CN111790449A - 一种铱纳米颗粒催化剂及其制备方法和在催化还原硝基化合物转化为氨基化合物的应用 - Google Patents

一种铱纳米颗粒催化剂及其制备方法和在催化还原硝基化合物转化为氨基化合物的应用 Download PDF

Info

Publication number
CN111790449A
CN111790449A CN202010747903.1A CN202010747903A CN111790449A CN 111790449 A CN111790449 A CN 111790449A CN 202010747903 A CN202010747903 A CN 202010747903A CN 111790449 A CN111790449 A CN 111790449A
Authority
CN
China
Prior art keywords
iridium
nanoparticle catalyst
solution
nabh
iridium nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010747903.1A
Other languages
English (en)
Inventor
崔玛琳
杨大鹏
黄小静
施伟章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanzhou Xufeng Micro Powder Materials Co ltd
Quanzhou Normal University
Original Assignee
Quanzhou Xufeng Micro Powder Materials Co ltd
Quanzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanzhou Xufeng Micro Powder Materials Co ltd, Quanzhou Normal University filed Critical Quanzhou Xufeng Micro Powder Materials Co ltd
Priority to CN202010747903.1A priority Critical patent/CN111790449A/zh
Publication of CN111790449A publication Critical patent/CN111790449A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • C07C209/365Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst by reduction with preservation of halogen-atoms in compounds containing nitro groups and halogen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种铱纳米颗粒催化剂及其制备方法和在催化还原硝基化合物转化为氨基化合物的应用,属于催化技术领域。本发明方法利用单宁酸做包被剂,NaBH4做还原剂,合成了直径为3.5±0.5纳米的水溶性铱纳米颗粒。铱纳米颗粒具有优异的催化活性,可在常温常压下催化NaBH4还原硝基化合物为相应的氨基化合物。具有高效催化活性的铱纳米颗粒有望替代传统的铁粉等催化剂,在更广阔的催化领域有潜在的应用前景。

Description

一种铱纳米颗粒催化剂及其制备方法和在催化还原硝基化合 物转化为氨基化合物的应用
技术领域
本发明属于催化技术领域,具体涉及一种铱纳米颗粒催化剂及其制备方法和在催化还原硝基化合物转化为氨基化合物的应用。
背景技术
芳香硝基化合物是一种典型的有机污染物,广泛存在于工业污水中,对人类的生存环境造成很大危害。它们可以通过呼吸道和皮肤进入人体,导致严重的神经系统、贫血和肝脏疾病。由于在苯环中存在π电子离域作用,芳香硝基化合物的化学性质极其稳定,因此很难通过氧化芳环而降解芳香硝基化合物。目前,工业上常使用铁粉催化芳香硝基化合物还原,但是其过程会产生芳胺铁泥和废水,对环境造成二次污染。硫化物还原是目前较为成熟的生产工艺,但还原效率低,产生废液多,对环境污染严重。
使用NaBH4做还原剂,贵金属纳米材料做催化剂,可在水相中实现芳香硝基化合物选择性还原为氨基化合物。贵金属纳米材料具有尺寸依赖的氧化还原电势以及大的比表面积,可实现纳米材料和芳香硝基化合物间的电子转移,进而高效催化芳香硝基化合物的还原。例如,在2002年银纳米颗粒首次用于催化NaBH4还原对硝基苯酚(p-NP)转化为对氨基苯酚(p-AP)。然而,Au、Ag等纳米材料易受空气氧化而使催化效率降低,易燃的Ni,Pt,Pd,Rh等贵金属催化剂导致生产安全性下降,限制了它们的应用。
铱纳米材料稳定性好、熔点高、抗腐蚀性强,其微观结构中大量晶界结构的存在赋予了其高效的催化活性,并被用于航天推进剂催化分解体系、汽车尾气净化和精细化工等方面。铱纳米材料在选择性催化加氢方面的卓越催化性能一直是科学家研究的热点,然而关于铱纳米颗粒催化NaBH4还原芳香硝基化合物转化为氨基化合物的方法尚未报道。
发明内容
为解决上述问题,本发明提供了一种铱纳米颗粒催化剂及其制备方法和在催化还原硝基化合物转化为氨基化合物的应用,具体涉及简单快速的合成具有高效催化性能的铱纳米颗粒,催化NaBH4还原芳香硝基化合物为氨基化合物。具有高效催化活性的铱纳米颗粒通过使用单宁酸为包被剂,NaBH4为还原剂快速合成。它具有高效的催化活性,可在常温常压下催化NaBH4还原芳香硝基化合物转化为氨基化合物,且在催化还原过程中不需要光、电、热等额外能量的注入。
为实现上述目的,本发明的技术方案是:
一种铱纳米颗粒催化剂的制备方法,将IrCl3溶液加入到单宁酸溶液中,通过剧烈搅拌使之充分混合,再置于油浴中回流,溶液变成淡黄色形成Ir-单宁酸配合物,然后加入NaBH4溶液,溶液颜色开始加深,继续油浴回流,溶液颜色变成棕黄色,得到铱纳米颗粒催化剂。
进一步地,所述单宁酸、IrCl3、NaBH4的质量比为1:(4~8):(3~10)。
进一步地,所述油浴中回流反应的时间为10~30min,使反应至溶液变成淡黄色。
进一步地,所述继续油浴回流反应的时间为2.5~3.5h。
上述制备方法制得的铱纳米颗粒催化剂,其粒径大小为3.5±0.5 nm,为非晶体结构,表面被{111},{200}和{311}晶面所包被。
本发明还公开了上述铱纳米颗粒催化剂在催化还原硝基化合物转化为氨基化合物中的应用,具体为:先配置铱纳米颗粒催化剂储备液,然后将硝基化合物溶液加入NaBH4溶液中混合均匀,再加入铱纳米颗粒催化剂储备液,在常温常压下进行催化反应20s-3h,得到氨基化合物。
进一步地,所述硝基化合物为芳香硝基化合物,包括对硝基苯酚 (p-NP),对硝基苯甲酸(p-NBA),对硝基氯苯(p-NCB),对硝基甲苯 (p-NT),对硝基苯胺(p-NA)等。
进一步地,所述铱纳米颗粒催化剂在反应体系中的终浓度为8.596 ng/mL~859.6ng/mL;所述催化剂储备液的浓度为0.1745μg/mL~0.1745 mg/mL。
进一步地,所述硝基化合物在反应体系中的终浓度为9.852μmol/L ~985.2μmol/L。
进一步地,所述NaBH4在反应体系中的终浓度为9.852mmol/L~0.9852mol/L,其作为H2源。
上述应用的催化机理为电子转移机理,所述硝基苯对位取代基的吸电子能力大小顺序为:-COOH﹥-Cl﹥-CH3﹥-OH﹥-NH2
所述取代基的吸电子能力越强,芳香硝基化合物被催化还原的速率越快;所述铱纳米颗粒催化NaBH4还原芳香硝基化合物的速率为:p-NBA﹥p-NCB﹥p-NT﹥p-NP﹥p-NA;所述吸电子能力强的取代基将有助于电子通过铱纳米颗粒向芳香硝基化合物的转移;所述吸电子能力强的取代基将加快铱纳米颗粒催化NaBH4还原芳香硝基化合物的速率。
本发明的优点和效果
(1)铱纳米颗粒的制备过程简单快速,粒径小且均一,催化活性高,有望成为一种高效催化剂。
(2)铱纳米颗粒的稳定性好,放置6个月以上,催化效果没有明显下降。
(3)铱纳米颗粒可用于催化NaBH4还原硝基化合物为氨基化合物,如p-NP,p-NBA,p-NCB,p-NT和p-NA等。
(4)芳香硝基化合物转化为氨基化合物的反应速率高,选择性好。
(5)反应条件温和,反应过程简单,容易操作。
(6)催化过程体系为水相体系,无需用到有毒试剂,没有有毒的副产物生成,对环境无害,不存在任何污染。
(7)催化过程中采用NaBH4作为H2源,无需通入高压H2,常温常压即可操作,安全性高。
(8)催化过程无需助催化剂,在含有硝基化合物的水溶液中即可进行。
附图说明
图1:A为 铱纳米颗粒的HRTEM图片;B 为铱纳米颗粒的电子衍射花样;C为铱纳米颗粒的XRD图;
图2:A为 在NaBH4存在和不存在时,p-NP的UV-vis图谱;B 为铱纳米颗粒催化NaBH4还原p-NP随时间变化的UV-vis图谱;C为铱纳米颗粒催化NaBH4还原p-NP的ln(At/A0)与时间变化的线性关系图;
图3:铱纳米颗粒催化NaBH4还原(A) p-NBA, (B) p-NCB, (C) p-NT, (D) p-NP和(E)p-NA随时间变化的UV-vis图谱;(F) IrNPs催化NaBH4还原p-NBA, p-NCB, p-NT, p-NP和p-NA的ln(At/A0)与时间变化的线性关系图。
具体实施方案
以下结合附图说明本发明的具体实施方式。本发明的这些实施例仅用来解释说明本发明的具体实施方式,而不是限制本发明的范围。阅读本发明讲授的内容后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书中所限定的范围。
实施例1:铱纳米颗粒催化剂的制备及表征
(1)把5 mL 2.0 mM的IrCl3溶液加入到5 mL 2.0 mM的单宁酸溶液中,通过剧烈搅拌使之充分混合。
(2)把该溶液置于油浴中回流30 min,溶液变成淡黄色,说明Ir-单宁酸配合物形成。
(3)加入1 mL 0.1 M新鲜配制的NaBH4溶液,溶液颜色开始加深,继续回流3 h,溶液颜色变成棕黄色,说明铱纳米颗粒形成。
(4)用高分辨电子透射显微镜(HRTEM)和X-射线衍射(XRD)对铱纳米颗粒的结构进行表征。如图1所示,得到的是铱纳米颗粒的HRTEM、电子衍射和XRD图。
从图1的HRTEM图片可以明显的看到铱纳米颗粒是粒径约为3.5 ± 0.5 nm的球状颗粒。从放大的HRTEM图片可以清楚的看到铱纳米颗粒表面由不同的晶面组成,结合图1的电子衍射图片和XRD表征可验证铱纳米颗粒为多晶,包含{111},{200}和{311}晶面。{200}和{311}为高指数晶面,具有较高的晶面能量,因此铱纳米颗粒具有更高的催化活性。
实施例2:铱纳米颗粒催化NaBH4还原芳香硝基化合物转化为氨基化合物
(1)用超纯水配制0.01745 mg/mL的铱纳米颗粒储备液。
(2)将20 μL 0.01 M的p-NP,p-NBA,p-NCB,p-NT和p-NA溶液分别加入到2 mL 0.01M的NaBH4溶液中,混合均匀。
(3)将10 μL的铱纳米颗粒储备液分别加入到上述溶液中,立即进行紫外-可见光谱测试。
(4)测定铱纳米颗粒的催化速率系数。
如图3所示,当硝基苯的对位被–COOH、–Cl、–CH3、–OH和–NH2取代时,铱纳米颗粒催化NaBH4还原p-NBA,p-NCB,p-NT,p-NP和p-NA的时间分别为4 min,5 min,6 min,8 min和25min,速率系数为−0.62488 min−1, −0.38047 min−1, −0.30644min−1, −0.30327min−1和−0.24707min−1。对于加氢反应,吸电子基是致活基团,吸电子能力强的取代基将有助于硝基苯衍生物的还原。上述五种取代基的吸电子能力如下:–COOH﹥–Cl﹥–CH3﹥–OH﹥–NH2,且铱纳米颗粒催化NaBH4还原速率为p-NBA﹥p-NCB﹥p-NT﹥p-NP﹥p-NA,说明硝基苯衍生物的还原与硝基苯上取代基的吸电子能力有关。
(5)铱纳米颗粒催化芳香硝基化合物还原的速率系数计算方法。
以催化还原时间t为横坐标,ln(At/A0)为纵坐标,对ln(At/A0)和t进行线性拟合,其拟合方程的斜率k即为催化速率系数。其中A0为芳香硝基化合物离子加催化剂前的吸收值,At为加催化剂后反应时间t时刻芳香硝基化合物离子的吸收值。
Figure DEST_PATH_IMAGE001
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种铱纳米颗粒催化剂的制备方法,其特征在于:将IrCl3溶液加入到单宁酸溶液中,通过剧烈搅拌使之充分混合,再置于油浴中回流,溶液变成淡黄色形成Ir-单宁酸配合物,然后加入NaBH4溶液,溶液颜色开始加深,继续油浴回流,溶液颜色变成棕黄色,得到铱纳米颗粒催化剂。
2.根据权利要求1所述的铱纳米颗粒催化剂的制备方法,其特征在于:所述单宁酸、IrCl3、NaBH4的质量比为1:(4~8):(3~10)。
3.根据权利要求1所述的铱纳米颗粒催化剂的制备方法,其特征在于:所述油浴中回流反应的时间为10~30min,使反应至溶液变成淡黄色。
4.根据权利要求1所述的铱纳米颗粒催化剂的制备方法,其特征在于:所述继续油浴回流反应的时间为2.5~3.5h。
5.一种如权利要求1-4任一项所述的制备方法制得的铱纳米颗粒催化剂。
6.一种如权利要求5所述的铱纳米颗粒在催化还原硝基化合物转化为氨基化合物中的应用,其特征在于:先配制铱纳米颗粒催化剂储备液,然后将硝基化合物溶液加入NaBH4溶液中混合均匀,再加入铱纳米颗粒催化剂储备液,在常温常压下进行催化反应20s-3h,得到氨基化合物。
7.根据权利要求6所述的应用,其特征在于:所述硝基化合物为芳香硝基化合物,包括对硝基苯酚,对硝基苯甲酸,对硝基氯苯,对硝基甲苯,对硝基苯胺。
8.根据权利要求6所述的应用,其特征在于:所述铱纳米颗粒催化剂在反应体系中的终浓度为8.596ng/mL~859.6ng/mL。
9.根据权利要求6所述的应用,其特征在于:所述硝基化合物在反应体系中的终浓度为9.852μmol/L ~985.2μmol/L。
10.根据权利要求6所述的应用,其特征在于:所述NaBH4在反应体系中的终浓度为9.852mmol/L~0.9852mol/L。
CN202010747903.1A 2020-07-30 2020-07-30 一种铱纳米颗粒催化剂及其制备方法和在催化还原硝基化合物转化为氨基化合物的应用 Pending CN111790449A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010747903.1A CN111790449A (zh) 2020-07-30 2020-07-30 一种铱纳米颗粒催化剂及其制备方法和在催化还原硝基化合物转化为氨基化合物的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010747903.1A CN111790449A (zh) 2020-07-30 2020-07-30 一种铱纳米颗粒催化剂及其制备方法和在催化还原硝基化合物转化为氨基化合物的应用

Publications (1)

Publication Number Publication Date
CN111790449A true CN111790449A (zh) 2020-10-20

Family

ID=72828593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010747903.1A Pending CN111790449A (zh) 2020-07-30 2020-07-30 一种铱纳米颗粒催化剂及其制备方法和在催化还原硝基化合物转化为氨基化合物的应用

Country Status (1)

Country Link
CN (1) CN111790449A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172847A (ja) * 2013-03-07 2014-09-22 Hokkaido Univ 芳香族アミン化合物の製造方法
US20150096887A1 (en) * 2013-10-04 2015-04-09 Toyota Motor Engineering & Manufacturing North America, Inc. Electrodes containing iridium nanoparticles for the electrolytic production of oxygen from water
CN105859568A (zh) * 2016-05-10 2016-08-17 江南大学 一种高效催化还原芳香硝基化合物制备氨基化合物的方法
CN106378147A (zh) * 2016-08-25 2017-02-08 闽南师范大学 一种磁性Au/Fe3O4催化剂及其制备方法与应用
CN106883108A (zh) * 2017-02-07 2017-06-23 江南大学 基于铱纳米颗粒选择性催化氧化醇转化为醛的方法
CN107175105A (zh) * 2017-05-18 2017-09-19 青岛大学 石墨烯负载钯铱纳米颗粒催化剂制备方法及其甲酸氧化电催化应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172847A (ja) * 2013-03-07 2014-09-22 Hokkaido Univ 芳香族アミン化合物の製造方法
US20150096887A1 (en) * 2013-10-04 2015-04-09 Toyota Motor Engineering & Manufacturing North America, Inc. Electrodes containing iridium nanoparticles for the electrolytic production of oxygen from water
CN105859568A (zh) * 2016-05-10 2016-08-17 江南大学 一种高效催化还原芳香硝基化合物制备氨基化合物的方法
CN106378147A (zh) * 2016-08-25 2017-02-08 闽南师范大学 一种磁性Au/Fe3O4催化剂及其制备方法与应用
CN106883108A (zh) * 2017-02-07 2017-06-23 江南大学 基于铱纳米颗粒选择性催化氧化醇转化为醛的方法
CN107175105A (zh) * 2017-05-18 2017-09-19 青岛大学 石墨烯负载钯铱纳米颗粒催化剂制备方法及其甲酸氧化电催化应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XU DI等: ""Iridium Oxide Nanoparticles and Iridium/Iridium Oxide Nanocomposites: Photochemical Fabrication and Application in Catalytic Reduction of 4-Nitrophenol"", 《ACS APPLIED MATERIALS & INTERFACES》 *
崔玛琳: ""贵金属铱纳米材料的制备、性质及其在分析检测领域的应用研究"", 《中国优秀博硕士学位论文全文数据库(博士)工程科技I辑》 *

Similar Documents

Publication Publication Date Title
Xiong et al. Growth of AgBr/Ag 3 PO 4 heterojunction on chitosan fibers for degrading organic pollutants
Yang et al. Facile fabrication of Au/Fe3O4 nanocomposites as excellent nanocatalyst for ultrafast recyclable reduction of 4-nitropheol
Ren et al. Nitrogen-doped ultrathin graphene encapsulated Cu nanoparticles decorated on SrTiO3 as an efficient water oxidation photocatalyst with activity comparable to BiVO4 under visible-light irradiation
Morales et al. Development of highly efficient Cu versus Pd catalysts supported on graphitic carbon materials for the reduction of 4-nitrophenol to 4-aminophenol at room temperature
Dan et al. Green synthesis of Cu nanoparticles supported on straw-graphene composite for catalytic reduction of p-nitrophenol
Song et al. Synergistic effects of multi-active sites in silver modified Bi°-BiVO4 toward efficient reduction of aromatic nitrobenzene
Dorraj et al. Pd on poly (1-vinylimidazole) decorated magnetic S-doped grafitic carbon nitride: An efficient catalyst for catalytic reduction of organic dyes
Akbarzadeh et al. Au and Pt nanoparticles supported on Ni promoted MoS2 as efficient catalysts for p-nitrophenol reduction
CN104801724A (zh) 一种Ag/C纳米空心球及其制备方法
Fu et al. Layered CuNi-Cu 2 O/NiAlO x nanocatalyst for rapid conversion of p-nitrophenol to p-aminophenol
Feng et al. Facile synthesis of Cu2O nanoparticle-loaded carbon nanotubes composite catalysts for reduction of 4-nitrophenol
Xia et al. Nitrogen-doped carbon black supported NiCo 2 S 4 catalyst for hydrogenation of nitrophenols under mild conditions
Zhao et al. Polyoxometalates-doped TiO 2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation
Suresh et al. Facile synthesis of CuO/g-C3N4 nanolayer composites with superior catalytic reductive degradation behavior
Cui et al. Ultra-small iridium nanoparticles as active catalysts for the selective and efficient reduction of nitroarenes
Landge et al. Synthesis of bimetallic Co–Pt/cellulose nanocomposites for catalytic reduction of p-nitrophenol
Shanmugaraj et al. Gold nanoparticles decorated two-dimensional TiO2 nanosheets as effective catalyst for nitroarenes and rhodamine B dye reduction in batch and continuous flow methods
CN113215607B (zh) 一种硫氮共掺杂多孔碳担载的三元过渡金属复合材料及其制备方法
Wang et al. CoO quantum dots anchored on P-doped carbon nitride improves peroxymonosulfate activation to degrade sulfamethoxazole
CN111054340B (zh) 一种以秸秆-石墨烯杂合体为载体原位负载零价铜的催化剂及其制备方法与应用
Pan et al. Enhanced catalytic activity of Co/Fe co-doped MoS2 catalyst as the peroxymonosulfate activator for organic pollutants degradation
CN111790449A (zh) 一种铱纳米颗粒催化剂及其制备方法和在催化还原硝基化合物转化为氨基化合物的应用
Keshipour et al. Palladium, and platinum nanoparticles supported on chitosan aerogel as a photocatalyst of formic acid degradation
CN110902770A (zh) 一种基于碳布的Fe3O4/C、Fe/C及其制备和应用
Masmur et al. Material Design of Bimetallic Catalysts on Nanofibers for Highly Efficient Catalytic Reduction of 4-Nitrophenol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201020