CN111792896B - 一种自感知高强砂浆及其制备方法和应用 - Google Patents
一种自感知高强砂浆及其制备方法和应用 Download PDFInfo
- Publication number
- CN111792896B CN111792896B CN202010681537.4A CN202010681537A CN111792896B CN 111792896 B CN111792896 B CN 111792896B CN 202010681537 A CN202010681537 A CN 202010681537A CN 111792896 B CN111792896 B CN 111792896B
- Authority
- CN
- China
- Prior art keywords
- self
- nano
- sensing
- stirring
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004570 mortar (masonry) Substances 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000010935 stainless steel Substances 0.000 claims abstract description 37
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 37
- 239000004568 cement Substances 0.000 claims abstract description 35
- 239000000945 filler Substances 0.000 claims abstract description 30
- 210000003632 microfilament Anatomy 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 17
- 239000010881 fly ash Substances 0.000 claims abstract description 14
- 239000006004 Quartz sand Substances 0.000 claims abstract description 12
- 229910021487 silica fume Inorganic materials 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims description 34
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000005543 nano-size silicon particle Substances 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- 102000002151 Microfilament Proteins Human genes 0.000 abstract description 14
- 108010040897 Microfilament Proteins Proteins 0.000 abstract description 14
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000013329 compounding Methods 0.000 abstract description 3
- 238000005299 abrasion Methods 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000011231 conductive filler Substances 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 8
- 239000002131 composite material Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000002956 ash Substances 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 239000011083 cement mortar Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 239000004574 high-performance concrete Substances 0.000 description 2
- 239000011372 high-strength concrete Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002064 nanoplatelet Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/022—Carbon
- C04B14/026—Carbon of particular shape, e.g. nanotubes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
- C04B14/48—Metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0076—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
- C04B20/008—Micro- or nanosized fillers, e.g. micronised fillers with particle size smaller than that of the hydraulic binder
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00482—Coating or impregnation materials
- C04B2111/00508—Cement paints
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/70—Grouts, e.g. injection mixtures for cables for prestressed concrete
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/50—Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Civil Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Road Paving Structures (AREA)
- Bridges Or Land Bridges (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本发明提供一种自感知高强砂浆及其制备方法,所述自感知高强砂浆按重量比包括水泥:粉煤灰:硅灰:石英砂:不锈钢微丝:纳米填料:水:减水剂=1:0.2~0.4:0.2~0.4:1.2~1.6:0.016~0.022:0.0015~4.0000:0.55~0.75:0.0015~0.003。本发明通过复合掺入超低掺量不锈钢微丝及纳米填料大幅度降低砂浆的电阻率,并使其具有稳定且灵敏的自感知性能,强度高于60MPa,生产工艺简单,可直接用作损伤自感知结构材料,也可用于制备高模量水泥基传感器,还可用作构件的磨耗层或者用于道面/桥面板的接缝灌浆材料,感知主体构件的受力及损伤状态。
Description
技术领域
本发明涉及智能水泥基材制备领域,具体而言,尤其涉及一种自感知高 强砂浆及其制备方法和应用。
背景技术
已有研究中多使用碳系导电填料制备自感知水泥基复合材料,包括碳 纤维、碳纳米管、碳纳米纤维、石墨烯等,但这些碳系导电填料与水泥基 材料的相容性能差,需采用特定的分散技术或者加入分散剂,使得制备工 艺复杂、生产成本提高;与此同时,低掺量的碳系导电填料无法赋予水泥 基材料感知能力,而高掺量的碳系导电填料因为易于团聚在水泥基材料中 引入大量宏观缺陷,对其力学性能产生不利影响;此外,碳系导电填料脆 性大,在剪切力作用下容易发生断裂,使得感知网络被破坏,降低了其对 变形与破坏的感知能力;还需注意的是,已有添加碳系导电填料的水泥基 复合材料以水泥净浆或者普通砂浆为主,其强度和弹性模量往往较低,将 其作为水泥基传感器预埋于高强或者高性能混凝土构件中时,会出现模量 不适应的现象,对构件安全性造成不利影响。也有部分研究使用钢纤维或 者不锈钢微丝提高水泥基材料的导电性能,并赋予其自感知能力,其使用 的钢纤维直径范围为0.15-0.25mm,质量掺量为水泥质量的0.18%~0.35%, 不锈钢微丝直径为18~30μm,质量掺量为水泥质量的0.09%~0.14%,钢 纤维或者不锈钢微丝掺量较低时,无法赋予水泥基材料良好的导电及感知 性能;钢纤维或者不锈钢微丝掺量较高时,水泥基材料内部的宏观缺陷增 加,拌合物的施工性能差,限制了其使用范围。
发明内容
为解决上述问题,本发明的目的在于提供一种强度高于60MPa、感知性 能好、生产工艺简单且应用范围广的自感知高强砂浆。
本发明采用的技术手段如下:
一种自感知高强砂浆,按重量比包括水泥:粉煤灰:硅灰:石英砂:不 锈钢微丝:纳米填料:水:减水剂=1:0.2~0.4:0.2~0.4:1.2~1.6: 0.016~0.022:0.0015~4.0000:0.55~0.75:0.0015~0.003。
进一步地,所使用的纳米填料选自0维、1维和2维纳米填料中的一种; 0维纳米填料包括纳米TiO2、纳米ZrO2、纳米SiO2和纳米包硅TiO2;1维 纳米填料包括多壁碳纳米管CNT、单壁CNT、功能化CNT和碳纳米纤维;2 维纳米填料包括石墨烯和纳米石墨片。
进一步地,所使用的水泥标号为P·O42.5R;所使用的粉煤灰F类粉煤灰, 45μm筛的筛余量不超过25%;所使用的硅灰的粒径为0.1-0.3μm;所使用的 石英砂的粒径为40-150目,SiO2含量≥99%,Fe2O3含量≤0.005%;所使用 的不锈钢微丝的直径为10~30μm,长度为5~18mm,延伸率>1%,抗拉强 度大于780Mpa;所述减水剂为聚羧酸系减水剂。
本发明还提供了一种上述自感知高强砂浆的制备方法,
当使用1维或者2维纳米填料时,搅拌流程为先将纳米填料、水及减水 剂混合均匀后放置于超声仪中超声分散5分钟,冷却至室温后倒入搅拌锅 内,再加入不锈钢微丝及硅灰低速搅拌1分钟,暂停,加入水泥、粉煤灰 后,低速搅拌1~2分钟,高速搅拌2~4分钟,暂停,加入石英砂,低速搅拌 1~2分钟,再高速搅拌3~5分钟;
当使用0维纳米填料时,搅拌流程为先将纳米填料、不锈钢微丝、硅 灰、水及减水剂倒入搅拌锅内混合均匀,低速搅拌1~3分钟,暂停,加入水 泥、粉煤灰后,低速搅拌1~3分钟,高速搅拌2~4分钟,暂停,加入石英 砂,低速搅拌1~2分钟,再高速搅拌3~5分钟。
进一步地,在标准养护箱内养护24小时后脱模,之后置于20±1℃水中 养护至28天后置于空气中;标准养护箱内,温度20±1℃,湿度≥95%。
进一步地,本发明还提供了上述自感知高强砂浆在构件自感知中的应 用。
进一步地,本发明还提供了上述自感知高强砂浆用作预埋式水泥基传感 器。
进一步地,本发明还提供了上述自感知高强砂浆用作构件表面智能磨耗 层。
进一步地,本发明还提供了上述自感知高强砂浆用作道面板或者桥面板 的智能接缝灌浆材料。
本发明采用低掺量的不锈钢微丝与纳米填料复合提高砂浆的导电性,并 赋予其灵敏且稳定的感知性能和高强性能,其主要作用机理包括以下三个方 面:①由于具有微米级直径,低掺量的不锈钢微丝即具有庞大数量的根数, 同时,砂浆基体中的硅灰、粉煤灰、石英砂及减水剂均可对不锈钢微丝起到 分散作用,这使其低掺量下即可在砂浆基体内广泛分布,显著降低砂浆的导 电性,但其导电机理仅限于搭接导电,因此,单独掺入不锈钢微丝时,只可 一定程度上提高砂浆在循环荷载下的自感知性能;②复合掺入纳米填料时, 一方面纳米填料可发挥纳米核心效应,水化产物聚集在纳米填料表面,造成 部分区域内的离子浓度增加,形成离子导电通路,架接在不锈钢微丝之间, 进一步提高砂浆的电导性能及荷载下的感知性能;另一方面,吸附于不锈钢 微丝表面的纳米填料,也在持续发挥纳米核心效应,这相当于扩大了不锈钢 微丝的电导范围,使得一定变形条件下导电通路搭接的几率增大,进而提高 砂浆的感知灵敏度;此外,当掺入的纳米填料为碳系材料时,纳米填料本身 也构成导电通路的一部分,也可进一步提高砂浆的导电性及感知性能;③不 锈钢微丝和纳米填料的复合使用还可显著改善砂浆的纳/微观结构,提高结 构密实度,减少原生裂纹,限制裂纹的产生和发展,并可跨越与桥接裂纹, 进而提高砂浆的抗压强度。
较现有技术相比,本发明具有以下优点:
低掺量的不锈钢微丝和纳米填料复合使用赋予砂浆高强度、高导电性及 稳定的高感知性能,可将其直接用作结构材料生产自感知构件,达到损伤自 监测的效果;也可用其制备水泥基传感器,可解决以往水泥基传感器与高强 或者高性能混凝土构件模量适应性不良的问题;或者可将其浇筑于已有混凝 土构件表面用作自感知磨耗层,还可将其用作道面板或者桥面板接缝灌浆材 料,赋予其感知动态交通参数的能力,大大拓展自感知水泥基材料的应用领 域;同时,该自感知高强砂浆对养护环境的要求较低,并大量使用工业废渣 粉煤灰,对保护环境及降低智能水泥基材料的生产成本具有重要意义。
基于上述理由本发明可在智能水泥基材制备领域广泛推广。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明 实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是 本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例 的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限 制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前 提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明是将低掺量的不锈钢微丝和纳米填料复合用于制备自感知高强砂 浆,其导电性好、强度高、感知性能好、生产工艺简单、应用范围广,尤其 适用于荷载及变形的自感知、预埋式传感器的制备、构件磨耗层以及道面/ 桥面板的灌浆接缝等。
下面结合具体实例说明本发明所述的自感知高强砂浆及其制备方法。
自感知高强砂浆的两电极直流电阻和交流电阻分别采用吉时利2100数 字多用表和频率为100HZ的手持式智能LCR测量仪进行测量,所得结果根 据公式ρ=RS/L进行计算可得电阻率ρ,其中R-电阻;S-试件面积;L-两电 极之间的距离。所采用的试块尺寸为40mm40mm 80mm,采用不锈钢 网状电极预埋于试件内部,间距为40mm,距离两侧边缘均为20mm。为获 得不同荷载情况下的应变灵敏度系数,在试件中间位置沿荷载方向于相对面 上粘贴应变片,取两个应变的平均值作为该试件最终应变值。测试其在循环 压缩荷载下的应变灵敏度时,将压缩荷载设置为25kN;加入不锈钢微丝 后,电阻率的变化与试件在单轴压缩荷载下裂纹的发展相互对应,随着压缩 荷载的增大,电阻率先呈现减小的趋势,裂缝张开时,部分导电通路断开, 电阻率呈现增大的趋势,该拐点可用来预测材料的宏观损伤发展,而在该拐 点之前,可用应变灵敏度感知材料的细观损伤,因此,取电阻率变化率的最 大绝对值及对应的应变值计算复合材料在单轴压缩破坏荷载下的应变灵敏 度。
实施例1
本实施例中自感知高强砂浆各组分之间的重量比为水泥:粉煤灰:硅 灰:石英砂:不锈钢微丝:纳米填料:水:减水剂=1:0.25:0.31:1.375: 0.018:0.005:0.75:0.0015。其所用水泥为P·O42.5R;所用不锈钢微丝的直 径为20μm,长度为10mm;所用纳米填料为多壁碳纳米管,其长度为 0.5~2μm,外径小于8nm;所用减水剂为聚羧酸系减水剂。所用超声仪的功 率为1200W。
搅拌流程为:第一步,先将多壁碳纳米管、减水剂及水混合后置于超声 仪中超声5分钟,在空气中冷却至室温后倒入搅拌锅内;第二步,加入硅灰 和不锈钢微丝,采用水泥胶砂搅拌机低速搅拌1分钟;第三步,暂停,加入 水泥和粉煤灰,低速搅拌1分钟后,高速搅拌2分钟;第四步,暂停,加入 石英砂,低速搅拌1分钟后,高速搅拌3分钟,即得自感知高强砂浆。
将自感知高强砂浆试件在标准养护箱内养护24小时后拆模,在20±1℃ 水中养护至28天后置于空气中待测。
实施例2
本实施例中自感知高强砂浆各组分的重量比为水泥:粉煤灰:硅灰:石 英砂:不锈钢微丝:纳米填料:水:减水剂=1:0.25:0.31:1.375:0.018: 0.03:0.75:0.0015。其所用水泥为P·O42.5R;所用不锈钢微丝的直径为 20μm,长度为10mm;所用纳米填料为纳米包硅TiO2,其为金红石相,外 径为20nm,二氧化硅与二氧化钛的比例为0.04:1;所用减水剂为聚羧酸系 减水剂。
搅拌流程为:第一步,先将纳米包硅TiO2、硅灰、不锈钢微丝、减水剂 及水混合,采用水泥胶砂搅拌机低速搅拌1分钟;第二步,暂停,加入水泥 和粉煤灰,低速搅拌1分钟后,高速搅拌2分钟;第三步,暂停,加入石英 砂,低速搅拌1分钟后,高速搅拌3分钟,即得自感知高强砂浆。
将自感知高强砂浆试件在标准养护箱内养护24小时后拆模,在20±1℃ 水中养护至28天后置于空气中待测。
对比例1
与实施例1不同之处在于组分中不含不锈钢微丝和纳米填料。
对比例2
与实施例1不同之处在于组分中不含不锈钢微丝。
对比例3
与实施例2不同之处在于组分中不含不锈钢微丝。
对比例4
与实施例1不同之处在于组分中不含纳米填料。
性能测试
自感知高强砂浆的直流电阻率、交流电阻率及其在不同荷载下的应变灵 敏度系数如表1所示。表1中直流及交流电阻率的降低代表砂浆导电性能的 提高。复合使用低掺量不锈钢微丝和纳米填料时,高强砂浆在循环压缩荷载 及单轴压缩破坏荷载下的应变灵敏度系数远远高于单掺不锈钢微丝或者纳米 填料时。
表1自感知高强砂浆的直流/电阻率、棱柱体抗压强度及其在不同荷载下的应变灵敏度系数
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对 其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修 改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替 换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (3)
1.一种自感知高强砂浆,其特征在于,按重量比包括水泥:粉煤灰:硅灰:石英砂:不锈钢微丝:纳米填料:水:减水剂=1:0.2~0.4:0.2~0.4:1.2~1.6:0.016~0.022:0.0015~4.0000:0.55~0.75:0.0015~0.003;
所使用的纳米填料为0维纳米填料,包括纳米TiO2、纳米ZrO2、纳米SiO2和纳米包硅TiO2;
所述自感知高强砂浆的制备方法具体包括以下步骤:
搅拌流程为先将纳米填料、不锈钢微丝、硅灰、水及减水剂倒入搅拌锅内混合均匀,低速搅拌1~3分钟,暂停,加入水泥、粉煤灰后,低速搅拌1~3分钟,高速搅拌2~4分钟,暂停,加入石英砂,低速搅拌1~2分钟,再高速搅拌3~5分钟。
2.如权利要求1所述的自感知高强砂浆在构件自感知或构件表面智能磨耗层中的应用。
3.如权利要求1所述的自感知高强砂浆用作预埋式水泥基传感器或者用于道面板或桥面板的智能接缝灌浆材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010681537.4A CN111792896B (zh) | 2020-07-15 | 2020-07-15 | 一种自感知高强砂浆及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010681537.4A CN111792896B (zh) | 2020-07-15 | 2020-07-15 | 一种自感知高强砂浆及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111792896A CN111792896A (zh) | 2020-10-20 |
CN111792896B true CN111792896B (zh) | 2022-01-11 |
Family
ID=72807259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010681537.4A Active CN111792896B (zh) | 2020-07-15 | 2020-07-15 | 一种自感知高强砂浆及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111792896B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112279589A (zh) * | 2020-10-30 | 2021-01-29 | 中建商品混凝土有限公司 | 一种城市污水深隧传输工程复合材料及制备方法 |
CN113816697A (zh) * | 2021-10-28 | 2021-12-21 | 国网河南省电力公司直流运检分公司 | 一种高导电性复合接地材料及其制备方法 |
CN113998959B (zh) * | 2021-12-07 | 2022-04-22 | 哈尔滨工业大学 | 一种钢筋套筒用结构与感知功能一体化智能灌浆料 |
CN114394851A (zh) * | 2022-02-26 | 2022-04-26 | 河北工业大学 | 一种高发热电激养护混凝土结构的制备方法 |
PL443206A1 (pl) * | 2022-12-20 | 2024-06-24 | Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk | Nanowypełniacz do zaczynów cementowych i betonu na bazie wielowymiarowych nanostruktur węglowych, sposób jego wytwarzania, nanokompozyt, konstrukcja, kompozycja zaczynu zawierająca nanowypełniacz oraz sposoby ich wytwarzania i ich zastosowania |
CN117964306A (zh) * | 2024-01-25 | 2024-05-03 | 黑龙江大学 | 一种石墨尾矿超细钢纤维水泥基自感知材料及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105067164A (zh) * | 2015-08-12 | 2015-11-18 | 大连理工大学 | 导电水泥基复合材料及其制备方法和应用 |
CN105218002A (zh) * | 2014-06-05 | 2016-01-06 | 镇江市船山第二水泥厂 | 一种具有自感知修复功能的超高性能水泥基复合材料及其制备方法 |
CN105236850A (zh) * | 2015-08-28 | 2016-01-13 | 大连理工大学 | 一种导电活性粉末混凝土及其制备方法和应用 |
CN106673532A (zh) * | 2017-01-20 | 2017-05-17 | 河海大学 | 一种自感知镍纳米纤维水泥基复合材料 |
-
2020
- 2020-07-15 CN CN202010681537.4A patent/CN111792896B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105218002A (zh) * | 2014-06-05 | 2016-01-06 | 镇江市船山第二水泥厂 | 一种具有自感知修复功能的超高性能水泥基复合材料及其制备方法 |
CN105067164A (zh) * | 2015-08-12 | 2015-11-18 | 大连理工大学 | 导电水泥基复合材料及其制备方法和应用 |
CN105236850A (zh) * | 2015-08-28 | 2016-01-13 | 大连理工大学 | 一种导电活性粉末混凝土及其制备方法和应用 |
CN106673532A (zh) * | 2017-01-20 | 2017-05-17 | 河海大学 | 一种自感知镍纳米纤维水泥基复合材料 |
Also Published As
Publication number | Publication date |
---|---|
CN111792896A (zh) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111792896B (zh) | 一种自感知高强砂浆及其制备方法和应用 | |
Dong et al. | Piezoresistivity enhancement of functional carbon black filled cement-based sensor using polypropylene fibre | |
Bai et al. | Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume | |
Wang et al. | Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars | |
Jiang et al. | Comparison of compressive strength and electrical resistivity of cementitious composites with different nano-and micro-fillers | |
Han et al. | Self-sensing concrete in smart structures | |
Yu et al. | A carbon nanotube/cement composite with piezoresistive properties | |
WO2021093445A1 (zh) | 一种含多尺度导电材料的智能混凝土及其制备方法 | |
CN104446176A (zh) | 一种水泥基复合材料及其压敏传感器 | |
Ma et al. | Optimization on the piezoresistivity of alkali-activated fly ash/slag mortar by using conductive aggregates and carbon fibers | |
Maho et al. | Mechanical properties and electrical resistivity of multiwall carbon nanotubes incorporated into high calcium fly ash geopolymer | |
Wang et al. | Self-sensing performance of cementitious composites with functional fillers at macro, micro and nano scales | |
Dinesh et al. | Carbon nanofiber embedded cement composites: Properties and promises as sensor–A review | |
CN111792895A (zh) | 一种纳/微米填料复合增韧超高性能混凝土及其制备方法 | |
Suo et al. | Study on self-sensing capabilities of smart cements filled with graphene oxide under dynamic cyclic loading | |
Luo et al. | Effect of multi-wall carbon nanotube on fracture mechanical property of cement-based composite | |
Zhang et al. | Nano-scale behavior and nano-modification of cement and concrete materials | |
Thomoglou et al. | Electromechanical properties of multi-reinforced self-sensing cement-based mortar with MWCNTs, CFs, and PPs | |
Li et al. | The reinforcing effects and mechanisms of multi-layer graphenes on mechanical properties of reactive powder concrete | |
Zhang et al. | Effect of mix proportion and processing method on the mechanical and electrical properties of cementitious composites with nano/fiber fillers | |
CN112268933A (zh) | 一种具备多智能特性的混凝土传感器及其制备方法 | |
Zhang et al. | Improved output voltage of 0–3 cementitious piezoelectric composites with basalt fibers | |
CN114538831B (zh) | 一种纳米石墨复合地聚物材料及其制备方法和应用 | |
Wang et al. | New generation of cement-based composites for civil engineering | |
CN113321471B (zh) | 一种抗裂缝自感型套筒灌浆材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |