CN111777048A - Method for preparing green fluorescent carbon nitride powder by non-doping means and application of green fluorescent carbon nitride powder in white light LED - Google Patents

Method for preparing green fluorescent carbon nitride powder by non-doping means and application of green fluorescent carbon nitride powder in white light LED Download PDF

Info

Publication number
CN111777048A
CN111777048A CN202010688888.8A CN202010688888A CN111777048A CN 111777048 A CN111777048 A CN 111777048A CN 202010688888 A CN202010688888 A CN 202010688888A CN 111777048 A CN111777048 A CN 111777048A
Authority
CN
China
Prior art keywords
carbon nitride
nitride powder
green fluorescent
fluorescent carbon
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010688888.8A
Other languages
Chinese (zh)
Other versions
CN111777048B (en
Inventor
郭良洽
蔡状
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202010688888.8A priority Critical patent/CN111777048B/en
Publication of CN111777048A publication Critical patent/CN111777048A/en
Application granted granted Critical
Publication of CN111777048B publication Critical patent/CN111777048B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

The invention discloses a method for preparing green fluorescent carbon nitride powder by a non-doping means and application thereof in a white light LED, which specifically comprises the following steps: firstly, placing a crucible containing graphite-phase carbon nitride powder in a vacuum tube furnace; then introducing inert gas, heating to 600-800 ℃, maintaining for a period of time, and naturally cooling to room temperature to obtain reddish brown powder; dispersing the precipitate in NaOH solution, stirring at 60-80 deg.C for reaction, centrifuging to remove precipitate, and collecting supernatant. Then dropwise adding acid into the supernatant, adjusting to be neutral, centrifuging and drying to obtain carbon nitride powder capable of emitting green fluorescence under the excitation of blue light; and finally, mixing the red fluorescent material with a red fluorescent material, and encapsulating the red fluorescent material on a blue light substrate by using high-transmittance resin adhesive to prepare the white light LED. The green fluorescent carbon nitride powder has the advantages of simple preparation method, low equipment requirement, easy obtainment, no toxicity, environmental protection and high quantum yield, and can be directly excited by a blue light source.

Description

Method for preparing green fluorescent carbon nitride powder by non-doping means and application of green fluorescent carbon nitride powder in white light LED
Technical Field
The invention belongs to the technical field of fluorescent carbon nitride powder preparation, and particularly relates to a method for preparing green fluorescent carbon nitride powder by a non-doping method and application of the green fluorescent carbon nitride powder in a white light LED.
Background
Graphite phase carbon nitride (g-C)3N4) Is formed by two elements of C and N in sp2The conjugated aromatic system formed by hybridization has excellent luminescence property, so that the conjugated aromatic system is expected to be used for preparing LEDs. The ultraviolet excitation type tricolor fluorescent powder used by the current commercial LED is mainly rare earth fluorescent powder. Graphite phase carbon nitride powders have found less use in LEDs, primarily because the fluorescence wavelength of the original graphite phase carbon nitride is concentrated in the blue band and the quantum yield is relatively low. In recent years, a green fluorescent carbon nitride material (CN 106833609A) is prepared by a benzene molecule doping method, and the preparation steps are complicated and complicated. And a patent (CN 106928996A) reports that a white light LED device is prepared by using an ultraviolet LED chip to package a blue light fluorescent powder ACN, a green fluorescent powder PhCN and a red organic fluorescent powder 2 DPAFO. Because the excitation light wavelength of the existing graphite phase carbon nitride powder is in an ultraviolet region, blue fluorescent powder is required to be packaged together when a white light LED is prepared. Therefore, it is necessary to develop a graphite-phase carbon nitride powder which has simple preparation method, high fluorescence quantum yield and can be directly excited by blue light and can be used for preparing white light LEDs.
Disclosure of Invention
The invention aims to provide a method for preparing green fluorescent graphite-phase carbon nitride powder by a non-doping means and application of the green fluorescent graphite-phase carbon nitride powder in a white light LED. The method prepares graphite-phase carbon nitride powder capable of emitting green fluorescence under the excitation of blue light by a non-doping method, and prepares a white light LED device by using a 450 nm LED chip and combining red fluorescent powder.
In order to achieve the purpose, the invention adopts the following technical scheme:
a method for preparing green fluorescent graphite-phase carbon nitride powder by a non-doping means comprises the following steps:
(1) placing a crucible containing graphite-phase carbon nitride powder in the center of a furnace chamber of a vacuum tube furnace, and reserving an air inlet and an air outlet at two ends of a quartz tube;
(2) introducing inert protective gas into the quartz tube, starting the tube furnace to raise the temperature to 800 ℃ for a period of time, and naturally cooling to room temperature to obtain reddish brown powder;
(3) dispersing the reddish brown powder in NaOH solution, slowly stirring at 60-80 ℃, reacting for a period of time, centrifuging, removing precipitate, and retaining supernatant;
(4) gradually dripping acid into the supernatant to gradually adjust the pH of the solution to be neutral;
(5) and centrifugally washing to retain the precipitate, and drying to obtain the graphite-phase carbon nitride powder capable of emitting green fluorescence under the excitation of blue light.
The application of the graphite-phase carbon nitride powder in the white light LED is as follows: mixing the prepared graphite-phase carbon nitride powder with a small amount of red fluorescent material, and encapsulating the mixture on a 450 nm LED chip by using high-transmittance resin adhesive to prepare the white LED.
Further, the amount of the graphite phase carbon nitride powder added is 1 to 50 g. The inert protective gas is nitrogen or argon. The flow rate of the inert protective gas is 50-100 mL/min. The temperature rise speed of the tubular furnace is 1-15 ℃/min. The maintaining time after the temperature rise is 1-6 h. The concentration of the NaOH solution is 1-10 mol/L; the acid used for adjusting the pH is HCl and HNO3Or H2SO4
Untreated graphite phase carbon nitride powder prepared by conventional methods has a band gap of about 2.7 eV, and thus graphite phase carbon nitride powder generally produces blue fluorescence under ultraviolet excitation. In the field of catalysis, g-C with a large number of defects can be prepared by a heat treatment process3N4And the absorbed light is obviously red-shifted, the band gap is reduced, but the quantum yield is further reduced, and even the fluorescence characteristic is lost (figure 1). The invention firstly obtains reddish brown powder with larger red shift of excitation light and emission light through heat treatment, and then carries out chemical shearing on the obtained graphite phase carbon nitride powder with defects through NaOH, thereby effectively improving the fluorescence quantum yield, and the fluorescence emission of the sheared nano-sheets or quantum dots can generate blue shift due to quantum confinement effect, so that the blue shift is generatedAnd a nano-belt structure with defects is obtained, excitation and emission of the nano-belt are blue-shifted relative to reddish brown powder, but excitation and emission of the graphite-phase carbon nitride powder before treatment are greatly red-shifted, the maximum excitation wavelength is shifted from an ultraviolet region (about 350 nm) to a blue region (about 450 nm), the emission wavelength is also shifted from the blue region (about 450 nm) to a green region near 500 nm (figure 1), and the absolute quantum yield is doubled and is increased from 3.8 +/-0.3% to 23.6% (figure 3). If the reddish brown powder is not treated with alkali, the fluorescence intensity is very low, and the acid is added to eliminate the negative charges on the surface of the material, so that the material is settled and can be washed and dried to obtain the powder (figure 2).
The invention has the advantages that:
(1) the method for preparing the green fluorescent graphite-phase carbon nitride powder by a non-doping method and the application of the green fluorescent graphite-phase carbon nitride powder in the white light LED have the advantages of simple preparation method, low equipment requirement, easiness in obtaining, no toxicity and environmental friendliness.
(2) The graphite-phase carbon nitride solid powder prepared by the method has the advantages of high fluorescence quantum yield and no photobleaching characteristic.
(3) The green fluorescent graphite-phase carbon nitride prepared by the method can be directly excited by blue light of 450 nm to emit green fluorescence. The white light LED device can be prepared by combining the red fluorescent material and packaging on a 45 nm LED chip, and has good color rendering index and color temperature.
Drawings
FIG. 1 is an emission spectrum of ordinary graphite-phase carbon nitride, graphite-phase carbon nitride powder treated at 750 ℃ and green fluorescent graphite-phase carbon nitride powder obtained in example 5 at the maximum excitation wavelength;
FIG. 2 is a photograph of a green fluorescent graphite-phase carbon nitride dispersion in example 5, taken with acid to obtain a precipitate, and a photograph of the green fluorescent graphite-phase carbon nitride powder obtained after drying under a fluorescent lamp and a 365 nm ultraviolet lamp, taken with an excitation emission spectrum;
FIG. 3 is a graph showing an absolute quantum yield test chart of green fluorescent graphite-phase carbon nitride powder obtained in example 5;
FIG. 4 is a schematic diagram, a schematic diagram and an effect diagram of white LED prepared from the green fluorescent graphite-phase carbon nitride powder obtained in example 5;
FIG. 5 is a color coordinate diagram of a white LED prepared from the green fluorescent graphite-phase carbon nitride powder obtained in example 5.
Detailed Description
Example 1
Weighing 1 g of graphite-phase carbon nitride powder, placing the graphite-phase carbon nitride powder in a crucible, placing the crucible in the center of a quartz tube of a tube furnace, introducing nitrogen at the flow rate of 50 mL/min, heating the crucible to 600 ℃ at the speed of 1 ℃/min, keeping the temperature for 1 h, naturally cooling the crucible to obtain reddish brown powder, dispersing the reddish brown powder in a NaOH solution, slowly stirring the mixture at the temperature of 60 ℃, reacting for a period of time, centrifuging the mixture, removing the precipitate, and keeping the supernatant. HCl was gradually added dropwise to the supernatant and the pH of the solution was gradually adjusted to neutral. And centrifuging, washing, retaining the precipitate, drying to obtain graphite-phase carbon nitride powder capable of emitting green fluorescence under the excitation of blue light, mixing the prepared graphite-phase carbon nitride powder with a small amount of red fluorescent material, and encapsulating the mixture on a 450 nm LED chip by using high-transmittance resin adhesive to prepare the white light LED.
As shown in FIG. 1, CN derived from ordinary graphite-phase carbon nitride and graphite-phase carbon nitride heat-treated at 750 ℃ is shownheat-750Red shift in fluorescence wavelength but reduced intensity, CNheat-750The fluorescence intensity is obviously enhanced after the NaOH treatment, and the peak position is relatively common C3N4Resulting in a red-shifted fluorescence spectrum.
Example 2
Weighing 10 g of graphite-phase carbon nitride powder, placing the graphite-phase carbon nitride powder in a crucible, placing the crucible in the center of a quartz tube of a tube furnace, introducing argon at the flow rate of 50 mL/min, heating the crucible to 650 ℃ at the speed of 3 ℃/min, keeping the temperature for 2 h, naturally cooling the crucible to obtain reddish brown powder, dispersing the reddish brown powder in 1 mol/LNaOH solution, slowly stirring the mixture at the temperature of 60 ℃, reacting for a period of time, centrifuging the mixture, removing the precipitate, and keeping the supernatant. Gradually adding HNO dropwise into the supernatant3The solution pH was gradually adjusted to neutral. The precipitate is retained by centrifugal washing,and drying to obtain graphite-phase carbon nitride powder emitting green under the excitation of blue light, mixing the prepared graphite-phase carbon nitride powder with a small amount of red fluorescent material, and encapsulating the mixture on a 450 nm LED chip by using high-transmittance resin adhesive to prepare the white LED.
Example 3
Weighing 20 g of graphite-phase carbon nitride powder, placing the graphite-phase carbon nitride powder in a crucible, placing the crucible in the center of a quartz tube of a tube furnace, introducing argon at the flow rate of 75 mL/min, heating the graphite-phase carbon nitride powder to 700 ℃ at the speed of 5 ℃/min, keeping the temperature for 4 h, naturally cooling the graphite-phase carbon nitride powder to obtain reddish brown powder in the crucible, dispersing the reddish brown powder in a NaOH solution, slowly stirring the mixture at the temperature of 80 ℃, reacting for a period of time, centrifuging the reaction product, removing the precipitate, and keeping the supernatant. Gradually adding HNO dropwise into the supernatant3The solution pH was gradually adjusted to neutral. And centrifuging, washing, retaining the precipitate, drying to obtain graphite-phase carbon nitride powder emitting green fluorescence under the excitation of blue light, mixing the prepared graphite-phase carbon nitride powder with a small amount of red fluorescent material, and encapsulating the mixture on a 450 nm LED chip by using high-transmittance resin adhesive to prepare the white light LED.
Example 4
Weighing 30 g of graphite-phase carbon nitride powder, placing the graphite-phase carbon nitride powder in a crucible, placing the crucible in the center of a quartz tube of a tube furnace, introducing nitrogen at the flow rate of 100 mL/min, heating the mixture to 750 ℃ at the speed of 7.5 ℃/min, keeping the temperature for 6 h, naturally cooling the mixture to obtain reddish brown powder in the crucible, dispersing the reddish brown powder in NaOH solution, slowly stirring the mixture at the temperature of 70 ℃, reacting for a period of time, centrifuging and discarding the precipitate, and keeping the supernatant. Gradually adding H dropwise into the supernatant2SO4The solution pH was gradually adjusted to neutral. And centrifuging, washing, retaining the precipitate, drying to obtain graphite-phase carbon nitride powder emitting green fluorescence under the excitation of blue light, mixing the prepared graphite-phase carbon nitride powder with a small amount of red fluorescent material, and encapsulating the mixture on a 450 nm LED chip by using high-transmittance resin adhesive to prepare the white light LED.
Example 5
Weighing 40 g of graphite phase carbon nitride powder, placing the graphite phase carbon nitride powder in a crucible, placing the crucible in the center of a quartz tube of a tube furnace, introducing nitrogen at the flow rate of 100 mL/min, heating the crucible to 750 ℃ at the speed of 7.5 ℃/min, keeping the temperature for 1 h for natural cooling to obtain reddish brown powder in the crucible, dispersing the reddish brown powder in 4 mol/LNAOH solution, slowly stirring the mixture at the temperature of 60 ℃, reacting for a period of time, centrifuging and removing precipitates, and keeping a supernatant. HCl was gradually added dropwise to the supernatant and the pH of the solution was gradually adjusted to neutral. And centrifuging, washing, retaining the precipitate, drying to obtain prepared graphite-phase carbon nitride powder emitting green fluorescence under the excitation of blue light, mixing the prepared graphite-phase carbon nitride powder with a small amount of red fluorescent material, and encapsulating the mixture on a 450 nm LED chip by using high-transmittance resin adhesive to prepare the white light LED.
Example 6
Weighing 50 g of graphite-phase carbon nitride powder, placing the graphite-phase carbon nitride powder in a crucible, placing the crucible in the center of a quartz tube of a tube furnace, introducing nitrogen at the flow rate of 100 mL/min, heating the crucible to 800 ℃ at the speed of 15 ℃/min, keeping the temperature for 1 h, naturally cooling the crucible to obtain reddish brown powder, dispersing the reddish brown powder in 10 mol/LNaOH solution, slowly stirring the mixture at the temperature of 80 ℃, reacting for a period of time, centrifuging the mixture, removing the precipitate, and keeping the supernatant. Gradually adding H dropwise into the supernatant2SO4The solution pH was gradually adjusted to neutral. And centrifuging, washing, retaining the precipitate, drying to obtain graphite-phase carbon nitride powder emitting green fluorescent light under the excitation of blue light, mixing the prepared graphite-phase carbon nitride powder with a small amount of red fluorescent material, and encapsulating the mixture on a 450 nm LED chip by using high-transmittance resin adhesive to prepare the white light LED.
The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the claims of the present invention should be covered by the present invention.

Claims (10)

1. A method for preparing green fluorescent carbon nitride powder by a non-doping means is characterized by comprising the following steps:
(1) placing a crucible containing graphite-phase carbon nitride powder in the center of a furnace chamber of a vacuum tube furnace, and reserving an air inlet and an air outlet at two ends of a quartz tube;
(2) introducing inert protective gas into the quartz tube, starting the tube furnace to raise the temperature to 800 ℃ for 600-;
(3) dispersing the reddish brown powder in NaOH solution, slowly stirring at 60-80 ℃, reacting for a period of time, centrifuging, removing precipitate, and retaining supernatant;
(4) gradually dripping acid into the supernatant to gradually adjust the pH of the solution to be neutral;
(5) and centrifugally washing to retain the precipitate, and drying to obtain the carbon nitride powder capable of emitting green fluorescence under the excitation of blue light.
2. The method for preparing green fluorescent carbon nitride powder according to claim 1, wherein the graphite phase carbon nitride powder is added in an amount of 1-50 g in step (1).
3. The method for preparing green fluorescent carbon nitride powder according to claim 1, wherein the inert shielding gas in step (2) is nitrogen or argon.
4. The method for preparing green fluorescent carbon nitride powder according to claim 1, wherein the flow rate of the inert shielding gas in the step (2) is 50-100 mL/min.
5. The method for preparing green fluorescent carbon nitride powder according to claim 1, wherein the temperature rise rate of the tube furnace in the step (2) is 1-15 ℃/min.
6. The method for preparing green fluorescent carbon nitride powder according to claim 1, wherein the holding time after the temperature rise in the step (2) is 1 to 6 hours.
7. The method for preparing green fluorescent carbon nitride powder by non-doping means according to claim 1, wherein the concentration of NaOH in the step (3) is 1-10 mol/L.
8. The method for preparing green fluorescent carbon nitride powder according to claim 1, wherein the acid used for adjusting pH in step (4) is HCl or HNO3Or H2SO4
9. A green fluorescent carbon nitride powder produced by the method of any one of claims 1-8.
10. The use of the green fluorescent carbon nitride powder of claim 9 in a white LED, wherein the white LED is prepared by mixing the green fluorescent carbon nitride powder with a small amount of red fluorescent material and encapsulating the mixture on a 450 nm LED chip with a high-transmittance resin adhesive.
CN202010688888.8A 2020-07-17 2020-07-17 Method for preparing green fluorescent carbon nitride powder by non-doping means and application of green fluorescent carbon nitride powder in white light LED Active CN111777048B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010688888.8A CN111777048B (en) 2020-07-17 2020-07-17 Method for preparing green fluorescent carbon nitride powder by non-doping means and application of green fluorescent carbon nitride powder in white light LED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010688888.8A CN111777048B (en) 2020-07-17 2020-07-17 Method for preparing green fluorescent carbon nitride powder by non-doping means and application of green fluorescent carbon nitride powder in white light LED

Publications (2)

Publication Number Publication Date
CN111777048A true CN111777048A (en) 2020-10-16
CN111777048B CN111777048B (en) 2022-03-08

Family

ID=72764345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010688888.8A Active CN111777048B (en) 2020-07-17 2020-07-17 Method for preparing green fluorescent carbon nitride powder by non-doping means and application of green fluorescent carbon nitride powder in white light LED

Country Status (1)

Country Link
CN (1) CN111777048B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006581A (en) * 2016-05-20 2016-10-12 太原理工大学 Method for solvothermal preparation of fluorescent carbon nitride quantum dots
CN106395771A (en) * 2016-08-31 2017-02-15 东华理工大学 Preparation method of graphite-phase carbon nitride quantum dots
CN109734060A (en) * 2019-02-18 2019-05-10 东南大学 Azotized carbon nano material and its preparation method and application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006581A (en) * 2016-05-20 2016-10-12 太原理工大学 Method for solvothermal preparation of fluorescent carbon nitride quantum dots
CN106395771A (en) * 2016-08-31 2017-02-15 东华理工大学 Preparation method of graphite-phase carbon nitride quantum dots
CN109734060A (en) * 2019-02-18 2019-05-10 东南大学 Azotized carbon nano material and its preparation method and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAODONG ZHANG ET AL.: ""Enhanced Photoresponsive Ultrathin Graphitic-Phase C3N4 Nanosheets for Bioimaging"", 《J. AM. CHEM. SOC.》 *
张宇航等: ""超薄类石墨相氮化碳纳米片剥离技术的研究进展"", 《武汉工程大学学报》 *

Also Published As

Publication number Publication date
CN111777048B (en) 2022-03-08

Similar Documents

Publication Publication Date Title
CN110205124B (en) Fluorescent and phosphorescent dual-emission white light carbon quantum dot and preparation method and application thereof
Yuan et al. Surface state modulation of red emitting carbon dots for white light-emitting diodes
Panda et al. Bright white‐light emitting manganese and copper co‐doped ZnSe quantum dots
JP4961526B2 (en) Visible light emitting material using surface modification of silica fine particles and method for producing the same
CN109652071B (en) Red light emitting carbon quantum dot and household microwave preparation method thereof
CN112680213B (en) Preparation method of perovskite nanocrystal coated by tetraethoxysilane
CN112342017B (en) Ultra-long-life room temperature phosphorescent material and preparation method and application thereof
CN110257063B (en) Blue-light perovskite with high quantum yield and preparation method and application thereof
CN109439322B (en) Preparation method of carbon-containing photo-induced yellow light-emitting crystal and application of carbon-containing photo-induced yellow light-emitting crystal in white light LED
CN111635758A (en) Preparation method of silica-coated fluorescent carbon quantum dot composite microspheres
CN111009604A (en) Preparation method of white light emitting diode based on Mn-doped dual-emission Ag-In-Ga-S alloy quantum dots
CN112745839A (en) TS-1 molecular sieve coated CsPbX3Quantum powder and preparation and application thereof
CN110734764A (en) method for rapidly preparing carbon-oxygen co-doped boron nitride room temperature phosphorescent material by microwave heating
CN109423276B (en) Efficient and stable Mn4+Doped fluoride luminescent material and preparation method thereof
CN113249124B (en) Preparation method of perovskite quantum dot fluorescent powder
CN110964529A (en) Preparation method of ZnSe/CdSe/ZnSe trap quantum dots with high fluorescence yield
CN113372909B (en) Preparation method of adjustable and controllable solid fluorescent carbon dots
CN114015441A (en) Green solid fluorescent carbon dot and preparation method thereof
CN111777048B (en) Method for preparing green fluorescent carbon nitride powder by non-doping means and application of green fluorescent carbon nitride powder in white light LED
CN113355082A (en) Indium phosphide quantum dot with core-shell structure and preparation method thereof
CN110922962A (en) Porous silicon dioxide composite material containing quantum dots and preparation method and application thereof
CN111547688B (en) Fluorescence-controllable carbon nitride, preparation method thereof and application thereof in LED
CN116376536A (en) Preparation method of aromatic heterocycle modified narrow-spectrum perovskite nano material
CN108251106B (en) Preparation method of red fluorescent carbon dot powder
CN111349433B (en) Ultraviolet protection material based on hybrid luminescent diatomite and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant