CN1117753A - 生产动力的新方法 - Google Patents

生产动力的新方法 Download PDF

Info

Publication number
CN1117753A
CN1117753A CN94191201A CN94191201A CN1117753A CN 1117753 A CN1117753 A CN 1117753A CN 94191201 A CN94191201 A CN 94191201A CN 94191201 A CN94191201 A CN 94191201A CN 1117753 A CN1117753 A CN 1117753A
Authority
CN
China
Prior art keywords
air
gas
flow
hat
sensible heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN94191201A
Other languages
English (en)
Other versions
CN1058551C (zh
Inventor
I·兰达夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nykomb Synergetics AB
Original Assignee
Nykomb Synergetics AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nykomb Synergetics AB filed Critical Nykomb Synergetics AB
Publication of CN1117753A publication Critical patent/CN1117753A/zh
Application granted granted Critical
Publication of CN1058551C publication Critical patent/CN1058551C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种从含碳燃料生产动力的方法,该方法包括用氧或含氧气体部分氧化燃料以产生可燃气流和显热,所述显热或其主要部分与可燃气体一起传递到动力生产装置,所述动力生产装置是湿空气透平机循环。

Description

生产动力的新方法
                  技术领域
本发明涉及将所谓湿空气透平机循环(HAT)与部分氧化系统结合来进行发电的新配置。
该配置包括以下步骤:用氧或含氧气体部分氧化燃料(气化)以产生含可燃气体和蒸汽的气流,用水骤冷所述气流以冷却并饱和该气流,从该气流中除去硫化合物,在专用气体透平机中燃烧该气流(燃料气),直接利用燃料气的蒸汽的能量。
将气体透平机装配成湿空气透平机(HAT)循环旨在将该透平机循环中产生的显热以热水形式传递到空气饱和器,用以增湿并饱和助燃空气。
由气化产生的显热经过水饱和并加热燃料气后,传递到HAT-循环。
本发明的主要优点是简化气体生成区与HAT-循环之间的结合,从而使工厂的设计和操作简化,并使有关技术供应者之间必要的协调减少到最低限度。
本发明的另一个优点是可以简化燃气透平机组的技术开发和生产。当用作只燃烧天然气的HAT-循环和与气化车间结合在一起时,采用本发明均可利用相同的燃气透平机。
本说明书中所用的一些术语的意义如下:气化:     用氧或含氧气体部分氧化含碳燃料以产生含可燃气体
       的气流。气化车间: 该车间包括气化以及下游的一些过程,以使来自气化
       过程的可燃气体适于在燃气透平机中燃烧。HAT-循环: 基本上如EP0150990B1中所述的湿空气透平机循
       环。IGHAT:    气化车间和HAT-循环的结合。CC:       由燃气透平机和蒸汽透平机循环组成的组合式循环装
       置,蒸汽透平机循环从燃气透平机的废热中接收其热
       量。含碳燃料: 本文中指任一种含碳的燃料,例如煤、油、生物燃料
       以及废燃料。
                  背景技术
当利用燃气透平机来生产动力时,往往将燃气透平机装配成包括燃气透平机和蒸汽透平机循环的所谓组合式循环(CC)配置,该燃气透平机的空气压缩机安装在与膨胀透平机相同的轴上,且设计成没有中间冷却器,而蒸汽透平机循环从该燃气透平机的热废气中吸取其热量。
在有关气化车间和CC结合(通常称为IGCC)的现有技术中,包括为燃烧富燃料(例如天然气或馏出物)而开发的CC。当采用来自气化车间的贫(稀释的)燃料供给这种CC时,必须降低来自燃气透平机的空气压缩机的空气的流量,以保持适当的燃气透平机的进口温度。如果该空气压缩机对其喘振点具有足够的裕度,即可在CC中有效地实现这样的降低。
EP0150990B1(Process for Producing Power)公开了一种可以代替CC的方法,用来回收燃料中的化学能,以便利用燃气透平机生产电力。在该燃气透平机的废气中和压缩空气中的显热可以用来饱和压缩后含有水的助燃空气,并在燃烧前预热该饱和空气和燃料。这种生产动力的方法已取消了蒸汽循环,通常称之为湿空气透平机循环或HAT-循环。
气化车间和HAT-循环的结合,称为IGHAT(气化和湿空气透平机循环的结合),已研究多年。叙述IGHAT目前技术发展水平的主要著作是1991年3月美国电力研究院(Electric Power Research Ins-titute)所著的″A Comparison of Humid Air Turbine(HAT)Cycle and Combined-Cycle Power Plants″报告(IE-7300)。该方法的设计途径是基于将所有来自气化和HAT-循环的显热用来产生热水,在压缩空气作为助燃空气输送到燃气透平机之前,该热水用来增湿HAT-循环中的压缩空气。这种热组合的形式导致两个缺点:
1.气化车间和HAT-循环高度地结合,因而要求两个不同机构之间强有力的商务和技术协调,在许多情况下,这些机构在商业上分开可能有利。这种高度的结合还导致复杂的操作程序,在启动、停机和负载变化时尤为如此。
2.在使用天然气作为燃料的单独HAT-循环和结合成IGHAT工厂的HAT-循环之间,压缩空气流的增湿度以及空气流量的大小差别很大。因此,为了使其在这两种用途中有效地运行,必须对燃气透平机在机械上作不同的改变。这就使燃气透平机的开发和制造作业的费用大幅度地增加。
美国专利5,117,623(Operating Flexibility in IGCCstations)公开了一种用于回收来自用氧或含氧气体部分氧化含碳燃料(气化)的显热的方法,该方法利用水骤冷以冷却并用水饱和来自所述气化的可燃气流,将该气流通过热交换器,在其中通过与循环水进行热交换进一步将该气流冷却,以便从气流中冷凝液态水,通过降低其压力使该气流膨胀以及在降低其压力前或后,从该气流中除去硫化合物,再饱和并加热该气流,然后在燃气透平机中燃烧该气流以生产动力,其中上述循环水用来为再饱和该气流供热。该方法还包括在将骤冷后的气流通过所述热交换器加热循环水之前,将该骤冷后的气流通过锅炉以产生蒸汽的步骤。
以上发明揭示了一种利用脱硫后气体的水饱和及蒸汽的产生将显热从气化传递到CC的简单方法。为了使热传导更有效,该方法包括在气体膨胀器中膨胀气体以生产动力。
EP0259114B1(Clean Electric Power Generation)公开了一种由含碳燃料生产电力的方法,该方法包括用氧或含氧气体部分氧化燃料(气化),在超计大气压下产生含一氧化碳和氢的气流(合成气),用水骤冷该气流产生水饱和的气流,使所述气流膨胀以生产动力,以及用补充的氧或含氧气体燃烧该膨胀后的气流以生产更多的动力,其特征在于,在膨胀前,将所述气流进行一氧化碳转移反应,从而使其中的至少一些一氧化碳转化为二氧化碳和氢。该方法也包括脱硫步骤。该方法还包括在将骤冷后的气流送到一氧化碳转移反应之前,将骤冷后的气流通过锅炉以产生蒸汽的步骤。
以上发明揭示了一种利用脱硫后气体的水饱和及蒸汽的产生将显热从气化传递到CC的方法。为了使热传导更有效,该方法包括一氧化碳转移反应和在气体膨胀器中膨胀气体以生产动力。
              对本发明的描述
本发明以能量效率高和技术上简单的方式将气化车间和HAT-循环结合在一起,同时简化了适用于HAT-循环的燃气透平机的开发。
在气化过程中发生的各种化学反应的最终结果是放热的,且通常可将含碳燃料中15-30%的能含量转化为显热,其中约80%是可回收的,而20%成为热损失。利用水骤冷来冷却并用水饱和产生含可燃气体气流的气体,来自气化的可回收的显热以该气体的温度加上水骤冷中产生的水蒸汽的潜热表示。本发明包括将所述可回收的热量传递到HAT-循环的新方法。
现以采用两种不同原理净化气体中硫的两个实施例,举例说明本发明,即
实施例1:常规冷气净化(CGCU)
实施例2:热气净化(HGCU),在工业化过程中实施例1.采用CGCU的气化车间
本发明在高气化压力、优选大于60巴下显得特别有利,因为在较高压力下,水饱和的气流会在较高温度下达到平衡,从而可以在较高的压力下从位于水骤冷下游的锅炉中产生蒸汽。接着,气体在所述锅炉的下游冷却,气体膨胀,以及净化气体再饱和,在该过程中,在所述膨胀前或后,于20-40℃下进行脱硫,接着按美国专利5,117,623中提出的工艺流程进行。
这样,来自气化的可回收的显热以来自锅炉的中压蒸汽的形式、以饱和、净化气流中蒸汽的形式以及以净化气流中附加热量的形式从气化车间输出,导致整个再饱和的净化气流的温度升高。
来自空气分离车间(通常是IGCC或IGHAT综合车间的一部分)的压缩机的中间冷却器的显热也可以热水回路的形式引入净化气再饱和回路。实施例2.采用HGCU的气化车间
本发明在高气化压力、优选大于60巴下显得特别有利,因为在较高压力下,水饱和的气流会在较高温度下达到平衡,从而可在较高的压力下从位于水骤冷下游的锅炉中产生蒸汽。
在气流处理后,接着按EP0259114B1中提出的工艺流程进行,该工艺是将所述锅炉中产生的气流进行一氧化碳转移反应,其后,将该气流在HGCU中净化脱除硫化合物,该净化过程在350-500℃温度下进行。然后,在送入HAT-循环之前,将净化后的气流输送到气体膨胀器中生产电力。
这样,来自气化和所述放热的一氧化碳转移反应的可回收的显热以来自锅炉的中压蒸汽的形式、以含在净化气流中的水蒸汽形式以及加热增湿的净化气流所产生的附加热函的形式从气化车间输出。实施例1和2
在本文中用两个实施例说明的新概念的主要特点是将由气化过程中回收的显热
1.与净化的燃料气一起,和
2.以中压气流的形式传递到HAT-循环。
另一方面,通过进一步饱和该燃料气流或通过将中压蒸汽注入净化的燃料气,可以将中压蒸汽中的显热或其一部分传递到HAT-循环。
来自空气分离装置的压缩热也可以作为饱和热加到净化燃料气中。
根据本发明,HAT-循环通过净化、饱和燃料气接收来自气化的大部分显热,而小部分则以中压蒸汽的形式加到HAT-循环的空气饱和器下游的饱和空气流中。或者所有可利用的显热通过燃料气传递。
下面参照附图对本发明作详细说明,该附图示出了根据上述两个实施例实施本发明的操作程序。
该附图用气化车间和HAT-循环两套主要装置说明本发明的总工艺方案,所示的空气分离车间11是气化车间的一部分。
含碳的原料经管线1与来自空气分离装置11的氧经氧供料管线4A一起供入气化和水骤冷装置2。装置2在操作压力下产生以水蒸汽饱和的可燃气流,该气流经管线3输送到生产锅炉4产生蒸汽,该蒸汽经管线31输送到HAT-循环。
在实施例1中,所述气流在装置5中进一步冷却,所产生的热水用于装置8中的气流的再饱和、净化气的饱和。在气体冷却装置5和气体再饱和装置8之间,该气流通过硫净化装置6和膨胀装置7。通过利用来自空气分离车间11的压缩机的中间和后冷却器的压缩热,可以实现净化气体的附加再饱和。所述热量从空气分离车间11经管线12以热水形式传递到再饱和装置8。净化、再饱和的气体经管线13输送到HAT-循环。
在实施例2中,来自锅炉4的气流输送到CO转化装置9,其后是用于脱硫的热气净化装置10和气体膨胀装置7。含水蒸汽的净化气流经管线13输送到HAT-循环。
气体膨胀装置7利用装有生产电力的交流发电机的气体膨胀器进行运转。
气化车间应在高压、优选大于60巴下操作,结果使锅炉4输出的蒸汽获得更好的蒸汽数据,而且还可增加气体膨胀装置7的动力产量。
HAT-循环中的燃气透平机组由燃气透平机15、空气压缩机14和安装在同一轴17上的交流发电机16组成。
空气经管线22输送到空气压缩机14,该处装有利用水作为冷却介质的中间和后冷却器,空气在压缩机中分级地压缩。将所述水输送到空气饱和装置18,在此热水以及被燃气透平机废气27加热的热水与装置18内空气饱和器柱中的冷却压缩空气相遇,所述空气从空气压缩机14经管线23输送到装置18。饱和空气32以及经管线31输送到HAT-循环的来自气化车间的中压蒸汽进一步在热回收装置19中加热,然后经管线24连同从气化车间经管线13进入HAT-循环的可燃气体输送到燃烧室21。来自燃烧室21的热废气30驱动膨胀透平机15,然后经管线27输送到热回收装置19。来自气体透平机废气的热量在装置19中传递给饱和空气和热水,饱和空气经管线24输送到燃烧室21,热水经管线26输送到空气饱和器装置18。从热回收装置19排出的冷却废气经管线28和烟囱20排放到大气中。由烟囱20造成的水损失通过经管线29添加到HAT-循环的新水补充。
本发明提出的HAT燃气透平机优选设计成燃烧富燃料(例如天然气)的透平机。现今通用的所有燃气透平机都设计成燃烧富燃料(通常是天然气和馏出物)的形式。当采用上述通用的燃气透平机燃烧贫燃料(例如来自气化车间的饱和气体)时,为了使膨胀透平机的进口温度保持恒定,必须将来自燃气透平机的空气压缩机的空气流量降低。某些燃气透平机的生产厂家可以实现这一目的而不致降低工厂的动力生产效率。本发明的设计原理优选也适用于为HAT-循环而设计的燃气透平机,意图是当燃烧室21经管线13接收贫气,且当饱和空气流量随着经管线31的补充蒸汽流量而增加时,将通过管线22流入空气压缩机的空气流量降低,以保持在气体透平机进口设计温度下管线30中燃烧室出口气体的温度。这种设计原理可使燃气透平机生产厂家只需开发一种适合于在仅以天然气供料的HAT-循环以及在IGHAT应用中有效地运行的新型燃气透平机。
本发明所提出的气化车间和HAT-循环之间的热传导还可以简化IGHAT工厂的设计、施工和操作以及主要技术供应者所作的承诺,因为很容易确定IGHAT中两套主要装置之间的界区。

Claims (5)

1.一种从含碳燃料生产动力的方法,该方法包括用氧或含氧气体部分氧化燃料以产生可燃气流和显热,所述显热或其主要部分与可燃气体一起传递到动力生产装置,所述动力生产装置是湿空气透平机循环。
2.根据权利要求1的方法,其中部分氧化在高于40巴的压力下进行。
3.根据权利要求1的方法,其中部分氧化在高于60巴的压力下进行。
4.根据前述权利要求中任一项的方法,其中利用蒸汽将小部分显热传递到动力生产装置。
5.根据前述权利要求中任一项的方法,其中来自至少一台空气分离装置的压缩机的中间和后冷却器的显热用来在可燃气体输送到动力生产装置之前进一步饱和所述气体。
CN94191201A 1993-02-16 1994-02-16 生产动力的新方法 Expired - Fee Related CN1058551C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE93005007 1993-02-16
SE9300500A SE9300500D0 (sv) 1993-02-16 1993-02-16 New power process
SE9300500-7 1993-02-16

Publications (2)

Publication Number Publication Date
CN1117753A true CN1117753A (zh) 1996-02-28
CN1058551C CN1058551C (zh) 2000-11-15

Family

ID=20388907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94191201A Expired - Fee Related CN1058551C (zh) 1993-02-16 1994-02-16 生产动力的新方法

Country Status (10)

Country Link
US (1) US5349810A (zh)
EP (1) EP0686231B1 (zh)
JP (1) JPH08506873A (zh)
CN (1) CN1058551C (zh)
AU (1) AU682172B2 (zh)
BR (1) BR9406086A (zh)
DE (1) DE69418318D1 (zh)
RU (1) RU2121588C1 (zh)
SE (1) SE9300500D0 (zh)
WO (1) WO1994019591A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406786A (en) * 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
DE19900026B4 (de) * 1999-01-02 2016-01-21 Alstom Technology Ltd. Gasturbine mit Dampfeindüsung
US6526758B2 (en) 2000-05-12 2003-03-04 General Electric Company Method and apparatus for power augmentation for gas turbine power cycles
US7070758B2 (en) 2000-07-05 2006-07-04 Peterson Oren V Process and apparatus for generating hydrogen from oil shale
EP1349903B1 (en) * 2001-01-10 2011-10-05 Shell Internationale Research Maatschappij B.V. Process for the production of thermally converted light products and electricity
US6530224B1 (en) 2001-03-28 2003-03-11 General Electric Company Gas turbine compressor inlet pressurization system and method for power augmentation
US6499303B1 (en) 2001-04-18 2002-12-31 General Electric Company Method and system for gas turbine power augmentation
IL166089A0 (en) 2002-07-20 2006-01-15 Idalex Technologies Inc Evaporative duplex counterheat exchanger
US8631657B2 (en) * 2003-01-22 2014-01-21 Vast Power Portfolio, Llc Thermodynamic cycles with thermal diluent
US7024800B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
US20090151318A1 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regenerating an absorbent solution
EP2253807A1 (en) * 2008-10-29 2010-11-24 Vítkovice Power Engineering a.s. Gas turbine cycle or combined steam-gas cycle for production of power from solid fuels and waste heat
RU2443857C1 (ru) * 2010-08-24 2012-02-27 Открытое Акционерное Общество "Газпром Промгаз" Способ производства водорода при подземной газификации угля

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2503193A1 (de) * 1975-01-27 1976-07-29 Linde Ag Verfahren zur herstellung eines heizgases durch druckvergasung kohlenstoffhaltiger brennstoffe
US4075831A (en) * 1976-10-27 1978-02-28 Texaco Inc. Process for production of purified and humidified fuel gas
US4074981A (en) * 1976-12-10 1978-02-21 Texaco Inc. Partial oxidation process
US4132065A (en) * 1977-03-28 1979-01-02 Texaco Inc. Production of H2 and co-containing gas stream and power
US4121912A (en) * 1977-05-02 1978-10-24 Texaco Inc. Partial oxidation process with production of power
US4150953A (en) * 1978-05-22 1979-04-24 General Electric Company Coal gasification power plant and process
DE2835852C2 (de) * 1978-08-16 1982-11-25 Kraftwerk Union AG, 4330 Mülheim Kombinierte Gas-Dampfkraftanlage mit einer Vergasungseinrichtung für den Brennstoff
US4193259A (en) * 1979-05-24 1980-03-18 Texaco Inc. Process for the generation of power from carbonaceous fuels with minimal atmospheric pollution
FI86435C (fi) * 1983-05-31 1992-08-25 Siemens Ag Medellastkraftverk med en integrerad kolfoergasningsanlaeggning.
US4829763A (en) * 1984-02-01 1989-05-16 Fluor Corporation Process for producing power
ZA85528B (en) * 1984-02-01 1986-12-30 Fluor Corp Process for producing power
GB2196016B (en) * 1986-08-29 1991-05-15 Humphreys & Glasgow Ltd Clean electric power generation process
IE63440B1 (en) * 1989-02-23 1995-04-19 Enserch Int Investment Improvements in operating flexibility in integrated gasification combined cycle power stations

Also Published As

Publication number Publication date
JPH08506873A (ja) 1996-07-23
WO1994019591A1 (en) 1994-09-01
DE69418318D1 (de) 1999-06-10
BR9406086A (pt) 1995-12-12
AU682172B2 (en) 1997-09-25
EP0686231B1 (en) 1999-05-06
CN1058551C (zh) 2000-11-15
US5349810A (en) 1994-09-27
EP0686231A1 (en) 1995-12-13
RU2121588C1 (ru) 1998-11-10
SE9300500D0 (sv) 1993-02-16
AU6119994A (en) 1994-09-14

Similar Documents

Publication Publication Date Title
EP0642611B1 (en) A process for recovering energy from a combustible gas
CN1058551C (zh) 生产动力的新方法
CN1020348C (zh) 结合式气化混合循环的发电方法
US5927063A (en) High efficiency reformed methanol gas turbine power plants
US5535584A (en) Performance enhanced gas turbine powerplants
CN101622425B (zh) 在整体气化联合循环系统中分离氧气的系统和方法
EP1819913B1 (en) Process and installation for producing electric power
US5678408A (en) Performance enhanced gas turbine powerplants
CN1231660C (zh) 利用液化天然气冷分离二氧化碳的燃气轮机发电系统及流程
US20070181854A1 (en) Advanced integration for improved integrated gasification combined cycle efficiency
CN86102936A (zh) 含碳的燃料,特别是煤的气化方法
CN100504053C (zh) 内外燃煤一体化联合循环发电系统及发电方法
CN113882955A (zh) 一种燃气轮机再热联合循环发电系统及其操作方法
CN1518635A (zh) 从产生蒸汽的工艺过程中回收功
CN1239533A (zh) 直接位于燃气轮机上游的合成气膨胀机
US5218815A (en) Method and apparatus for gas turbine operation using solid fuel
CN102161476B (zh) 用于为硫回收单元提供空气流的系统
CN101318620A (zh) 一种分离co2的化工动力多联产能源系统及方法
EP1102926B1 (en) Fuel gas turbo-expander for oxygen blown gasifiers and related method
US8268023B2 (en) Water gas shift reactor system for integrated gasification combined cycle power generation systems
CN216198494U (zh) 一种新型燃气轮机再热联合循环发电装置
WO1993024703A1 (en) A process for recovering energy from a combustible gas
JP3787820B2 (ja) ガス化複合発電設備
Rao et al. Gas turbine based high-efficiency ‘Vision 21’natural gas and coal central plants
CN216044043U (zh) 一种采用燃料电池调制合成气成分的igcc系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee