用 - Google Patents

一种Cu-Br掺杂钛酸锂纳米纤维材料及其制备方法与应用 Download PDF

Info

Publication number
CN111793856B
CN111793856B CN202010522377.9A CN202010522377A CN111793856B CN 111793856 B CN111793856 B CN 111793856B CN 202010522377 A CN202010522377 A CN 202010522377A CN 111793856 B CN111793856 B CN 111793856B
Authority
CN
China
Prior art keywords
source
lithium titanate
lithium
nanofiber material
doped lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010522377.9A
Other languages
English (en)
Other versions
CN111793856A (zh
Inventor
卢启芳
刘浩
黄桂香
张敏迪
郭恩言
魏明志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202010522377.9A priority Critical patent/CN111793856B/zh
Publication of CN111793856A publication Critical patent/CN111793856A/zh
Application granted granted Critical
Publication of CN111793856B publication Critical patent/CN111793856B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及本发明涉及一种Cu‑Br掺杂钛酸锂纳米纤维材料及其制备方法与应用,本发明中基于静电纺丝制备的Cu‑Br掺杂钛酸锂纳米纤维由纳米颗粒组成的竹节状一维纤维结构,直径相对均匀,一维结构有效缓解充放电过程颗粒团聚现象。通过掺杂引起LTO晶胞参数的增大,增强钛酸锂的电子电导率以及拓宽了锂离子的传输通道。Cu‑Br掺杂钛酸锂纳米纤维材料作为电池负极材料具有较高的充放电比容量,良好的循环稳定性和倍率性能,并且制备方法步骤简单,具有大规模生产的潜力。

Description

一种Cu-Br掺杂钛酸锂纳米纤维材料及其制备方法与应用
技术领域
本发明涉及一种Cu-Br掺杂钛酸锂纳米纤维材料及其制备方法与应用,属于能源储存技术领域。
背景技术
传统的煤、石油、天然气等不可再生资源日益枯竭,环境问题越来越受到人们的关注,开发和利用可再生资源成为解决人类生存和发展的重要问题。传统的铅酸蓄电池、镍氢蓄电池能量密度和功率密度已经不能满足未来储能系统的要求,特别是伴随着电动汽车及笔记本电脑、数码相机等各种便携式电子设备的广泛应用,对电池的可逆存储容量及稳定性要求更高,并要求具有较长的使用寿命。锂离子电池作为混合动力汽车(HEV)、插电式混合动力汽车(PHEV)和全电动汽车(EVs)的动力源,具有高的能量密度,受到了广泛研究。
尖晶石型钛酸锂(Li4Ti5O12,LTO)凭借其长寿命、高安全性、可快速充电,循环性能好等优点,已成为锂离子电池负极材料领域研究的热点。它在充放电过程中结构几乎不发生变化,具有“零应变”的特性。但是,由于电子传导率低(~10-13 S cm−1)和离子扩散系数低(~10-13 cm2 s−1),限制了其商业化应用。为了解决这一问题,通过元素掺杂、表面包覆和结构设计等策略来提高钛酸锂的电化学性能。
如,中国专利文献CN103560239A公开了一种石墨改性钛酸锂负极材料,以钛酸锂、石墨、锰酸锂、铝粉、三乙醇胺等为原料,然后添加改性银粉等步骤,制备目标产物。该改性方法使钛酸锂的储锂性能得到了一定的提高,但是工艺流程复杂,成本较高,难以投入到大规模生产。
中国专利文献CN110620221A报道了一种硫掺杂钛酸锂/氧化石墨烯复合材料,将钛源和锂源的混合溶液加入PVP、氧化石墨烯,通过水热法结合后续煅烧后,加入硫源进行二次煅烧,制备的样品表现出增强的电化学性能,该方法由于制备过程中二次煅烧导致成本增加,并且在煅烧过程产生有害气体污染环境,不利于大规模生产。
Ceramics International 42 (2016): 19187-19194,报道了K-Fe离子掺杂钛酸锂纳米材料,将铁氰化钾和乙酸锂与钛酸四丁配成溶胶,干燥研磨煅烧制备得到K-Fe离子掺杂钛酸锂的纳米颗粒,样品为不规则的直径约500 nm的颗粒状。与未掺杂的钛酸锂相比,表现出较好的储锂性能,但是由于纳米颗粒在充放电过程中容易团聚,不利于锂离子传输,造成电池循环性能下降,仍需要进一步研究。
中国专利文献CN104037400A公开了铜掺杂钛酸锂锂离子电池负极材料的制备方法先将钛源、锂源、铜源及有机溶剂混合进行球磨后,静置,得到前驱体;然后再将前驱体置于马弗炉中进行恒温煅烧后用乙醇和水洗涤后干燥,即得铜掺杂钛酸锂锂离子电池负极材料。制备的铜掺杂钛酸锂锂离子电池负极材料形貌均一,粒径大约为3-5 μm,结晶度好,经过铜掺杂后的钛酸锂,导电性能有提高,并且提高了钛酸锂的倍率性能,可以取代碳材料作为锂离子电池负极材料。单一的Cu离子掺杂虽然增强了电极材料的电化学性能,但对样品电子结构的调制不充分,提升效果有限,电化学性能仍有待改进。
发明内容
针对现有技术的不足,尤其是现有元素掺杂钛酸锂容易导致纳米颗粒团聚,不能有效提高电子传导率,制备过程复杂的难题,本发明提供一种Cu-Br掺杂钛酸锂纳米纤维材料及其制备方法与应用。
发明概述:
本发明基于静电纺丝技术制得了Cu-Br共掺杂的钛酸锂纳米纤维。Br掺杂取代了Li4Ti5O12尖晶石中氧(O)的32e位置,并且Br离子的尺寸(1.96 Å)比氧离子(1.42 Å)的大,不仅形成了电荷补偿的Ti3+(作为电子供体),提高了电导率,而且提升了LTO在充放电循环过程中的结构稳定性。Cu2+离子掺杂取代钛酸锂的Ti的16d位置,Cu2+的离子半径(0.720 Å)比Ti4+(0.605 Å)的离子半径大,掺杂引起LTO晶胞参数的增大,增强钛酸锂的电子电导率以及拓宽了锂离子的传输通道,使LTO电极具有较高的倍率性能和出色的循环稳定性。
术语说明:
室温:具有本领域技术人员公知的含义,一般是指25±2℃。
发明详述:
本发明是通过如下技术方案实现的:
一种Cu-Br掺杂钛酸锂纳米纤维材料,其特征在于,Cu和Br离子引入到钛酸锂纳米纤维的晶格中,纤维主体为纳米颗粒连接组成的竹节状长程连续纤维,纤维直径为200-300nm。
根据本发明优选的,所述的Cu-Br掺杂钛酸锂纳米纤维为实心纳米纤维。
本发明的Cu-Br掺杂钛酸锂纳米纤维的直径为200-300 nm,纤维长度可达数十微米,直径相对均匀。
本发明第二个目的是提供一种Cu-Br掺杂钛酸锂纳米纤维材料的制备方法。
一种Cu-Br掺杂钛酸锂纳米纤维材料的制备方法,包括步骤如下:
(1)按照化学计量比称取锂源、钛源、铜源、溴源加入到聚乙烯吡咯烷酮的醇溶剂中,同时加入酸性溶液,搅拌均匀,得到前驱体溶胶;
(2)将步骤(1)得到的前驱体溶胶在室温条件下进行静电纺丝,得到前驱体纤维;
(3)将步骤(2)制得的前驱体纤维干燥后,升温至温度700-900℃保温120-300min,冷却后,得到Cu-Br掺杂钛酸锂纳米纤维材料。
根据本发明优选的,所述的锂源为氢氧化锂LiOH·H2O或乙酸锂CH3COOLi·2H2O,本发明优选锂源为乙酸锂。
根据本发明优选的,所述的钛源为钛酸异丙酯C12H28O4Ti或钛酸四正丁酯C16H36O4Ti。
根据本发明优选的,所述的铜源为硝酸铜Cu(NO3)2或乙酸铜Cu(CH3COO)2,本发明优选铜源为乙酸铜。
根据本发明优选的,所述的溴源为十六烷基三甲基溴化铵(CTAB)或溴化锂LiBr,本发明优选铜源溴源为溴化锂。
根据本发明优选的,步骤(1)中,锂源:钛源:铜源:溴源的摩尔比为(3-6):(3-8):(0.01-0.1):(0.01-0.1)。
进一步优选的,步骤(1)中,锂源:钛源:铜源:溴源的摩尔比为4:(4-5):(0.05-0.1):(0.05-0.1)。
根据本发明优选的,步骤(1)中,锂源的加入量与聚乙烯吡咯烷酮的质量比(8-10):(5-7)。
根据本发明优选的,步骤(1)中,所述聚乙烯吡咯烷酮的重均分子量为100-150万;最优选的,所述聚乙烯吡咯烷酮的重均分子量为130万。
根据本发明优选的,步骤(1)中,所述醇溶剂为无水乙醇或甲醇,所述聚乙烯吡咯烷酮与醇溶剂的质量体积比为(0.3-2.5):(6-18),单位为g·mL−1
根据本发明优选的,步骤(1)中,酸性溶液为硝酸、盐酸或乙酸,酸性溶液的加入量与醇溶剂的体积比为(1-5):(6-20)。
根据本发明优选的,步骤(2)中,静电纺丝时针头与接收板之间施加的电压为15-25 kV,湿度为10-40%,接收距离为15-30 cm,可纺性溶胶的喷出速率为0.5-3.5 mL·h−1
进一步优选的,静电纺丝时针头与接收板之间施加的电压为18-22 kV,湿度为12-25%,接收距离为18-20 cm。
根据本发明优选的,步骤(3)中,干燥温度为30-60℃,干燥时间为5-15 h。
根据本发明优选的,步骤(3)中,升温至温度700-900℃的升温速度为2-5℃·min−1。根据本发明优选的,步骤(3)中,保温温度为 750-850℃,保温时间为180-240 min。
一种Cu-Br掺杂钛酸锂纳米纤维材料的应用,作为锂离子电池负极材料使用。
本发明的有益效果:
1、本发明通过静电纺丝结合煅烧工艺制备得到一维结构的Cu-Br掺杂钛酸锂纳米纤维材料,纳米纤维直径均匀,纤维主体由纳米颗粒连接组成,独特的一维结构可抑制在充放电过程中的团聚现象,有利于增强储锂性能。
2、本发明通过Cu、Br共掺杂得到了Cu-Br掺杂钛酸锂纳米纤维,Br掺杂取代了Li4Ti5O12尖晶石中氧(O)的32e位置,并且Br离子的尺寸(1.96 Å)比氧离子(1.42 Å)的大,不仅形成了电荷补偿的Ti3+(作为电子供体),提高了电导率,而且提升了LTO在充放电循环过程中的结构稳定性。Cu2+离子掺杂取代钛酸锂的Ti的16d位置,Cu2+的离子半径(0.720 Å)比Ti4+(0.605 Å)的离子半径大,掺杂引起LTO晶胞参数的增大,增强钛酸锂的电子电导率以及拓宽了锂离子的传输通道,使LTO电极具有较高的倍率性能和出色的循环稳定性。
3.本发明的制备方法简单,通过调节静电纺丝参数,使纳米纤维的直径易于控制。
附图说明
图1为实施例1和对比例1、2、3制得的纳米纤维材料的X射线衍射谱图,图中,LTCOB为实施例1的Li4Ti4.95Cu0.05O11.95Br0.05纳米纤维材料,LTCO为对比例1的Li4Ti4.95Cu0.05O12纳米纤维材料;LTOB为对比例2的Li4Ti5O11.95Br0.05纳米纤维材料;LTO为对比例3的Li4Ti5O12纳米纤维材料。
图2为实施例1制得的LTCOB纳米纤维材料的形貌结构图;图中,a和b分别为LTCOB纳米纤维材料低倍和高倍放大倍数的SEM图像;c和d分别为LTCOB纳米纤维的低倍和高倍放大倍数的TEM图;e为LTCOB纳米纤维的EDS图谱。
图3为实施例1和对比例1、2、3制得的纳米纤维材料的循环性能图,图中,LTCOB为实施例1的Li4Ti4.95Cu0.05O11.95Br0.05纳米纤维材料,LTCO为对比例1的Li4Ti4.95Cu0.05O12纳米纤维材料;LTOB为对比例2的Li4Ti5O11.95Br0.05纳米纤维材料;LTO为对比例3的Li4Ti5O12纳米纤维材料,测试电压范围1~2.5 V,电流密度1 C=175 mAh g−1
图4为实施例1和对比例1、2、3制得的纳米纤维材料的倍率性能图,图中,LTCOB为实施例1的Li4Ti4.95Cu0.05O11.95Br0.05纳米纤维材料,LTCO为对比例1的Li4Ti4.95Cu0.05O12纳米纤维材料;LTOB为对比例2的Li4Ti5O11.95Br0.05纳米纤维材料;LTO为对比例3的Li4Ti5O12纳米纤维材料。
图5为实施例1和对比例1、2、3制得的纳米纤维材料组装电池Nyquist阻抗谱图,横坐标为实部阻抗,纵坐标为虚部阻抗;图中,LTCOB为实施例1的Li4Ti4.95Cu0.05O11.95Br0.05纳米纤维材料,LTCO为对比例1的Li4Ti4.95Cu0.05O12纳米纤维材料;LTOB为对比例2的Li4Ti5O11.95Br0.05纳米纤维材料;LTO为对比例3的Li4Ti5O12纳米纤维材料。
具体实施方式
下面通过具体实施例和附图对本发明方案做进一步说明,但不是限制本发明的要求保护的范围。
所用原料均为常规原料,化学品均为分析级,未经进一步处理。
所用设备均为常规设备,均可市购获得。
静电纺丝装置采用市场上常见静电纺丝机;推进器为常规塑料注射器;聚乙烯吡咯烷酮(PVP)为聚乙烯吡咯烷酮K90,平均重均分子量为130万。
实施例1
一种Cu-Br掺杂钛酸锂纳米纤维材料的制备方法,步骤如下:
(1)将0.5 g聚乙烯吡咯烷酮加入到10 mL无水乙醇中,搅拌1 h至溶液澄清透明,得到聚乙烯吡咯烷酮的醇溶剂;按照摩尔比为4:4.95:0.05:0.05分别称量乙酸锂(CH3COOLi·2H2O, AR),钛酸四正丁酯(C16H36O4Ti,99.0%),乙酸铜(Cu(CH3COO)2·H2O, AR)和溴化锂(LiBr, AR)加入到聚乙烯吡咯烷酮的醇溶剂中,同时加入3 mL盐酸,搅拌4 h,得到淡绿色均匀透明的前驱体溶胶;
(2)将步骤(1)制得的前驱体溶胶置于推进针管中,在针头与接收板之间施加20kV的电压,湿度为20%,接收距离为15 cm,可纺性溶胶的喷出速率为2.26 mL·h−1,在室温条件下进行静电纺丝,得到前驱体纤维;
(3)将步骤(2)制得的前驱体纤维于40℃干燥6 h,在空气气氛中,以2℃·min−1的升温速率升温至800℃,并保温240 min,自然冷却至室温,制得Cu-Br掺杂钛酸锂纳米纤维材料(Li4Ti4.95Cu0.05O11.95Br0.05),简称:LTCOB。
本实施例制备得到的LTCOB纳米纤维材料的X射线衍射谱图(XRD)如图1中所示,由图1可以看出,得到的样品衍射峰与立方相尖晶石型Li4Ti5O12(JCPDS No. 49-0207)的(111),(311),(400),(511),(440)和(531)晶面匹配良好。样品的衍射峰较窄而且尖锐,表明结晶度较好,并且未发现杂质相,说明掺杂没有破坏原有的钛酸锂尖晶石结构,Cu和Br离子已成功引入Li4Ti5O12的晶格结构中。
本实施例制备得到的LTCOB纳米纤维材料的扫描电镜(SEM)图如图2所示,由图2a和2b可以看出,所制备的LTCOB纳米纤维是直径200-300 nm的长程连续纤维,纤维主体是由纳米颗粒连接组成的竹节状纤维。
本实施例制备得到的LTCOB纳米纤维材料的扫描电镜(TEM)图如图2所示,由图2c和2d可以看出,样品为实心纳米纤维,形貌特征与SEM图像一致。
本实施例制备得到的LTCOB纳米纤维材料的EDS图谱如图2e所示,显示出掺杂的Cu和Br元素的特征峰,也表明Cu和Br离子已成功引入到钛酸锂纳米纤维。
本实施例制备得到的LTCOB纳米纤维材料不同电流密度下的倍率性能(1C=175mAh g−1)如图4所示,在 0.5、 1、 2、 5、 10、 20、30 C 的电流密度下,观察到LTCOB电极表现出优异的倍率性能,即使在30 C的电流密度下循环10圈后,平均放电容量仍具有79.6mAh g−1,当电流密度恢复到0.5 C,放电容量恢复到172.4 mAh g−1,并且循环保持稳定。
实施例2
一种Cu-Br掺杂钛酸锂纳米纤维材料的制备方法,步骤如下:
(1)将0.7 g聚乙烯吡咯烷酮(PVP,重均分子量为130万)加入到12 mL无水乙醇中,搅拌1 h至溶液澄清透明,得到聚乙烯吡咯烷酮的醇溶剂;按照摩尔比为4:4.98:0.02:0.02分别称量乙酸锂(CH3COOLi·2H2O, AR),钛酸四正丁酯(C16H36O4Ti,99.0%),乙酸铜(Cu(CH3COO)2·H2O, AR)和溴化锂(LiBr, AR)加入到聚乙烯吡咯烷酮的醇溶剂中,同时加入5mL盐酸,搅拌4 h,得到淡绿色均匀透明的前驱体溶胶。
(2)将步骤(1)制得的前驱体溶胶置于推进针管中,在针头与接收板之间施加23kV的电压,湿度为20%,接收距离为20 cm,可纺性溶胶的喷出速率为1.60 mL·h−1,在室温条件下进行静电纺丝,得到前驱体纤维;
(3)将步骤(2)制得的前驱体纤维于40℃干燥6 h,在空气气氛中,以5℃·min−1的升温速率升温至800℃,并保温180 min,自然冷却至室温,制得Cu-Br掺杂钛酸锂纳米纤维材料(Li4Ti4.98Cu0.02O11.98Br0.02)。
实施例3
(1)将0.7 g聚乙烯吡咯烷酮(PVP,重均分子量为130万)加入到10 mL无水乙醇中,搅拌1 h至溶液澄清透明,得到聚乙烯吡咯烷酮的醇溶剂;按照摩尔比为4:4.93:0.07:0.07分别称量乙酸锂(CH3COOLi·2H2O, AR),钛酸四正丁酯(C16H36O4Ti,99.0%),乙酸铜(Cu(CH3COO)2·H2O, AR)和溴化锂(LiBr, AR)加入到聚乙烯吡咯烷酮的醇溶剂中,同时加入4mL盐酸,搅拌5 h,得到淡绿色均匀透明的前驱体溶胶。
(2)将步骤(1)制得的前驱体溶胶置于推进针管中,在针头与接收板之间施加18kV的电压,湿度为20%,接收距离为20 cm,可纺性溶胶的喷出速率为2.26 mL·h−1,在室温条件下进行静电纺丝,得到前驱体纤维;
(3)将步骤(2)制得的前驱体纤维于40℃干燥6 h,在空气气氛中,以2℃·min−1的升温速率升温至850℃,并保温240 min,自然冷却至室温,制得Cu-Br掺杂钛酸锂纳米纤维材料(Li4Ti4.93Cu0.07O11.93Br0.07)。
对比例1
一种Cu掺杂钛酸锂纳米纤维材料的制备方法,步骤如下:
(1)将0.5 g聚乙烯吡咯烷酮(PVP,重均分子量为130万)加入到10 mL无水乙醇中,搅拌1 h至溶液澄清透明,得到聚乙烯吡咯烷酮的醇溶剂;按照摩尔比为4:4.95:0.05分别称量乙酸锂(CH3COOLi·2H2O, AR),钛酸四正丁酯(C16H36O4Ti,99.0%)和乙酸铜(Cu(CH3COO)2·H2O, AR)加入到聚乙烯吡咯烷酮的醇溶剂中搅拌4 h,得到淡绿色均匀透明的前驱体溶胶。
(2)将步骤(1)制得的前驱体溶胶置于推进针管中,在针头与接收板之间施加20kV的电压,湿度为20%,接收距离为15 cm,可纺性溶胶的喷出速率为2.26 mL·h−1,在室温条件下进行静电纺丝,得到前驱体纤维;
(3)将步骤(2)制得的前驱体纤维于40℃干燥6 h,在空气气氛中,以2℃·min−1的升温速率升温至800℃,并保温240 min,自然冷却至室温,制得Cu掺杂钛酸锂纳米纤维材料(Li4Ti4.95Cu0.05O12),简称:LTCO。
对比例2
一种Br掺杂钛酸锂纳米纤维材料的制备方法,包括步骤如下:
(1)将0.5 g聚乙烯吡咯烷酮(PVP,重均分子量为130万)加入到10 mL无水乙醇中,搅拌1 h至溶液澄清透明,得到聚乙烯吡咯烷酮的醇溶剂;按照摩尔比为4:5:0.05分别称量乙酸锂(CH3COOLi·2H2O, AR),钛酸四正丁酯(C16H36O4Ti,99.0%)和溴化锂(LiBr, AR)加入到聚乙烯吡咯烷酮的醇溶剂中搅拌4 h,得到均匀透明的前驱体溶胶。
(2)将步骤(1)制得的前驱体溶胶置于推进针管中,在针头与接收板之间施加20kV的电压,湿度为20%,接收距离为15 cm,可纺性溶胶的喷出速率为2.26 mL·h−1,在室温条件下进行静电纺丝,得到前驱体纤维;
(3)将步骤(2)制得的前驱体纤维于40℃干燥6 h,在空气气氛中,以2℃·min−1的升温速率升温至800℃,并保温240 min,自然冷却至室温,制得Br掺杂钛酸锂纳米纤维材料(Li4Ti5O11.95Br0.05),简称:LTOB。
对比例3
钛酸锂纳米纤维材料的制备,步骤如下:
(1)将0.5 g聚乙烯吡咯烷酮(PVP,重均分子量为130万)加入到10 mL无水乙醇中,搅拌1 h至溶液澄清透明,得到聚乙烯吡咯烷酮的醇溶剂;按照摩尔比为4:5分别称量乙酸锂(CH3COOLi·2H2O, AR),钛酸四正丁酯(C16H36O4Ti,99.0%)加入到聚乙烯吡咯烷酮的醇溶剂中,然后加入2 mL乙酸搅拌4 h,得到均匀透明的前驱体溶胶。
(2)将步骤(1)制得的前驱体溶胶置于推进针管中,在针头与接收板之间施加20kV的电压,湿度为20%,接收距离为15 cm,可纺性溶胶的喷出速率为2.26 mL·h−1,在室温条件下进行静电纺丝,得到前驱体纤维;
(3)将步骤(2)制得的前驱体纤维于40℃干燥6 h,在空气气氛中,以2℃·min−1的升温速率升温至800℃,并保温240 min,自然冷却至室温,制得钛酸锂纳米纤维材料(Li4Ti5O12),简称:LTO。
实验例
电化学性能测试
(1)分别将对比例1,2,3制备的LTCO、LTOB和LTO样品及实施例1制备的LTCOB纳米纤维材料与乙炔黑和聚偏氟乙烯(PVDF,分子量53万)按照质量比8:1:1混合在研钵中研磨15 min,使之混合均匀;然后将混合料置入球磨机中,滴入1.5-2 mL N-甲基吡咯烷酮(NMP),然后加入4-6颗玛瑙珠,设置球磨机转速400转/分钟,球磨4 h,充分混合均匀,得混合浆料;
(2)将步骤(1)得到的混合浆料用刮刀均匀的刮涂到铜箔上,然后置于110℃真空干燥箱中,干燥12 h,干燥后的铜箔裁成直径0.9 cm圆片(活性物质的量为1.1±2 mg);
(3)电池组装在充满氩气的手套箱中进行,组装为CR2032扣式半电池测试电化学性能,将碳酸乙烯酯和碳酸二甲酯按照体积比为1:1混合得混合溶剂,将LiPF6溶解在混合溶剂中,LiPF6在混合溶剂中的浓度为1 mol·L−1,即得电解液;Celgard-2400聚丙烯作为隔膜,测试电压范围是1-2.5 V。
测试结果:1、实施例1制备的LTCOB纳米纤维复合材料与对比例1-3中制备的LTCO、LTOB、LTO纳米纤维材料的组装电池循环性能对比如图3所示,可以观察到在电压范围为1-2.5 V,电流密度为1 C的测试下,与其它样品相比,LTCOB电极具有更大的放电比容量和更好的循环稳定性,首圈放电容量达到181.7 mAh g−1, 在一个长达400圈的循环之后,具有170.4 mAh g-1的放电比容量,相应的库仑效率几乎保持约100%,而对比例3中的LTO电极,首圈放电容量171.8 mAh g−1,400圈后放电容量下降为146.3 mAh g−1。通过对比发现LTO晶格中掺杂Cu-Br离子可以在循环中有效增强稳定性和储锂容量。
2、实施例1与对比例1-3制备的LTCOB,LTOB,LTCO和LTO样品在 0.5、 1、 2、 5、10、 20、30 C 的倍率电流下分别测试了倍率循环性能。由图4中可以明显的观察到LTCOB电极比其他样品展现出更优异的倍率性能,即使在30 C的倍率电流密度下循环10圈后,平均放电容量仍具有79.6 mAh g−1,而LTCO,LTOB和LTO的放电容量分别是47.4、23.7和8.7 mAhg−1。当电流密度恢复到0.5 C,LTCOB放电容量恢复到172.4 mAh g−1,并且循环保持稳定。
3、实施例1与对比例1-3制备的LTCOB,LTOB,LTCO和LTO样品的Nyquist阻抗如图5所示,LTCOB纳米纤维材料交流阻抗中半圆区域明显小于其他样品材料的半圆区域,Cu和Br元素掺杂进入LTO纳米纤维晶格会造成Ti3+的形成,并且使样品的导电性增强。

Claims (6)

1.一种Cu-Br掺杂钛酸锂纳米纤维材料,其特征在于,Cu和Br离子引入到钛酸锂纳米纤维的晶格中,纤维主体为纳米颗粒连接组成的竹节状长程连续纤维,纤维直径为200-300nm,所述的Cu-Br掺杂钛酸锂纳米纤维为实心纳米纤维;
是按如下方法制得:
(1)按照化学计量比称取锂源、钛源、铜源、溴源加入到聚乙烯吡咯烷酮的醇溶剂中,同时加入酸性溶液,搅拌均匀,得到前驱体溶胶;所述的锂源为乙酸锂;所述的钛源为钛酸异丙酯C12H28O4Ti或钛酸四正丁酯C16H36O4Ti;所述的铜源为乙酸铜;所述的溴源为溴化锂;锂源:钛源:铜源:溴源的摩尔比为4:(4-5):(0.05-0.1):(0.05-0.1);
(2)将步骤(1)得到的前驱体溶胶在室温条件下进行静电纺丝,得到前驱体纤维;
(3)将步骤(2)制得的前驱体纤维干燥后,升温至温度700-900℃保温120-300 min,冷却后,得到Cu-Br掺杂钛酸锂纳米纤维材料。
2.根据权利要求1所述的Cu-Br掺杂钛酸锂纳米纤维材料,其特征在于,步骤(1)中,锂源的加入量与聚乙烯吡咯烷酮的质量比(8-10):(5-7),所述聚乙烯吡咯烷酮的重均分子量为100-150万。
3.根据权利要求1所述的Cu-Br掺杂钛酸锂纳米纤维材料,其特征在于,步骤(1)中,所述醇溶剂为无水乙醇或甲醇,所述聚乙烯吡咯烷酮与醇溶剂的质量体积比为(0.3-2.5):(6-18),单位为g·mL−1;酸性溶液为硝酸、盐酸或乙酸,酸性溶液的加入量与醇溶剂的体积比为(1-5):(6-20)。
4.根据权利要求1所述的Cu-Br掺杂钛酸锂纳米纤维材料,其特征在于,步骤(2)中,静电纺丝时针头与接收板之间施加的电压为15-25 kV,湿度为10-40%,接收距离为15-30 cm,可纺性溶胶的喷出速率为0.5-3.5 mL·h−1
5.根据权利要求1所述的Cu-Br掺杂钛酸锂纳米纤维材料,其特征在于,步骤(3)中,干燥温度为30-60℃,干燥时间为5-15 h,升温至温度700-900℃的升温速度为2-5℃·min−1;保温温度为 750-850℃,保温时间为180-240 min。
6.权利要求1所述的Cu-Br掺杂钛酸锂纳米纤维材料的应用,作为锂离子电池负极材料使用。
CN202010522377.9A 2020-06-10 2020-06-10 一种Cu-Br掺杂钛酸锂纳米纤维材料及其制备方法与应用 Active CN111793856B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010522377.9A CN111793856B (zh) 2020-06-10 2020-06-10 一种Cu-Br掺杂钛酸锂纳米纤维材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010522377.9A CN111793856B (zh) 2020-06-10 2020-06-10 一种Cu-Br掺杂钛酸锂纳米纤维材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111793856A CN111793856A (zh) 2020-10-20
CN111793856B true CN111793856B (zh) 2022-09-27

Family

ID=72803997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010522377.9A Active CN111793856B (zh) 2020-06-10 2020-06-10 一种Cu-Br掺杂钛酸锂纳米纤维材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111793856B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899820B (zh) * 2021-01-19 2022-07-26 大连民族大学 一种Cu-Ni-Co-O固溶体纳米纤维材料及制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914362A (zh) * 2016-06-16 2016-08-31 四川大学 一种高倍率的铜掺杂钛酸锂负极材料的制备方法
CN107425192A (zh) * 2017-06-08 2017-12-01 中国电力科学研究院 一种钛酸锂材料、制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914362A (zh) * 2016-06-16 2016-08-31 四川大学 一种高倍率的铜掺杂钛酸锂负极材料的制备方法
CN107425192A (zh) * 2017-06-08 2017-12-01 中国电力科学研究院 一种钛酸锂材料、制备方法及其应用

Also Published As

Publication number Publication date
CN111793856A (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
CN103022462B (zh) 一种锂电池高电导率钛酸锂负极材料的制备方法
Hao et al. Electrospun single crystalline fork-like K2V8O21 as high-performance cathode materials for lithium-ion batteries
KR20200129176A (ko) 리튬이온 2차 전지용 음극 재료, 리튬이온 2차 전지용 음극 및 리튬이온 2차 전지
EP3364483A1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
CN109873140B (zh) 一种锂离子电池石墨烯复合三元正极材料及其制备方法
CN110589791B (zh) 一种锡掺杂焦磷酸钛的制备方法
CN113328082A (zh) 一种正极补锂材料和包括该材料的锂离子电池
CN113328081A (zh) 一种正极补锂材料和包括该材料的锂离子电池
JPH07307165A (ja) リチウム二次電池
WO2023273917A1 (zh) 正极材料及其制备方法和锂离子电池
JP2023068117A (ja) 負極活物質、並びに、それを用いた電気化学装置及び電子装置
Zhang et al. Synthesis and characterization of mono-dispersion LiNi0. 8Co0. 1Mn0. 1O2 micrometer particles for lithium-ion batteries
Kong et al. Synthesis of lithium rich layered oxides with controllable structures through a MnO2 template strategy as advanced cathode materials for lithium ion batteries
CN111793856B (zh) 一种Cu-Br掺杂钛酸锂纳米纤维材料及其制备方法与应用
CN116477661A (zh) 一种补锂材料及其制备方法和应用
CN112421031B (zh) 电化学装置和电子装置
WO2022204979A1 (zh) 硅基复合材料及其制备方法和应用
CN111354942B (zh) 一种微米级棒状锰酸锂及其制备方法和应用
CN115838170A (zh) 改性石墨、制备方法以及包含该改性石墨的二次电池和用电装置
CN116022859A (zh) 一种制备正极材料的方法及正极材料
Bae et al. Effect of PEDOT: PSS (Poly (3, 4-ethylenedioxythiophene)-polystyrenesulfonate) Coating on Nanostructured Cobalt-Free LiNi0. 9Mn0. 1O2 Layered Oxide Cathode Materials for Lithium-Ion Battery
CN111653765A (zh) 一种铌掺杂镍钴铝酸锂正极材料的制备方法
CN111162251A (zh) 碳包覆和Na+掺杂的LiMnPO4正极材料及其制备方法和应用
Tian et al. Influence of Temperature on the Performance of LiNi1/3Co1/3Mn1/3O2 Prepared by High-Temperature Ball-Milling Method
WO2023097458A1 (zh) 电化学装置和电子装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant