CN111791150A - Ship surface four-layer paint removing process - Google Patents

Ship surface four-layer paint removing process Download PDF

Info

Publication number
CN111791150A
CN111791150A CN201910274117.1A CN201910274117A CN111791150A CN 111791150 A CN111791150 A CN 111791150A CN 201910274117 A CN201910274117 A CN 201910274117A CN 111791150 A CN111791150 A CN 111791150A
Authority
CN
China
Prior art keywords
paint
cleaning robot
layer
spray disk
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910274117.1A
Other languages
Chinese (zh)
Inventor
黄川�
王朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Sunvest Environmental Engineering Co ltd
Original Assignee
Shanghai Sunvest Environmental Engineering Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Sunvest Environmental Engineering Co ltd filed Critical Shanghai Sunvest Environmental Engineering Co ltd
Priority to CN201910274117.1A priority Critical patent/CN111791150A/en
Publication of CN111791150A publication Critical patent/CN111791150A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/086Descaling; Removing coating films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C9/00Appurtenances of abrasive blasting machines or devices, e.g. working chambers, arrangements for handling used abrasive material
    • B24C9/003Removing abrasive powder out of the blasting machine

Abstract

The invention discloses a ship surface four-layer paint removing process which is characterized by comprising the following steps: determining the thickness of the outermost four layers of paint on the surface of the ship and the range of paint to be removed; setting working parameters of a high-pressure pump and a cleaning robot: the working parameters of the high-pressure pump are 900-1800rpm, the pressure is 1500-1800bar, the working parameters of the cleaning robot are 63-72L/min of total flow of a spray nozzle of the spray disk, the walking speed is 1.6-2cm/s, the working width of the spray disk is 500-900mm, and the rotating speed of an atomizing base of the spray disk is 1500-1800 rpm; high-pressure water is output by a high-pressure pump, is output to the working surface by a spray disk of a cleaning robot, and high-pressure water jet is carried out in the range of paint removal to remove the outermost four layers of paint. The paint removing process can selectively remove corroded coatings, fully utilizes intact coatings, saves the coating cost, improves the operation efficiency and shortens the maintenance period.

Description

Ship surface four-layer paint removing process
Technical Field
The invention relates to the field of ship paint removal, in particular to a ship surface four-layer paint removal process.
Background
In a continuous low-risk shipping market, the shipowner performs cost saving and efficiency improvement to deal with the market, wherein the shipping repair, annual repair and five-year special inspection dock repair account for more than 60% of the operating cost of the shipowner, the ship is corroded by seawater at the time of marine navigation, and rust removal and corrosion prevention are main projects during each ship repair. At present, the paint and rust removal of ship planking generally adopts a sand blasting process: compressed air is used as power to form a high-speed spray beam to spray a spray material to the surface of a workpiece to be treated at a high speed, the surface of a matrix is cleaned and coarsened by using the impact action of high-speed sand flow, and the sand-blasting paint-removing rust-removing process has the following defects: the selective removal of only the surface rust layer is not possible, protecting the coating which is not corroded but below the surface layer; the used media are iron sand, carborundum, diamond balls and the like, and a lot of dust is generated in the manufacturing process of the spray materials, so that the dust pollution is serious in the using process, and the damage to the environment and personnel is great.
The outer surface of the existing ship is generally coated with 4-7 layers of paint, one or more layers of the surface are usually removed when paint is required to be removed, and the whole surface is not required to be removed, but the existing ship surface paint removal and rust removal method removes all paint layers at one time, so that not only is the maintenance cost increased, but also time and labor are wasted.
Disclosure of Invention
The invention aims to solve the problems and provides a ship surface four-layer paint removing process.
In order to achieve the purpose, the invention is realized by the following technical scheme:
a ship surface four-layer paint removing process is characterized by comprising the following steps:
step 1: determining the thickness of the outermost four layers of paint on the surface of the ship and the range of paint to be removed;
step 2: setting working parameters of a high-pressure pump and a cleaning robot: the thickness of the outermost first paint layer is 80-150 mu m, the thickness of the second paint layer is 80-150 mu m, the thickness of the third paint layer is 320 mu m, the thickness of the fourth paint layer is 40-50 mu m, the working parameters of the high-pressure pump are set to be the rotation speed of 900 plus 1800rpm and the pressure of 1500 plus 1800bar, the working parameters of the cleaning robot are the total flow of 63-72L/min of the spray disk nozzle, the walking speed of 1.6-2cm/s, the working width of the spray disk is 500 plus 900mm, and the rotation speed of the spray disk atomizing base is 1500 plus 1800 rpm;
and step 3: high-pressure water is output by a high-pressure pump, is output to the working surface by a spray disk of a cleaning robot, and high-pressure water jet is carried out in the range of paint removal to remove the outermost four layers of paint.
Furthermore, a sealing housing is arranged outside a spray disk of the cleaning robot, the sealing housing is communicated with a vacuum system, and the vacuum system synchronously sucks and sucks sewage in the sealing housing in a vacuum manner during jet flow paint removal, wherein the vacuum degree in the sealing housing is lower than-20% or 0.02 MPa.
Furthermore, the included angle between the nozzle of the spray disk of the cleaning robot and the outer surface of the ship is 15-45 degrees.
The invention has the following beneficial effects:
(1) and (3) environmental protection: the dust pollution is avoided, the environment and operators are not damaged, the dust fine powder is recycled and intensively discharged together with the wastewater, and the haze generated by the traditional sand blasting process is greatly improved;
(2) high efficiency: compared with the method that the workpiece is cleaned after being treated by the sand blasting process, the workpiece treated by the high-pressure water robot can be immediately sprayed, the rust and paint removing effect is far better than that of the sand blasting process, the roughness or the salinity of the treated workpiece after rust removal conforms to the coating standard, and secondary treatment similar to sand blasting is not needed;
(3) the cost is saved: the corrosion depths of all the surfaces are different, and according to different corrosion degrees, the high-pressure water rust removal process can accurately treat rust layers and keep available coatings, so that a large amount of coating cost and labor cost can be saved, the pollution of waste materials is reduced, and the construction efficiency is greatly improved.
Detailed Description
The technical solution of the present invention will be further described with reference to the following examples.
Example 1:
the invention discloses a ship surface four-layer paint removing process which is characterized by comprising the following steps of:
step 1: determining the thickness of the outermost four layers of paint on the surface of the ship and the range of paint to be removed;
step 2: setting working parameters of a high-pressure pump and a cleaning robot: the thickness of the outermost first paint layer is 80-150 mu m, the thickness of the second paint layer is 80-150 mu m, the thickness of the third paint layer is 200-320 mu m, the thickness of the fourth paint layer is 40-50 mu m, the working parameters of the high-pressure pump are set to be 1600rpm and 1500bar, the working parameters of the cleaning robot are the total flow 63L/min of a spray disk nozzle, the walking speed is 2cm/s, the working width of the spray disk is 500mm, and the rotating speed of the spray disk atomizing base is 1600 rpm;
and step 3: high-pressure water is output by a high-pressure pump, is output to the working surface by a spray disk of a cleaning robot, and high-pressure water jet is carried out in the range of paint removal to remove the outermost four layers of paint.
Wherein, a sealing cover is arranged outside the spray disk of the cleaning robot, the sealing cover is communicated with a vacuum system, the vacuum system synchronously sucks in vacuum when the jet flow removes paint, the sewage in the sealing cover is sucked away, and the vacuum degree in the sealing cover is lower than-20% or 0.02 MPa; the nozzle of the spray disk of the cleaning robot forms an included angle of 15 degrees with the outer surface of the ship.
Example 2:
the invention discloses a ship surface four-layer paint removing process which is characterized by comprising the following steps of:
step 1: determining the thickness of the outermost four layers of paint on the surface of the ship and the range of paint to be removed;
step 2: setting working parameters of a high-pressure pump and a cleaning robot: the thickness of the outermost first paint layer is 80-150 mu m, the thickness of the second paint layer is 80-150 mu m, the thickness of the third paint layer is 200-320 mu m, the thickness of the fourth paint layer is 40-50 mu m, the working parameters of the high-pressure pump are set to be 1500rpm and 1650bar, the working parameters of the cleaning robot are 68L/min of the total flow of the spray disk nozzle, 1.8cm/s of the walking speed, 700mm of the working width of the spray disk and 1600rpm of the rotating speed of the spray disk atomizing base;
and step 3: high-pressure water is output by a high-pressure pump, is output to the working surface by a spray disk of a cleaning robot, and high-pressure water jet is carried out in the range of paint removal to remove the outermost four layers of paint.
Wherein, a sealing cover is arranged outside the spray disk of the cleaning robot, the sealing cover is communicated with a vacuum system, and the vacuum system synchronously sucks in vacuum during jet flow paint removal to suck away sewage in the sealing cover, wherein the vacuum degree in the sealing cover is lower than-20% or 0.02 MPa; the included angle between the spray nozzle of the spray disk of the cleaning robot and the outer surface of the ship is 30 degrees.
Example 3:
the invention discloses a ship surface four-layer paint removing process which is characterized by comprising the following steps of:
step 1: determining the thickness of the outermost four layers of paint on the surface of the ship and the range of paint to be removed;
step 2: setting working parameters of a high-pressure pump and a cleaning robot: the thickness of the outermost first paint layer is 80-150 mu m, the thickness of the second paint layer is 80-150 mu m, the thickness of the third paint layer is 200-320 mu m, the thickness of the fourth paint layer is 40-50 mu m, the working parameters of the high-pressure pump are set to be 1500rpm and 1800bar, the working parameters of the cleaning robot are 72L/min of total flow of a spray disk nozzle, 1.6cm/s of walking speed, 900mm of working width of the spray disk and 1600rpm of the rotating speed of a spray disk atomizing base;
and step 3: high-pressure water is output by a high-pressure pump, is output to the working surface by a spray disk of a cleaning robot, and high-pressure water jet is carried out in the range of paint removal to remove the outermost four layers of paint.
Wherein, a sealing cover is arranged outside the spray disk of the cleaning robot, the sealing cover is communicated with a vacuum system, and the vacuum system synchronously sucks in vacuum during jet flow paint removal to suck away sewage in the sealing cover, wherein the vacuum degree in the sealing cover is lower than-20% or 0.02 MPa; the included angle between the spray nozzle of the spray disk of the cleaning robot and the outer surface of the ship is 45 DEG
The above description is only for the purpose of illustrating the preferred embodiments of the present invention and is not to be construed as limiting the invention, and any modifications, equivalents, improvements and the like that fall within the spirit and principle of the present invention are intended to be included therein.

Claims (3)

1. A ship surface four-layer paint removing process is characterized by comprising the following steps:
step 1: determining the thickness of the outermost four layers of paint on the surface of the ship and the range of paint to be removed;
step 2: setting working parameters of a high-pressure pump and a cleaning robot: the thickness of the outermost first paint layer is 80-150 mu m, the thickness of the second paint layer is 80-150 mu m, the thickness of the third paint layer is 320 mu m, the thickness of the fourth paint layer is 40-50 mu m, the working parameters of the high-pressure pump are set to be the rotation speed of 900 plus 1800rpm and the pressure of 1500 plus 1800bar, the working parameters of the cleaning robot are the total flow of 63-72L/min of the spray disk nozzle, the walking speed of 1.6-2cm/s, the working width of the spray disk is 500 plus 900mm, and the rotation speed of the spray disk atomizing base is 1500 plus 1800 rpm;
and step 3: high-pressure water is output by a high-pressure pump, is output to the working surface by a spray disk of a cleaning robot, and high-pressure water jet is carried out in the range of paint removal to remove the outermost four layers of paint.
2. The marine surface four-layer paint removing process according to claim 1, wherein a sealing cover is installed outside a spray tray of the cleaning robot, the sealing cover is communicated with a vacuum system, vacuum suction is synchronously performed during jet paint removing, sewage in the sealing cover is sucked away, and the vacuum degree in the sealing cover is lower than-20% or 0.02 MPa.
3. The marine surface four-layer paint removal process according to claim 1, wherein an included angle between a nozzle of the cleaning robot spray plate and the outer surface of the marine is 15-45 °.
CN201910274117.1A 2019-04-08 2019-04-08 Ship surface four-layer paint removing process Withdrawn CN111791150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910274117.1A CN111791150A (en) 2019-04-08 2019-04-08 Ship surface four-layer paint removing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910274117.1A CN111791150A (en) 2019-04-08 2019-04-08 Ship surface four-layer paint removing process

Publications (1)

Publication Number Publication Date
CN111791150A true CN111791150A (en) 2020-10-20

Family

ID=72804972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910274117.1A Withdrawn CN111791150A (en) 2019-04-08 2019-04-08 Ship surface four-layer paint removing process

Country Status (1)

Country Link
CN (1) CN111791150A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849099A (en) * 1995-01-18 1998-12-15 Mcguire; Dennis Method for removing coatings from the hulls of vessels using ultra-high pressure water
US20030000445A1 (en) * 1995-03-22 2003-01-02 Mcguire Dennis Apparatus and method for removingcpatomgs from the hulls of vessels using ultra-high pressure water
US20030203707A1 (en) * 1998-12-04 2003-10-30 Farrow Nigel Richard Method for removing surface coatings
CN104743083A (en) * 2015-03-21 2015-07-01 河南摩西机械制造有限公司 Cleaning device for wall-climbing robot
CN106001008A (en) * 2016-06-21 2016-10-12 上海临仕激光科技有限公司 Laser cleaning method for marine paint
CN206951651U (en) * 2017-04-19 2018-02-02 内江职业技术学院 Trolley type cleaning device
CN109129201A (en) * 2018-09-09 2019-01-04 友联船厂(蛇口)有限公司 A kind of water under high pressure jet stream rust cleaning technique of ship

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849099A (en) * 1995-01-18 1998-12-15 Mcguire; Dennis Method for removing coatings from the hulls of vessels using ultra-high pressure water
US20030000445A1 (en) * 1995-03-22 2003-01-02 Mcguire Dennis Apparatus and method for removingcpatomgs from the hulls of vessels using ultra-high pressure water
US20030203707A1 (en) * 1998-12-04 2003-10-30 Farrow Nigel Richard Method for removing surface coatings
CN104743083A (en) * 2015-03-21 2015-07-01 河南摩西机械制造有限公司 Cleaning device for wall-climbing robot
CN106001008A (en) * 2016-06-21 2016-10-12 上海临仕激光科技有限公司 Laser cleaning method for marine paint
CN206951651U (en) * 2017-04-19 2018-02-02 内江职业技术学院 Trolley type cleaning device
CN109129201A (en) * 2018-09-09 2019-01-04 友联船厂(蛇口)有限公司 A kind of water under high pressure jet stream rust cleaning technique of ship

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李群英: "《涂装工常用技术手册》", 31 July 2008, 上海科学技术出版社 *
王兴如: "基于超高压纯水射流的船壁除锈除漆关键技术与爬壁试验研究", 《中国博士学位论文全文数据库工程科技Ⅱ辑》 *
薛胜雄: "《高压水射流技术与应用》", 31 August 1998, 机械工业出版社 *

Similar Documents

Publication Publication Date Title
CN103447969B (en) Steel plate de-scaling, cleaning and air-dry apparatus
CN110586443A (en) Novel onshore corrosion prevention process for wind power tower cylinder
CN108081151B (en) Nondestructive physical cleaning method for surface of metal part
CN105032747A (en) Tower cylinder coating method of large floating wind power station
CN112981302A (en) Site construction process of steel structure anticorrosion composite coating in south sea atmospheric environment
WO2017141823A1 (en) Preventive maintenance construction method for steel structure, and circulation-type blasting device used in said method
CN107127124A (en) New outside plate IB ice formations paint application technique
CN111791150A (en) Ship surface four-layer paint removing process
CN111823142A (en) Ship surface five-layer paint removing process
CN111823143A (en) Ship surface six-layer paint removing process
CN111823323A (en) Ship surface seven-layer paint removing process
CN111791149A (en) Ship surface three-layer paint removing process
CN111761517A (en) Paint removing process for first layer of paint on surface of ship
CN102476356A (en) Sand blasted surface treatment process for aluminum product
CN111761518A (en) Ship surface two-layer paint removing process
CN110877295B (en) Method for processing blade disc wet shot blasting and blade disc
CN206202627U (en) Hull cleans monitoring underwater robot running gear with water
CN108621037B (en) Mixed belted steel rust cleaning device of water under high pressure
CN108406608B (en) Method for removing heat treatment oxide layer of steel by mixed water jet and special equipment thereof
CN203471582U (en) Steel plate descaling, cleaning and airing device
CN210099773U (en) Pneumatic sand blasting machine for micro-grinding and polishing of workpiece surface
CN103008192A (en) Anti-corrosion method for M.A.N gas holder used in blast furnace gas-resistant environment
CN101797555A (en) Technology for spraying seawater ballast tank
CN116695130A (en) Pretreatment process for hull plate coating
CN206202625U (en) Hull cleans monitoring underwater robot brush with water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20201020

WW01 Invention patent application withdrawn after publication