CN111781335B - Method for evaluating anti-flying performance of drainage asphalt mixture in different areas - Google Patents

Method for evaluating anti-flying performance of drainage asphalt mixture in different areas Download PDF

Info

Publication number
CN111781335B
CN111781335B CN201910210828.2A CN201910210828A CN111781335B CN 111781335 B CN111781335 B CN 111781335B CN 201910210828 A CN201910210828 A CN 201910210828A CN 111781335 B CN111781335 B CN 111781335B
Authority
CN
China
Prior art keywords
temperature
test
flying
mixture
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910210828.2A
Other languages
Chinese (zh)
Other versions
CN111781335A (en
Inventor
陈成勇
朱宇昊
丁卫东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong High Speed Group Co Ltd
Original Assignee
Shandong High Speed Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong High Speed Group Co Ltd filed Critical Shandong High Speed Group Co Ltd
Priority to CN201910210828.2A priority Critical patent/CN111781335B/en
Publication of CN111781335A publication Critical patent/CN111781335A/en
Application granted granted Critical
Publication of CN111781335B publication Critical patent/CN111781335B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/42Road-making materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Road Paving Structures (AREA)

Abstract

The invention provides a method for evaluating the flying resistance of a drainage asphalt mixture in different areas, which comprises the following steps: (1) Selecting a proper grading and oilstone ratio according to the design road requirement, and preparing a Marshall test piece according to the standard requirement; (2) Calculating an equivalent radius according to the mixture gradation to obtain a gradation correction coefficient; (3) Selecting the number of soaking cycles according to the average maximum temperature of 8 months at the location of the designed road; (4) Selecting the number of freeze-thaw cycles and the freezing temperature according to the average minimum temperature of the designed road in 1 month; (5) The scattering test after the soaking cycle and the freeze-thaw cycle was performed, and the scattering loss was calculated. Aiming at the situation that the performance of the existing asphalt cement is improved and the flying-off resistance of the actual road of the mixture cannot be judged by a traditional flying-off test, the invention considers the gradation of the mixture and the climatic conditions of the place where the designed road is located, so that the improved flying-off resistance evaluation method can better reflect the actual road performance of the drainage mixture.

Description

Method for evaluating anti-flying performance of drainage asphalt mixture in different areas
Technical Field
The invention relates to the technical field of road engineering, in particular to a flying-resistant performance evaluation method of a drainage asphalt mixture.
Background
With the increasing traffic volume and the continuous development and progress of infrastructure, people put higher demands on the service performance and road performance of roads. The traditional asphalt pavement adopts the dense asphalt mixture, is impermeable, and can form a water film on the road surface when meeting rainy weather, thereby seriously affecting the traffic safety. Drainage bituminous paving can effectively prevent the appearance of way table water film, and its space can absorb the way table noise again simultaneously, has very big promotion to the security and the travelling comfort of driving. For the open-graded drainage mixture suitable for the upper surface layer in the pavement, the asphalt aging speed is high due to large internal gaps, and the phenomena of particle falling and loosening are easily generated under the actions of repeated washing of rainwater and vehicle load, so that the service life of the pavement is influenced.
For open-graded drainage mixes, the adhesion between the coarse aggregate is provided primarily by the asphalt cement. At the present stage, with the rapid development of high-viscosity modified asphalt, the traditional flying test has several problems: (1) Under the condition of 20-DEG C curing for 20h, the scattering loss result almost can meet the standard index requirements far away, and most of the traditional tests are only used in the mix proportion design stage and cannot reflect the damage to the drainage pavement in the actual use process; (2) The weather conditions of different areas are different, the damage of the asphalt mixture is also different, and the traditional scattering test cannot give effective results for different areas; (3) A large amount of previous water stability performance test data show that the effect of simulating the bond damage of the mixture cannot be achieved by single soaking and freeze thawing, the performance of the mixture can be improved to a certain extent even by single curing, the test result is over-excellent, and the actual anti-flying performance of the mixture in the using process cannot be shown; (4) The bonding capacity among the mixture particles is in direct proportion to contact points and contact areas to a certain extent, the scattering loss is calculated according to the loss mass of the particles, the mass of a single particle of the mixture with a large particle size is far larger than that of the mixture with a small particle size, and the bonding strength among the particles cannot be completely reflected by mass calculation alone.
Disclosure of Invention
In order to overcome the defects in the prior art, the invention provides a method for evaluating the anti-flying performance of the drainage asphalt mixture in different areas, which introduces a flying loss gradation correction coefficient, introduces concepts and standards of circulating soaking and circulating freeze thawing, considers the influences of the type and gradation of the mixture and the climatic environment of the road location, and can better reflect the anti-flying performance of the drainage mixture in the actual use process. The test method comprises the following steps:
(1) Selecting a proper grading and oilstone ratio according to the requirement of a designed road, and preparing a Marshall test piece according to the standard requirement;
(2) Calculating the equivalent radius of the coarse aggregate according to the mixture gradation to obtain a scattering loss gradation correction coefficient;
(3) Selecting the number of soaking cycles according to the average maximum temperature of 8 months at the location of the designed road;
(4) Selecting the number of freeze-thaw cycles and the freezing temperature according to the average minimum temperature of the designed road in 1 month;
(5) Carrying out a dispersion test after soaking cycle and freeze-thaw cycle respectively, and calculating dispersion loss;
(6) The scattering loss is multiplied by a scattering loss gradation coefficient, and the product is compared with a predetermined index to determine the scattering resistance of the mixture.
Further, in the step (1), the drainage asphalt mixture type comprises PAC-10, PAC-13, PAC-16 and the like which are suitable for an upper layer in a road. Other mixtures (such as AC, SMA and the like) which do not have a water drainage function or have larger particle sizes and are not suitable for the middle upper layer do not need to be subjected to a performance test by using the method. The forming method of the Marshall test piece refers to T0702-2011 in road engineering asphalt and asphalt mixture test procedure JTG E20-2011.
Further, in the step (2), the calculation method of the equivalent radius of the coarse aggregate of the mixture is that the equivalent radius of the coarse aggregate is the median (mm) of each grade of particle size of the coarse aggregate with 2.36mm sieve pores and above, the percentage (%) of the residue on the sieve counted by a certain sieve is the passing rate (%) of the 2.36mm sieve pores.
Further, in the step (2), the scattering loss gradation correction coefficient is calculated by using the scattering loss gradation correction coefficient (%).
Further, in the step (3), the number of soaking cycles is selected according to the average maximum temperature in 8 months at the location of the designed road. Taking 0 when the average maximum temperature in the month is less than or equal to 20 ℃; taking 2 when the average maximum temperature of the moon is more than or equal to 20 ℃ and less than 30 ℃; when the average maximum temperature of the moon is more than or equal to 30 ℃ and less than 40 ℃, taking 4; taking 6 when the average maximum temperature is more than or equal to 40 ℃ in a month.
Further, in the step (4), the number of freeze-thaw cycles and the freezing temperature are selected according to the average minimum temperature of the designed road in 1 month. Taking 3 at the average lowest temperature of less than or equal to minus 20 ℃ in the month, and taking minus 25 +/-1 ℃; taking 2 at-15 +/-1 ℃ when the average minimum temperature of the moon is less than-10 ℃ and is more than or equal to-20 ℃; when the average minimum temperature of the moon is more than or equal to minus 10 ℃ and less than 0 ℃, taking 1 out, and taking minus 5 +/-1 ℃; taking 0 when the average lowest temperature of the air is more than or equal to 0 ℃ in a month.
Further, in the step (5), the soaking cycle is that the molded test piece is saturated in vacuum according to a method of T0717-2011 in road engineering asphalt and asphalt mixture test regulation JTG E20-2011, then is put into a constant temperature water tank with the temperature of 60 +/-0.5 ℃ for curing for 22 hours, then is taken out, and is put into a constant temperature water tank with the temperature of 20 +/-0.5 ℃ for curing for 2 hours, so that 1 soaking cycle is realized, and the soaking cycle times are the same. And after soaking and circulating, continuously preserving heat for 20 hours in a constant-temperature water tank with the temperature of 20 +/-0.5 ℃, and performing a scattering test to obtain the freeze-thaw scattering loss, wherein the test method and the scattering loss are calculated according to T0733-2011 in road engineering asphalt and asphalt mixture test regulation JTG E20-2011.
Further, in the step (5), the freeze-thaw cycle is that the molded test piece is saturated in vacuum by a method of T0717-2011 in road engineering asphalt and asphalt mixture test procedure JTG E20-2011, then the test piece is placed into a plastic bag, water is added until the Marshall test piece is in a complete water immersion state, the bag opening is tightened, the test piece is placed into a constant temperature refrigerator with a freezing temperature of 24h +/-1 h, the plastic bag is not removed after the test piece is taken out, and the test piece is immediately placed into a constant temperature water tank with a temperature of 60 +/-0.5 ℃ for heat preservation for 24h, so that 1 freeze-thaw cycle is achieved, and the number of the freeze-thaw cycles is 1. And after freeze-thaw circulation, continuously preserving heat for 20 hours in a constant-temperature water tank with the temperature of 20 +/-0.5 ℃, and performing a scattering test to obtain freeze-thaw scattering loss, wherein the test method and the scattering loss are calculated according to T0733-2011 in road engineering asphalt and asphalt mixture test regulation JTG E20-2011.
Further, in the step (6), the final scattering loss is calculated by a method of (i) or (ii) with a value satisfying the following table:
test items Unit Technical requirements
The loss of the mixture scattered in the soaking cycle is not less than 18
The loss of the mixture scattered in the freeze-thaw cycle is not less than 20
The invention has the following beneficial effects:
compared with the traditional scattering test, the method for evaluating the flying resistance of the drainage asphalt mixture in different areas is not limited to the design stage of the mix proportion, and is applied to the actual pavement performance index of the pavement. By introducing the anti-flying grading correction coefficient, the influence of the grain size and the grading of the mixture on the flying result is fully considered, and the actual flying resistance of the mixture is corrected. The climate of the road location is graded, and the influence of water damage on the mixture in the actual road use process is reflected through different soaking and freeze-thawing cycles. The freeze-thaw cycle in the complete soaking state can also solve the problem that the influence of frost heaving effect can not be really generated due to the outflow of open-graded internal stored water in the traditional freeze-thaw splitting test. The evaluation method can truly measure the actual road anti-scattering performance of the drainage mixture, and can reflect the water stability performance of the mixture to a certain extent.
Drawings
FIG. 1 is a flow chart of the method of the present invention.
Detailed Description
The improved flying-out resistance evaluation method of the present invention is further described in detail below with reference to the accompanying drawings and the detailed description:
the test steps of the method for evaluating the flying resistance performance of the drainage asphalt mixture of the highway in a certain area of Jiangsu are as follows:
(1) Preparing Marshall test pieces according to the standard requirement according to the gradation-oilstone ratio (shown in the following table) determined by the previous test;
19 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 oil to stone ratio
PAC-10 100 100 100 99.0 40.1 13.9 9.5 7.1 5.7 5.1 4.6 4.9%
PAC-16 99.3 94.0 82.8 53.3 19.9 11.2 8.2 6.5 5.5 4.9 4.3 4.1%
(2) The equivalent radius of PAC-10 is calculated as follows (mm):
(3) The equivalent radius of PAC-16 is calculated as follows (mm):
(4) The upper and lower layer scatter loss gradation correction coefficients are calculated as follows (%):
(5) Inquiring historical weather forecast of 8 months in Jiangsu in the past 5 years, and calculating to obtain the average maximum temperature of 30.3 ℃ in 8 months, so as to obtain the number of water immersion cycles;
(6) Inquiring historical weather forecast of 1 month in Jiangsu of the past 5 years, and calculating to obtain the average minimum temperature of-1.5 ℃ in 1 month, so as to obtain the freezing and thawing cycle times (times) and the freezing temperature;
(7) Carrying out vacuum saturation on the molded PAC-10 and PAC-16 Marshall test pieces according to a method of T0717-2011 in road engineering asphalt and asphalt mixture test regulation JTG E20-2011, putting the molded PAC-10 and PAC-16 test pieces into a constant-temperature water tank at 60 +/-0.5 ℃ for curing for 22 hours, then taking out the PAC-10 and PAC-16 test pieces, putting the PAC-10 and PAC-16 test pieces into the constant-temperature water tank at 20 +/-0.5 ℃ for curing for 2 hours, and carrying out water immersion circulation for 4 times in total;
(8) After the soaking circulation is completed, the test piece is placed into a constant-temperature water tank with the temperature of 20 +/-0.5 ℃ for continuously preserving the heat for 20 hours, then the flying test is carried out according to the standard requirement, and the test result is shown in the following table (%):
1 2 3 4 mean value
PAC-10 7.68 8.52 8.04 7.84 8.02
PAC-16 9.12 10.04 9.85 10.54 9.89
(9) The method comprises the steps of carrying out vacuum saturation on molded PAC-10 and PAC-16 Marshall test pieces according to a method of T0717-2011 in road engineering asphalt and asphalt mixture test regulation JTG E20-2011, then placing the test pieces into a plastic bag, adding water until the Marshall test pieces are in a complete water immersion state, fastening the bag opening, placing the test pieces into a constant temperature refrigerator with the freezing temperature of minus 5 ℃ plus or minus 1 ℃ for 24 hours, taking out the test pieces without removing the plastic bag, immediately placing the test pieces into a constant temperature water tank with the temperature of 60 ℃ plus or minus 0.5 ℃ for heat preservation for 24 hours, and only carrying out freeze-thaw cycle for 1 time.
(10) After the freeze-thaw cycle is completed, the test piece is placed into a constant-temperature water tank with the temperature of 20 +/-0.5 ℃ for continuously preserving heat for 20 hours, then a flying test is carried out according to the standard requirement, and the test result is shown in the following table (%):
1 2 3 4 mean value
PAC-10 12.92 12.24 11.04 11.52 11.93
PAC-16 14.75 14.05 13.12 13.57 13.87
(11) The final soaking/freeze-thaw cycle fly loss was obtained by multiplying the fly loss obtained in the test by the anti-fly grading correction factor, and compared to the specified specifications, the results are shown in the following table:
Figure BSA0000180649010000041
Figure BSA0000180649010000051
the results show that the high-speed upper and lower surface drainage mixture in the region can meet the requirement of anti-scattering performance under the climatic conditions of the region, and the anti-scattering performance of PAC-16 is superior to that of PAC-10.
The above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention in any way, but any modifications or equivalent variations made according to the technical spirit of the present invention are within the scope of the present invention as claimed.

Claims (6)

1. The method for evaluating the flying-resistant performance of the drainage asphalt mixture in different areas comprises the following steps of:
(1) Selecting a proper grading and oilstone ratio according to the design road requirement, and preparing a Marshall test piece according to the standard requirement;
(2) Calculating the equivalent radius of the coarse aggregate according to the mixture gradation to obtain a dispersion loss gradation correction coefficient rho g
(3) Selecting the number N of soaking cycles according to the average maximum temperature of 8 months at the place where the road is designed i
(4) Selecting the number N of freeze-thaw cycles according to the average minimum temperature of the designed road in 1 month f And a freezing temperature T f
(5) Carrying out a dispersion test after soaking cycle and freeze-thaw cycle respectively, and calculating dispersion loss;
(6) The scattering loss was multiplied by the scattering loss gradation coefficient to determine the scattering resistance of the blend.
2. The method for evaluating the flying resistance performance of the drainage asphalt mixture aiming at different regions according to claim 1, is characterized in that: in the step (1), the type of the drainage asphalt mixture comprises PAC-10, PAC-13 and PAC-16 which are applicable to the upper surface layer of the road, other mixtures which do not have the drainage function or have larger grain diameter and are not applicable to the middle and upper surface layers do not need to be used for performance tests, and the forming method of the Marshall test piece refers to T0702-2011 in road engineering asphalt and asphalt mixture test regulation JTG E20-2011.
3. The method for evaluating the flying-off resistance of the drainage asphalt mixture aiming at different regions according to claim 1, is characterized in that: in the step (3), the soaking cycle number N is selected according to the average maximum temperature of the designed road in 8 months i (ii) a Average value of the monthWhen the high temperature is less than or equal to 20 ℃, N i Taking 0; when the average maximum temperature of the moon is more than or equal to 20 ℃ and less than 30 ℃, N i Taking out 2; when the average maximum temperature of the moon is more than or equal to 30 ℃ and less than 40 ℃, N i Taking 4; average maximum temperature of 40 deg.C or less in the month, N i And 6, taking.
4. The method for evaluating the flying-off resistance of the drainage asphalt mixture aiming at different regions according to claim 1, is characterized in that: in the step (4), the freezing-thawing cycle times N are selected according to the average monthly lowest air temperature of 1 month in the place where the road is designed f And freezing temperature T f (ii) a When the average lowest temperature of the moon is less than or equal to minus 20 ℃, N f Get 3,T f Taking the mixture at minus 25 +/-1 ℃; when the average minimum temperature of the moon is less than-10 ℃ below zero and is more than-20 ℃, N f Get 2,T f Taking the mixture at minus 15 +/-1 ℃; when the average minimum temperature of the moon is more than or equal to minus 10 ℃ and less than 0 ℃, N f Take 1,T f Taking the mixture at minus 5 +/-1 ℃; when the average minimum temperature of the month is more than or equal to 0 ℃, N f Take 0.
5. The method for evaluating the flying-off resistance of the drainage asphalt mixture aiming at different regions according to claim 1, is characterized in that: in the step (5), the soaking cycle is that the molded test piece is saturated in vacuum according to a method of T0717-2011 in road engineering asphalt and asphalt mixture test procedure JTG E20-2011, then the molded test piece is put into a constant temperature water tank with the temperature of 60 +/-0.5 ℃ for curing for 22 hours, then the molded test piece is taken out and put into a constant temperature water tank with the temperature of 20 +/-0.5 ℃ for curing for 2 hours, and the soaking cycle is 1 soaking cycle, wherein the soaking cycle number is N i (ii) a After soaking circulation, continuously preserving heat for 20h in a constant temperature water tank with the temperature of 20 +/-0.5 ℃, and performing a flying test to obtain freeze-thaw flying loss delta S i The test method and the calculation of the scattering loss refer to T0733-2011 in road engineering asphalt and asphalt mixture test regulation JTG E20-2011.
6. The method for evaluating the flying-off resistance of the drainage asphalt mixture aiming at different regions according to claim 1, is characterized in that: in the step (5), the freeze-thaw cycle is to test the formed test piece according to road engineering asphalt and asphalt mixtureVacuum saturating method T0717-2011 of test specification JTG E20-2011, placing into a plastic bag, adding water until Marshall test piece is completely soaked, fastening bag opening, and placing test piece at freezing temperature T f The constant temperature refrigerator is kept for 24h +/-1 h, the plastic bag is not removed after the refrigerator is taken out, and the refrigerator is immediately placed into a constant temperature water tank with the temperature of 60 +/-0.5 ℃ for heat preservation for 24h, so that 1 freeze thawing cycle is realized, and the number of freeze thawing cycles is N f (ii) a After the freeze-thaw cycle, continuously preserving the heat for 20 hours in a constant-temperature water tank at the temperature of 20 +/-0.5 ℃, and then performing a flying test to obtain the freeze-thaw flying loss delta S f The test method and the calculation of the scattering loss refer to T0733-2011 in road engineering asphalt and asphalt mixture test regulation JTG E20-2011.
CN201910210828.2A 2019-03-18 2019-03-18 Method for evaluating anti-flying performance of drainage asphalt mixture in different areas Expired - Fee Related CN111781335B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910210828.2A CN111781335B (en) 2019-03-18 2019-03-18 Method for evaluating anti-flying performance of drainage asphalt mixture in different areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910210828.2A CN111781335B (en) 2019-03-18 2019-03-18 Method for evaluating anti-flying performance of drainage asphalt mixture in different areas

Publications (2)

Publication Number Publication Date
CN111781335A CN111781335A (en) 2020-10-16
CN111781335B true CN111781335B (en) 2022-12-06

Family

ID=72754718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910210828.2A Expired - Fee Related CN111781335B (en) 2019-03-18 2019-03-18 Method for evaluating anti-flying performance of drainage asphalt mixture in different areas

Country Status (1)

Country Link
CN (1) CN111781335B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933188B (en) * 2021-10-14 2023-07-07 北京建筑大学 Test method for freeze thawing fatigue performance of building rubbish recycled aggregate asphalt concrete

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773923A (en) * 2012-08-22 2012-11-14 上海申桥科技发展有限公司 Mix proportion design method of emulsified asphalt cold-patch mixture
CN107677799A (en) * 2017-08-21 2018-02-09 河海大学 The frost heave method and its frost heaving resistant method of evaluating performance of compound after porous asphalt mixture pore plugging method, apparatus, blocking
CN108627393A (en) * 2018-02-02 2018-10-09 北京建筑大学 A kind of water stability test method of macrovoid high molecular polymer mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773923A (en) * 2012-08-22 2012-11-14 上海申桥科技发展有限公司 Mix proportion design method of emulsified asphalt cold-patch mixture
CN107677799A (en) * 2017-08-21 2018-02-09 河海大学 The frost heave method and its frost heaving resistant method of evaluating performance of compound after porous asphalt mixture pore plugging method, apparatus, blocking
CN108627393A (en) * 2018-02-02 2018-10-09 北京建筑大学 A kind of water stability test method of macrovoid high molecular polymer mixture

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Asphalt Mixture Antifreezing Capability Evaluation Using Freeze-Thaw Cycles and Scattering Loss Test;Shuguang Hou等;《Journal of Highway and Transportation Research and Development》;20061231;第1卷(第1期);第31-34页 *
Binder Leakage Test Methodology of Drainage Asphalt Mixture;Yanping Yin等;《Advanced Materials Research》;20141224;第390-396页 *
国产TPS在排水沥青路面中的应用研究;李永波;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20140515(第05期);第C034-163页 *
大空隙沥青混合料的耐久性研究;黄学文;《中外公路》;20130930(第04期);第296-299页 *
沥青混合料松散破坏研究;张轲;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20160115;第C034-129页 *
高速公路罩面工程排水性沥青混合料的配合比设计;孙赋成等;《江西建材》;20150430(第08期);第186-187页 *

Also Published As

Publication number Publication date
CN111781335A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
Fwa et al. Comparison of permeability and clogging characteristics of porous asphalt and pervious concrete pavement materials
CN111781335B (en) Method for evaluating anti-flying performance of drainage asphalt mixture in different areas
Chadbourn et al. The effect of voids in mineral aggregate (VMA) on hot-mix asphalt pavements
CN108035207A (en) High modulus asphalt mixture gradation design method
CN107573898B (en) Antifreezing material with controllable slow-release rate applied to concrete pavement and preparation method thereof
CN111960728B (en) Warm-mix recycled mixture
CN103073233B (en) Patching material for potholes of anti-icing road surface and preparation method of patching material
CN102531473A (en) Composite modified asphalt mixture with high snow melting efficiency and preparation method thereof
Kowalski et al. Selection of quiet pavement technology for Polish climate conditions on the example of CiDRO project
US5109041A (en) Producing method for asphalt mixture
CN114330008B (en) Low-freezing-point ultrathin wearing layer grading range determining method applied to road surface
Al-Aghbari et al. Suitability of desert sand cement mixes for base courses in highway pavements
CN111125912A (en) Asphalt mixture mix proportion redundancy design method based on service process dominant diseases
CN108409205A (en) A kind of steel slag coal ash AC-16 asphalts
KR19990011444A (en) Crushed mastic asphalt mixture and its paving method
CN104591604B (en) A kind of for paved roads antiskid wearing layer bituminous concrete and application
Gusty The effect of using asbuton with used waste diesel oil on the stability of the porus asphalt mix with hot mix cold laid method
CN111519489A (en) Rapid repairing material for web crack diseases and preparation process thereof
CN111445966A (en) Method for determining external water mixing amount of emulsified asphalt cold-recycling mixture
CN110438896A (en) Concrete bridge deck polyurethane rubber drainage pavement structure and its construction method
CN111021183A (en) Construction method of open-graded drainage type epoxy asphalt ultrathin anti-skid wearing layer
CN111046477A (en) Mix proportion design method of normal-temperature construction asphalt mixture for road pit and groove restoration
Hassan et al. Use of open-graded friction course (OGFC) mixtures in Oman
KR101115544B1 (en) A multi functional elastic ascone and its manufacturing method
CN111253113B (en) Reclaimed colloidal particle permeable asphalt concrete and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
DD01 Delivery of document by public notice

Addressee: Chen Luchuan

Document name: Notice of conformity

DD01 Delivery of document by public notice
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221206

CF01 Termination of patent right due to non-payment of annual fee