CN111766552A - 一种磁特性测量系统的阻抗自动匹配装置及匹配方法 - Google Patents

一种磁特性测量系统的阻抗自动匹配装置及匹配方法 Download PDF

Info

Publication number
CN111766552A
CN111766552A CN202010639992.8A CN202010639992A CN111766552A CN 111766552 A CN111766552 A CN 111766552A CN 202010639992 A CN202010639992 A CN 202010639992A CN 111766552 A CN111766552 A CN 111766552A
Authority
CN
China
Prior art keywords
dsp
excitation loop
matching
signal
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010639992.8A
Other languages
English (en)
Other versions
CN111766552B (zh
Inventor
李永建
利雅婷
杨明
陈瑞颖
成昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN202010639992.8A priority Critical patent/CN111766552B/zh
Publication of CN111766552A publication Critical patent/CN111766552A/zh
Application granted granted Critical
Publication of CN111766552B publication Critical patent/CN111766552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/14Measuring or plotting hysteresis curves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/123Measuring loss due to hysteresis

Abstract

本发明公开了一种磁特性测量系统的阻抗自动匹配装置及匹配方法。装置包括一个电流互感器、一个电压互感器、一个第一电压比较器、一个第二电压比较器、一个DSP、若干个MOSFET开关管驱动电路和一个电容箱;所述电容箱包括若干个第一MOSFET开关管、若干个匹配电容、一个中间电容和一个第二MOSFET开关管。本方法在测量过程时,电流互感器与电压互感器实时检测电压电流信号,经过电压比较器得到方波信号输入到DSP中,DSP经过信号计算控制MOSFET开关管驱动电路,进而自动对匹配电容进行控制,实现了实时相位检测、自动阻抗匹配和实时补偿,提高了匹配精度,全程无需人为操作,简化了实验过程和控制策略,提高了实验效率。

Description

一种磁特性测量系统的阻抗自动匹配装置及匹配方法
技术领域
本发明涉及磁特性测量领域,具体是一种磁特性测量系统的阻抗自动匹配装置及匹配方法。
背景技术
对磁性材料的磁滞、损耗等磁特性的准确测量及模拟是优化电磁装置设计的关键。一维以及二维条件下的测量并不能准确描述材料的空间磁特性,故采用三维磁特性测量系统。磁磁特性测量系统包括计算机、功率放大器、水冷电阻、激磁线圈、试验样品、传感线圈和放大电路,实现空间旋转激磁化并得到传感信号。计算机输出激磁信号至功率放大器进行放大,放大后通过激磁线圈对试验样品进行激磁,试验样品外表面的传感线圈检测到传感信号,传感信号经放大电路放大后传输至计算机进行结果计算处理,得到此激励下的磁滞回线、损耗等磁特性数据。由于多绕组的激磁线圈和线路中的感性电阻使得电路呈感性,使激磁困难并且电源效率大大降低。为了更好地采集线圈的电压电流信号,减少电路的无功损耗,需要对线路进行电容补偿。
文献《李永建,杨庆新,安金龙,赵志刚,朱建国.软磁复合材料的三维磁特性检测实验研究[J].电工技术学报,2012,27(09):160-165》中采用的磁测量装置在进行无功补偿时并没有通过精确检测激磁电流与功放电压的相位差来进行补偿,也并未实现在实验过程中的实时补偿,且补偿精度较低。申请号201720388703.5的文献公开了一种适用于三维磁特性测量系统的自动化谐振电容匹配器,其仅通过人为计算容值后利用单片机控制机械开关,并没有进行相位检测自动控制开关开断。
发明内容
针对现有技术的不足,本发明拟解决的技术问题是,提供一种磁特性测量系统的阻抗自动匹配装置及匹配方法。
本发明解决所述装置技术问题的技术方案是,提供一种磁特性测量系统的阻抗自动匹配装置,其特征在于该装置包括一个电流互感器、一个电压互感器、一个第一电压比较器、一个第二电压比较器、一个DSP、若干个MOSFET开关管驱动电路和一个电容箱;所述电容箱包括若干个第一MOSFET开关管、若干个匹配电容、一个中间电容和一个第二MOSFET开关管;
电流互感器接入磁特性测量系统中,采样得到磁特性测量系统的激磁回路中的电流信号;电流互感器的输出端与第二电压比较器连接;电压互感器接入磁特性测量系统中,采样得到激磁回路中的电压信号;电压互感器的输出端与第一电压比较器连接;第一电压比较器和第二电压比较器均与DSP的信号输入端连接;DSP的若干个信号输出端通过各自的MOSFET开关管驱动电路和各自的第一MOSFET开关管分别与匹配电容相连,DSP的另一个信号输出端通过MOSFET开关管驱动电路和第二MOSFET开关管与中间电容相连;中间电容和第二MOSFET开关管串联以及若干个匹配电容与各自的第一MOSFET开关管串联后再相互并联连接电容箱的输入输出端,电容箱的输入输出端接入磁特性测量系统的激励回路中。
本发明解决所述方法技术问题的技术方案是,提供一种磁特性测量系统的阻抗自动匹配方法,其特征在于该方法包括以下步骤:
第一步、磁特性测量开始前,将磁特性测量的测试频率、采样频率和相位设定值
Figure BDA0002571162710000027
输入到DSP中;将所述阻抗自动匹配装置接入磁特性测量系统的激磁回路中;DSP开机上电,与第二MOSFET开关管连接的DSP的信号输出端置1,使中间电容接入激磁回路;
第二步、开始测量,磁特性测量系统输出激磁信号,电流互感器和电压互感器采集到一组功放电压信号和激磁电流信号;该电压电流信号经电流互感器和电压互感器的输出端输入到第一电压比较器和第二电压比较器中,从第一电压比较器和第二电压比较器输出得到一组方波形式的激磁电流信号和功放电压信号,再将该组方波信号分别输入到DSP的信号输入端;此时激磁回路的性质呈感性;
第三步、第一次阻抗匹配;
通过相位差计算法得到一个周期内的功放电压信号和激磁电流信号之间的相位差
Figure BDA0002571162710000028
并判断相位差
Figure BDA0002571162710000029
与相位设定值
Figure BDA00025711627100000210
的大小关系;
若相位差
Figure BDA00025711627100000211
则不需要进行阻抗匹配,此时激磁回路中接入的是中间电容,继续测量过程;
若相位差
Figure BDA00025711627100000212
则根据相位差
Figure BDA00025711627100000213
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr1;由于第一次阻抗匹配时激磁回路呈感性,则此时应接入激磁回路中的电容值Cx1=中间电容的电容值+Cr1;DSP根据Cx1值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制第一MOSFET开关管的开断,进而使相应容值的匹配电容接入激磁回路中,使得接入激磁回路的电容值为Cx1,完成此次阻抗匹配;继续测量过程;
第四步、其他次阻抗匹配;
步骤1、通过相位差计算法得到一个周期内的功放电压信号和激磁电流信号之间的相位差
Figure BDA0002571162710000021
并判断
Figure BDA0002571162710000022
Figure BDA0002571162710000023
的大小关系;
Figure BDA0002571162710000024
则不需要进行阻抗匹配,此时激磁回路中接入的是上一次阻抗匹配后接入激磁回路的电容值Cx’,继续测量过程;
Figure BDA0002571162710000025
则假设此时激磁回路的性质呈感性,根据
Figure BDA0002571162710000026
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr2;则此时应接入激磁回路中的电容值Cx2=上一次阻抗匹配后接入激磁回路的电容值Cx’+Cr2;DSP根据Cx2值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制第一MOSFET开关管的开断,进而使相应容值的匹配电容接入激磁回路中,使得接入激磁回路的电容值为Cx2;
步骤2、通过相位差计算法得到激磁回路接入电容值Cx2后的下一个周期的功放电压信号和激磁电流信号之间的相位差
Figure BDA0002571162710000031
并判断
Figure BDA0002571162710000032
Figure BDA0002571162710000033
的大小关系;
Figure BDA0002571162710000035
则此时激磁回路的性质呈容性,根据
Figure BDA0002571162710000034
计算得到激磁回路中的增减电容值Cr3;则此时应接入激磁回路中的电容值Cx3=Cx2-Cr3;DSP根据Cx3值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制匹配电容的开断,使相应容值的匹配电容接入激磁回路中,使得激磁回路接入的电容值等于Cx3,完成本次阻抗匹配,继续测量过程;
Figure BDA0002571162710000036
则仍假设此时激磁回路的性质呈感性,根据
Figure BDA0002571162710000037
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr3;则此时应接入激磁回路中的电容值Cx4=Cx2+Cr3;DSP根据Cx4值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制第一MOSFET开关管的开断,进而使相应容值的匹配电容接入激磁回路中,使得接入激磁回路的电容值为Cx4;
步骤3、通过相位差计算法得到激磁回路接入电容值Cx4后的下一个周期的功放电压信号和激磁电流信号之间的相位差
Figure BDA0002571162710000038
并判断每个周期的
Figure BDA0002571162710000039
Figure BDA00025711627100000310
的大小关系;
Figure BDA00025711627100000312
则此时激磁回路的性质呈容性,根据
Figure BDA00025711627100000311
计算得到激磁回路中的增减电容值Cr4;则此时应接入激磁回路中的电容值Cx5=Cx4-Cr4;DSP根据Cx5值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制匹配电容的开断,使相应容值的匹配电容接入激磁回路中,使得激磁回路接入的电容值等于Cx5,完成本次阻抗匹配,继续测量过程;
Figure BDA00025711627100000313
则此时激磁回路的性质呈感性,则根据相位差
Figure BDA00025711627100000314
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr4;则此时应接入激磁回路中的电容值Cx6=Cx4+Cr4;DSP根据Cx6值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制第一MOSFET开关管的开断,进而使相应容值的匹配电容接入激磁回路中,使得接入激磁回路的电容值为Cx6,完成此次阻抗匹配,继续测量过程;
第五步、实时监测相位差与
Figure BDA00025711627100000315
之间的大小关系,需要进行阻抗匹配时按照第四步进行匹配,直至整个磁特性测量完成。
与现有技术相比,本发明有益效果在于:
(1)本装置利用DSP延时较小的优点来进行相位实时检测,提高阻抗匹配的准确性,从而在测量过程中使样品易于激磁,提高了电源的工作效率。
(2)在测量过程中,由于磁密上升或其他原因引起激磁电流和功放电压相位差变化时,电流互感器与电压互感器实时检测电压电流信号,经过电压比较器得到方波信号输入到DSP中,DSP经过信号计算控制MOSFET开关管驱动电路,进而自动对接入的匹配电容进行控制,实现了实时相位检测、自动阻抗匹配和实时补偿,提高了匹配精度,全程无需人为操作,简化了实验过程和控制策略,提高了实验效率。
(3)利用DSP的按位识别功能对电容值进行识别,可以精确到0.001μF,且简化了控制策略。
(4)若采用继电器控制电容开断,极易引起过电压,进而引起电弧。不同于传统的继电器等机械开关,本发明采用MOSFET对电容箱进行开关控制,控制相应的匹配电容接入,减少了延迟,同时由于是无触点开关,可以起到消弧作用。
(5)相较于传统的阻抗匹配装置,本装置无需人工计算查表,也无需关闭系统,可以实现磁特性测量系统中完全意义上的自动阻抗匹配。
(6)在电容箱内部增加一个中间电容,由第二MOSFET开关管控制,从而保证测量回路启动。
附图说明
图1为本发明装置在一种磁特性测量系统中的连接示意图;
图2为本发明的整体结构连接示意图;
图3为本发明图2的局部放大图;
图4为本发明的第一MOSFET开关管与匹配电容以及第二MOSFET开关管与中间电容连接示意图;
图5为本发明的电流互感器和电压互感器捕捉到的激磁电流信号和功放电压信号图;
图中:1、电流互感器;2、电压互感器;3、第一电压比较器;4、第二电压比较器;5、DSP;6、MOSFET开关管驱动电路;7、电容箱;701、第一MOSFET开关管;702、匹配电容;703、中间电容;704、第二MOSFET开关管。
具体实施方式
下面给出本发明的具体实施例。具体实施例仅用于进一步详细说明本发明,不限制本申请权利要求的保护范围。
本发明提供了一种磁特性测量系统的阻抗自动匹配装置(简称装置),其特征在于该装置包括一个电流互感器1、一个电压互感器2、一个第一电压比较器3、一个第二电压比较器4、一个DSP5、若干个MOSFET开关管驱动电路6和一个电容箱7;所述电容箱7包括若干个第一MOSFET开关管701、若干个匹配电容702、一个中间电容703和一个第二MOSFET开关管704;
磁特性测量系统的导线穿过电流互感器1的铁心,将电流互感器1接入磁特性测量系统中,电流互感器1采样得到磁特性测量系统的激磁回路中的电流信号;电流互感器1的输出端(排针)与第二电压比较器4的IN2端连接;电压互感器2的两个接线端子并联接入磁特性测量系统中,并联在功率放大器的两端,电压互感器2采样得到激磁回路中的电压信号;电压互感器2的输出端(排针)与第一电压比较器3的IN2端连接;第一电压比较器3的OUT1端和第二电压比较器4的OUT1端均与DSP5的信号输入端连接(本实施例是第一电压比较器3的OUT1端与DSP5的eCAP1端相连,第二电压比较器4的OUT1端与DSP5的eCAP2端相连);DSP5的若干个信号输出端通过各自的MOSFET开关管驱动电路6和各自的第一MOSFET开关管701分别与不同容值的匹配电容702相连,DSP5的另一个信号输出端通过MOSFET开关管驱动电路6和第二MOSFET开关管704与中间电容703相连(本实施例是,DSP5的IO1~IO17口通过各自的MOSFET开关管驱动电路6和各自的第一MOSFET开关管701分别与不同容值的匹配电容702相连,IO18口通过MOSFET开关管驱动电路6和第二MOSFET开关管704与中间电容703相连);第二MOSFET开关管704与中间电容703起到启动作用,由于测量回路中激磁线圈的存在,开始测量时测量回路呈感性,为避免影响后续的检测补偿,中间电容703采用容值尽量小且小于所有匹配电容702的容值;中间电容703和第二MOSFET开关管704串联、匹配电容702与各自的第一MOSFET开关管701串联后再相互并联连接电容箱7的输入输出端,电容箱7的输入输出端接入磁特性测量系统的激励回路中。
匹配电容702的数量与第一MOSFET开关管701的数量匹配;匹配电容702与中间电容703的数量之和等于MOSFET开关管驱动电路6的数量。
所述电流互感器1采用板载精密微型电流互感器,型号为ZMCT103B/C;电压互感器2采用板载精密微型电压互感器,型号为ZMPT101B;DSP5的型号为TMS320F2835。
第一MOSFET开关管701和第二MOSFET开关管704均采用IRF540,为增强型;MOSFET开关管驱动电路6采用TLP250型光耦隔离驱动电路;匹配电容与MOSFET开关管采用多级并联的形式。
本实施例中,DSP5的eCAP1端口为功放电压信号输入;DSP5的eCAP2端口为激磁电流信号输入;DSP5的IO1口的匹配电容702的容值为10μF;IO2口为5μF;IO3口为2μF;IO4口为2μF;IO5口为1μF;IO6口为0.5μF;IO7口为0.2μF;IO8口为0.1μF;IO9口为0.1μF;IO10口为0.03μF;IO11口为0.03μF;IO12口为0.02μF;IO13口为0.01μF;IO14口为0.01μF;IO15口为0.005μF;IO16口为0.002μF;IO17口为0.001μF;中间电容703的容值为0.001μF。所有匹配电容702接入激磁回路中后最高可达21.009μF、精确度达0.001μF,能够应对测量过程中的扰动,完成阻抗匹配。
所述第一电压比较器3和第二电压比较器4的型号为LM360,分别用于电压过零比较和电流过零比较;LM360的IN1引脚接地,V-引脚接直流电压-5V,V+引脚接直流电压+5V,GND端接地,NC和OUT2引脚空置。
本装置应用于一维磁特性测量系统,若需要测量三维磁特性则各个方向均配置本装置。
本发明同时提供了一种磁特性测量系统的阻抗自动匹配方法(简称方法),其特征在于该方法包括以下步骤:
第一步、磁特性测量开始前,将磁特性测量的测试频率、采样频率和相位设定值
Figure BDA0002571162710000065
输入到DSP5中;将所述阻抗自动匹配装置接入磁特性测量系统的激磁回路中;DSP5开机上电,与第二MOSFET开关管704连接的DSP5的信号输出端(即IO18口)置1,使中间电容703接入激磁回路;
所述相位设定值
Figure BDA0002571162710000066
根据测试频率而定;所述采样频率根据测试频率而定,测试频率越高,采样频率可取较高值,测试频率越低,采样频率可取较低值。
所述磁特性测量系统包括计算机、功率放大器、水冷电阻、激磁线圈、电容箱7、试验样品、传感线圈和放大电路;测量回路为磁特性测量系统构成的回路;磁特性测量系统的激磁回路包括功率放大器、水冷电阻、激磁线圈和电容箱7,构成串联回路。磁特性测量过程是:计算机输出激磁信号至功率放大器进行放大,放大后通过激磁线圈对试验样品进行激磁,试验样品外表面的传感线圈检测到传感信号,传感信号经放大电路放大后传输至计算机进行结果计算处理,得到此激励下的磁滞回线、损耗等磁特性数据。
第二步、开始测量,磁特性测量系统输出激磁信号,电流互感器1和电压互感器2采集到一组功放电压信号和激磁电流信号;该电压电流信号经电流互感器1和电压互感器2的输出端输入到第一电压比较器3和第二电压比较器4的IN2端,从第一电压比较器3和第二电压比较器4的OUT1端输出得到一组方波形式的激磁电流信号和功放电压信号(参见图5);由于DSP5的输入信号要求电压值范围为0-3V,故需要采用电压比较器2将测量回路的电压电流信号处理为一组方波信号;由于在进行阻抗匹配前激磁回路的性质呈感性,故功放电压信号超前于激磁电流信号;再将该组方波信号分别输入到DSP5的信号输入端;
第三步、第一次阻抗匹配;
步骤1、通过相位差计算法得到一个周期内的功放电压信号和激磁电流信号之间的相位差
Figure BDA0002571162710000061
并判断相位差
Figure BDA0002571162710000062
与相位设定值
Figure BDA0002571162710000063
的大小关系;
若相位差
Figure BDA0002571162710000064
则不需要进行阻抗匹配,此时激磁回路中接入的是中间电容703,继续测量过程;
若相位差
Figure BDA0002571162710000071
则根据相位差
Figure BDA0002571162710000072
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr1;由于第一次阻抗匹配时激磁回路呈感性,则此时应接入激磁回路中的电容值Cx1=中间电容703的电容值+Cr1;DSP5根据Cx1值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路6接收DSP5的控制信号,从而控制第一MOSFET开关管701的开断,进而使相应容值的匹配电容702接入激磁回路中,使得接入激磁回路的电容值为Cx1,完成此次阻抗匹配;继续测量过程;
所述周期根据磁特性测量的测试频率设定,与磁特性测量的测试频率负相关;
第四步、其他次阻抗匹配;在测量过程中存在扰动,使激磁电流信号相位超前于功放电压信号,此时激磁回路中呈容性,因此完成第一次阻抗匹配后,后续的其他次阻抗匹配需要判断激磁回路的性质;;
步骤1、通过相位差计算法得到一个周期内的功放电压信号和激磁电流信号之间的相位差
Figure BDA0002571162710000073
并判断
Figure BDA0002571162710000074
Figure BDA0002571162710000075
的大小关系;
Figure BDA0002571162710000076
则不需要进行阻抗匹配,此时激磁回路中接入的是上一次阻抗匹配后接入激磁回路的电容值Cx’,继续测量过程;
Figure BDA0002571162710000077
则假设此时激磁回路的性质呈感性,根据
Figure BDA0002571162710000078
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr2;则此时应接入激磁回路中的电容值Cx2=上一次阻抗匹配后接入激磁回路的电容值Cx’+Cr2;DSP5根据Cx2值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路6接收DSP5的控制信号,从而控制第一MOSFET开关管701的开断,进而使相应容值的匹配电容702接入激磁回路中,使得接入激磁回路的电容值为Cx2;
步骤2、通过相位差计算法得到激磁回路接入电容值Cx2后的下一个周期的功放电压信号和激磁电流信号之间的相位差
Figure BDA0002571162710000079
并判断
Figure BDA00025711627100000710
Figure BDA00025711627100000711
的大小关系;
Figure BDA00025711627100000713
则此时激磁回路的性质呈容性,根据
Figure BDA00025711627100000712
计算得到激磁回路中的增减电容值Cr3;则此时应接入激磁回路中的电容值Cx3=Cx2-Cr3;DSP5根据Cx3值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路6接收DSP5的控制信号,从而控制匹配电容702的开断,使相应容值的匹配电容702接入激磁回路中,使得激磁回路接入的电容值等于Cx3,完成本次阻抗匹配,继续测量过程;
Figure BDA00025711627100000714
则仍假设此时激磁回路的性质呈感性,根据
Figure BDA00025711627100000715
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr3;则此时应接入激磁回路中的电容值Cx4=Cx2+Cr3;DSP5根据Cx4值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路6接收DSP5的控制信号,从而控制第一MOSFET开关管701的开断,进而使相应容值的匹配电容702接入激磁回路中,使得接入激磁回路的电容值为Cx4;
步骤3、通过相位差计算法得到激磁回路接入电容值Cx4后的下一个周期的功放电压信号和激磁电流信号之间的相位差
Figure BDA0002571162710000082
并判断每个周期的
Figure BDA0002571162710000083
Figure BDA0002571162710000084
的大小关系
Figure BDA0002571162710000081
则此时激磁回路的性质呈容性,根据
Figure BDA0002571162710000085
计算得到激磁回路中的增减电容值Cr4;则此时应接入激磁回路中的电容值Cx5=Cx4-Cr4;DSP5根据Cx5值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路6接收DSP5的控制信号,从而控制匹配电容702的开断,使相应容值的匹配电容702接入激磁回路中,使得激磁回路接入的电容值等于Cx5,完成本次阻抗匹配,继续测量过程;
Figure BDA0002571162710000086
则此时激磁回路的性质呈感性,则根据相位差
Figure BDA0002571162710000087
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr4;则此时应接入激磁回路中的电容值Cx6=Cx4+Cr4;DSP5根据Cx6值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路6接收DSP5的控制信号,从而控制第一MOSFET开关管701的开断,进而使相应容值的匹配电容702接入激磁回路中,使得接入激磁回路的电容值为Cx6,完成此次阻抗匹配,继续测量过程;
第五步、实时监测相位差与
Figure BDA0002571162710000088
之间的大小关系,需要进行阻抗匹配时按照第四步进行匹配,直至整个磁特性测量完成。
所述相位差计算法是:DSP5采集到一个周期内的功放电压信号上升沿与激磁电流信号上升沿的时间差,再根据时间差计算得到本周期的功放电压信号和激磁电流信号之间的相位差。
所述相位差计算法具体是:当激磁回路的性质呈感性时,DSP5采集到一个周期内的功放电压信号上升沿时,与第一电压比较器3连接的DSP5的信号输入端(即eCAP1端)置1,计时器模块开始计时,直到采集到同一周期内的激磁电流信号上升沿时,与第二电压比较器4连接的DSP5的信号输入端(即eCAP2端)置1,计时器模块计时停止,得到时间差;再根据时间差计算得到功放电压信号和激磁电流信号之间的相位差。当激磁回路的性质呈容性时,DSP5采集到一个周期内的激磁电流信号上升沿时,与第二电压比较器4连接的DSP5的信号输入端(即eCAP2端)置1,计时器模块开始计时,直到采集到同一周期内的功放电压信号上升沿时,与第一电压比较器3连接的DSP5的信号输入端(即eCAP1端)置1,计时器模块计时停止,得到时间差;再根据时间差计算得到功放电压信号和激磁电流信号之间的相位差。
DSP控制自身的信号输出端置1或置0的方法可采用按位识别法或其他现有方法;所述按位识别法的步骤如下:
(1)判断Cxn十位上的数值:判断Cxn与10μF和20μF的大小关系;若大于20μF,则十位上为2;若小于20μF且大于10μF,则十位上为1;若小于10μF,则十位上为0;
Cxn为阻抗匹配过程中计算得到的应接入激磁回路的电容值,n=1~6;
(2)判断Cxn个位上的数值C0:若Cxn的十位上为2,则令Cxn减去20μF,并将结果存储至Cs,将Cs取整得到C0;若Cxn的十位上为1,则令Cxn减去10μF,并将结果存储至Cs,将Cs取整得到C0;若Cxn的十位为0,则直接将结果存储至Cs,将Cs取整得到C0;
(3)判断Cxn十分位上的数值C1:令步骤2)的Cs减去C0得到其小数位,并重新存储至Cs;先判断Cs与0.1μF和1μF的大小关系;若Cs大于0.1μF且小于1μF,则令Cs乘10并取整,得到C1;若Cs小于0.1μF,则C1为0;
(4)判断Cxn百分位上的数值C2:令步骤3)的Cs减去0.1C1,并将结果重新储存至Cs;先判断Cs与0.01μF和0.1μF的大小关系;若Cs大于0.01μF且小于0.1μF,则令Cs乘100并取整,得到C2;若Cs小于0.01μF,则C2为0;
(5)判断Cxn千分位上的数值C3:令步骤4)的Cs减去0.01C1,并将结果重新储存至Cs;先判断Cs与0.001μF和0.01μF的大小关系;若Cs大于0.001μF且小于0.01μF,则令Cs乘1000并取整,得到C3;若Cs小于0.001μF,则C3为0。
例如Cxn=17.553μF。先判断其与10μF和20μF的大小关系,则先检测其是否大于10μF,是否大于20μF,从而确定其范围在10μF~20μF,即十位上为1;由于十位上为1,则令Cxn减去10μF,并将结果存储至Cs,此时Cs为7.553μF,将Cs取整得到Cxn的个位C0为7;令Cs=7.553μF减去C0得到其小数位,并重新存储至Cs,此时Cs为0.553μF;先判断其小数位与0.1μF和1μF的大小关系,则确定其范围在0.1μF~1μF之间;令Cs=0.553μF乘10并取整得到Cxn十分位C1为5;令Cs=0.553μF减去0.1C1,并将结果重新储存至Cs,此时Cs为0.053μF,令Cs乘100并取整得到Cxn百分位上为C2,从而得到其百分位为5μF;再令上述计算完成后的Cs减去0.01C1,并将结果重新储存至Cs,此时Cs为0.003μF,令Cs乘1000并取整得到Cxn千分位上为C2,从而得其千分位为3μF。
本发明未述及之处适用于现有技术。

Claims (10)

1.一种磁特性测量系统的阻抗自动匹配装置,其特征在于该装置包括一个电流互感器、一个电压互感器、一个第一电压比较器、一个第二电压比较器、一个DSP、若干个MOSFET开关管驱动电路和一个电容箱;所述电容箱包括若干个第一MOSFET开关管、若干个匹配电容、一个中间电容和一个第二MOSFET开关管;
电流互感器接入磁特性测量系统中,采样得到磁特性测量系统的激磁回路中的电流信号;电流互感器的输出端与第二电压比较器连接;电压互感器接入磁特性测量系统中,采样得到激磁回路中的电压信号;电压互感器的输出端与第一电压比较器连接;第一电压比较器和第二电压比较器均与DSP的信号输入端连接;DSP的若干个信号输出端通过各自的MOSFET开关管驱动电路和各自的第一MOSFET开关管分别与匹配电容相连,DSP的另一个信号输出端通过MOSFET开关管驱动电路和第二MOSFET开关管与中间电容相连;中间电容和第二MOSFET开关管串联以及若干个匹配电容与各自的第一MOSFET开关管串联后再相互并联连接电容箱的输入输出端,电容箱的输入输出端接入磁特性测量系统的激励回路中。
2.根据权利要求1所述的磁特性测量系统的阻抗自动匹配装置,其特征在于磁特性测量系统的导线穿过电流互感器的铁心。
3.根据权利要求1所述的磁特性测量系统的阻抗自动匹配装置,其特征在于电压互感器的两个接线端子并联接入磁特性测量系统中,并联在功率放大器的两端。
4.根据权利要求1所述的磁特性测量系统的阻抗自动匹配装置,其特征在于第二MOSFET开关管与中间电容起到启动作用,中间电容的容值小于所有匹配电容的容值。
5.根据权利要求1所述的磁特性测量系统的阻抗自动匹配装置,其特征在于匹配电容的数量与第一MOSFET开关管的数量匹配;匹配电容与中间电容的数量之和等于MOSFET开关管驱动电路的数量。
6.根据权利要求1所述的磁特性测量系统的阻抗自动匹配装置,其特征在于第一电压比较器和第二电压比较器的型号为LM360;LM360的IN1引脚接地,V-引脚接直流电压-5V,V+引脚接直流电压+5V,GND端接地,NC和OUT2引脚空置;电流互感器的输出端与第二电压比较器的IN2端连接;电压互感器的输出端与第一电压比较器的IN2端连接;第一电压比较器的OUT1端和第二电压比较器的OUT1端均与DSP的信号输入端连接。
7.一种磁特性测量系统的阻抗自动匹配方法,其特征在于该方法包括以下步骤:
第一步、磁特性测量开始前,将磁特性测量的测试频率、采样频率和相位设定值
Figure FDA0002571162700000011
输入到DSP中;将权利要求1-6所述阻抗自动匹配装置接入磁特性测量系统的激磁回路中;DSP开机上电,与第二MOSFET开关管连接的DSP的信号输出端置1,使中间电容接入激磁回路;
第二步、开始测量,磁特性测量系统输出激磁信号,电流互感器和电压互感器采集到一组功放电压信号和激磁电流信号;该电压电流信号经电流互感器和电压互感器的输出端输入到第一电压比较器和第二电压比较器中,从第一电压比较器和第二电压比较器输出得到一组方波形式的激磁电流信号和功放电压信号,再将该组方波信号分别输入到DSP的信号输入端;此时激磁回路的性质呈感性;
第三步、第一次阻抗匹配;
通过相位差计算法得到一个周期内的功放电压信号和激磁电流信号之间的相位差
Figure FDA0002571162700000022
并判断相位差
Figure FDA0002571162700000021
与相位设定值
Figure FDA0002571162700000023
的大小关系;
若相位差
Figure FDA0002571162700000024
则不需要进行阻抗匹配,此时激磁回路中接入的是中间电容,继续测量过程;
若相位差
Figure FDA0002571162700000025
则根据相位差
Figure FDA0002571162700000026
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr1;由于第一次阻抗匹配时激磁回路呈感性,则此时应接入激磁回路中的电容值Cx1=中间电容的电容值+Cr1;DSP根据Cx1值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制第一MOSFET开关管的开断,进而使相应容值的匹配电容接入激磁回路中,使得接入激磁回路的电容值为Cx1,完成此次阻抗匹配;继续测量过程;
第四步、其他次阻抗匹配;
步骤1、通过相位差计算法得到一个周期内的功放电压信号和激磁电流信号之间的相位差
Figure FDA0002571162700000029
并判断
Figure FDA0002571162700000028
Figure FDA0002571162700000027
的大小关系;
Figure FDA00025711627000000210
则不需要进行阻抗匹配,此时激磁回路中接入的是上一次阻抗匹配后接入激磁回路的电容值Cx’,继续测量过程;
Figure FDA00025711627000000211
则假设此时激磁回路的性质呈感性,根据
Figure FDA00025711627000000212
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr2;则此时应接入激磁回路中的电容值Cx2=上一次阻抗匹配后接入激磁回路的电容值Cx’+Cr2;DSP根据Cx2值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制第一MOSFET开关管的开断,进而使相应容值的匹配电容接入激磁回路中,使得接入激磁回路的电容值为Cx2;
步骤2、通过相位差计算法得到激磁回路接入电容值Cx2后的下一个周期的功放电压信号和激磁电流信号之间的相位差
Figure FDA00025711627000000213
并判断
Figure FDA00025711627000000214
Figure FDA00025711627000000215
的大小关系;
Figure FDA00025711627000000217
则此时激磁回路的性质呈容性,根据
Figure FDA00025711627000000216
计算得到激磁回路中的增减电容值Cr3;则此时应接入激磁回路中的电容值Cx3=Cx2-Cr3;DSP根据Cx3值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制匹配电容的开断,使相应容值的匹配电容接入激磁回路中,使得激磁回路接入的电容值等于Cx3,完成本次阻抗匹配,继续测量过程;
Figure FDA0002571162700000031
则仍假设此时激磁回路的性质呈感性,根据
Figure FDA0002571162700000032
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr3;则此时应接入激磁回路中的电容值Cx4=Cx2+Cr3;DSP根据Cx4值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制第一MOSFET开关管的开断,进而使相应容值的匹配电容接入激磁回路中,使得接入激磁回路的电容值为Cx4;
步骤3、通过相位差计算法得到激磁回路接入电容值Cx4后的下一个周期的功放电压信号和激磁电流信号之间的相位差
Figure FDA0002571162700000035
并判断每个周期的
Figure FDA0002571162700000033
Figure FDA0002571162700000034
的大小关系;
Figure FDA0002571162700000036
则此时激磁回路的性质呈容性,根据
Figure FDA0002571162700000037
计算得到激磁回路中的增减电容值Cr4;则此时应接入激磁回路中的电容值Cx5=Cx4-Cr4;DSP根据Cx5值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制匹配电容的开断,使相应容值的匹配电容接入激磁回路中,使得激磁回路接入的电容值等于Cx5,完成本次阻抗匹配,继续测量过程;
Figure FDA0002571162700000038
则此时激磁回路的性质呈感性,则根据相位差
Figure FDA0002571162700000039
计算得到激磁回路中的电感值,再通过电感值计算得到增减电容值Cr4;则此时应接入激磁回路中的电容值Cx6=Cx4+Cr4;DSP根据Cx6值来控制自身的信号输出端置1或置0,MOSFET开关管驱动电路接收DSP的控制信号,从而控制第一MOSFET开关管的开断,进而使相应容值的匹配电容接入激磁回路中,使得接入激磁回路的电容值为Cx6,完成此次阻抗匹配,继续测量过程;
第五步、实时监测相位差与
Figure FDA00025711627000000310
之间的大小关系,需要进行阻抗匹配时按照第四步进行匹配,直至整个磁特性测量完成。
8.根据权利要求7所述的磁特性测量系统的阻抗自动匹配方法,其特征在于所述相位差计算法是:DSP采集到一个周期内的功放电压信号上升沿与激磁电流信号上升沿的时间差,再根据时间差计算得到本周期的功放电压信号和激磁电流信号之间的相位差。
9.根据权利要求7或8所述的磁特性测量系统的阻抗自动匹配方法,其特征在于所述相位差计算法具体是:
当激磁回路的性质呈感性时,DSP采集到一个周期内的功放电压信号上升沿时,与第一电压比较器连接的DSP的信号输入端置1,计时器模块开始计时,直到采集到同一周期内的激磁电流信号上升沿时,与第二电压比较器连接的DSP的信号输入端置1,计时器模块计时停止,得到时间差;再根据时间差计算得到功放电压信号和激磁电流信号之间的相位差;
当激磁回路的性质呈容性时,DSP采集到一个周期内的激磁电流信号上升沿时,与第二电压比较器连接的DSP的信号输入端置1,计时器模块开始计时,直到采集到同一周期内的功放电压信号上升沿时,与第一电压比较器连接的DSP的信号输入端置1,计时器模块计时停止,得到时间差;再根据时间差计算得到功放电压信号和激磁电流信号之间的相位差。
10.根据权利要求7所述的磁特性测量系统的阻抗自动匹配方法,其特征在于DSP控制自身的信号输出端置1或置0的方法采用按位识别法;所述按位识别法的步骤如下:
(1)判断Cxn十位上的数值:判断Cxn与10μF和20μF的大小关系;若大于20μF,则十位上为2;若小于20μF且大于10μF,则十位上为1;若小于10μF,则十位上为0;
Cxn为阻抗匹配过程中计算得到的应接入激磁回路的电容值,n=1~6;
(2)判断Cxn个位上的数值C0:若Cxn的十位上为2,则令Cxn减去20μF,并将结果存储至Cs,将Cs取整得到C0;若Cxn的十位上为1,则令Cxn减去10μF,并将结果存储至Cs,将Cs取整得到C0;若Cxn的十位为0,则直接将结果存储至Cs,将Cs取整得到C0;
(3)判断Cxn十分位上的数值C1:令步骤2)的Cs减去C0得到其小数位,并重新存储至Cs;先判断Cs与0.1μF和1μF的大小关系;若Cs大于0.1μF且小于1μF,则令Cs乘10并取整,得到C1;若Cs小于0.1μF,则C1为0;
(4)判断Cxn百分位上的数值C2:令步骤3)的Cs减去0.1C1,并将结果重新储存至Cs;先判断Cs与0.01μF和0.1μF的大小关系;若Cs大于0.01μF且小于0.1μF,则令Cs乘100并取整,得到C2;若Cs小于0.01μF,则C2为0;
(5)判断Cxn千分位上的数值C3:令步骤4)的Cs减去0.01C1,并将结果重新储存至Cs;先判断Cs与0.001μF和0.01μF的大小关系;若Cs大于0.001μF且小于0.01μF,则令Cs乘1000并取整,得到C3;若Cs小于0.001μF,则C3为0。
CN202010639992.8A 2020-07-06 2020-07-06 一种磁特性测量系统的阻抗自动匹配装置及匹配方法 Active CN111766552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010639992.8A CN111766552B (zh) 2020-07-06 2020-07-06 一种磁特性测量系统的阻抗自动匹配装置及匹配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010639992.8A CN111766552B (zh) 2020-07-06 2020-07-06 一种磁特性测量系统的阻抗自动匹配装置及匹配方法

Publications (2)

Publication Number Publication Date
CN111766552A true CN111766552A (zh) 2020-10-13
CN111766552B CN111766552B (zh) 2022-12-27

Family

ID=72723846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010639992.8A Active CN111766552B (zh) 2020-07-06 2020-07-06 一种磁特性测量系统的阻抗自动匹配装置及匹配方法

Country Status (1)

Country Link
CN (1) CN111766552B (zh)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613815A (en) * 1983-04-27 1986-09-23 Pall Corporation Electromagnetic detector for metallic materials having an improved phase detection circuit
CN1115384A (zh) * 1995-06-02 1996-01-24 冶金工业部钢铁研究总院 微机控制软磁材料测量方法和装置
CN202995016U (zh) * 2013-01-06 2013-06-12 河北工业大学 磁滞回线自动检测装置
CN203688788U (zh) * 2013-12-20 2014-07-02 河北工业大学 基于铁磁材料基本磁化曲线的自动测量装置
US20150002146A1 (en) * 2013-06-28 2015-01-01 Infineon Technologies Ag System and Method for a Transformer and a Phase-Shift Network
CN104834345A (zh) * 2015-04-13 2015-08-12 西北工业大学 水下磁谐振式无线电能传输最大功率追踪方法
EP3010148A1 (en) * 2014-10-16 2016-04-20 Nxp B.V. Automatic impedance adjustment
CN106841736A (zh) * 2017-04-13 2017-06-13 河北工业大学 适用于三维磁特性测量系统的自动化谐振电容匹配器
CN106992765A (zh) * 2017-04-18 2017-07-28 河北工业大学 谐波电流激励下降低感性电路阻抗值的方法
CN206440970U (zh) * 2016-06-06 2017-08-25 清华大学深圳研究生院 可自适应匹配负载的高压脉冲电源
CN207743705U (zh) * 2018-01-12 2018-08-17 浙江图维科技股份有限公司 一种基于电流互感器的自动匹配谐振取电直流源
CN108768183A (zh) * 2018-05-16 2018-11-06 中国计量大学 基于谐振频率跟踪的宽频带感应加热电源
CN108802638A (zh) * 2017-04-26 2018-11-13 河北工业大学 一种考虑应力下的纳米晶高频磁特性检测装置及测量方法
CN108872653A (zh) * 2018-08-10 2018-11-23 国网吉林省电力有限公司电力科学研究院 干式空心并联电抗器组保护取样电路及其应用和保护方法
CN109425840A (zh) * 2017-08-30 2019-03-05 河北工业大学 一种纳米晶旋转磁特性测试系统及测量方法
CN110571815A (zh) * 2019-07-31 2019-12-13 全球能源互联网研究院有限公司 一种基于阻容器件的可控卸荷模块,电路及控制方法
CN110646673A (zh) * 2019-09-30 2020-01-03 河北工业大学 一种磁致伸缩换能器自动阻抗匹配器
CN111103446A (zh) * 2020-01-10 2020-05-05 合肥工业大学 一种基于专家系统的高压放电回路阻抗自匹配方法及装置
CN111142054A (zh) * 2020-01-03 2020-05-12 河北工业大学 一种适用于电工材料应力加载下的三维磁特性测量装置

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613815A (en) * 1983-04-27 1986-09-23 Pall Corporation Electromagnetic detector for metallic materials having an improved phase detection circuit
CN1115384A (zh) * 1995-06-02 1996-01-24 冶金工业部钢铁研究总院 微机控制软磁材料测量方法和装置
CN202995016U (zh) * 2013-01-06 2013-06-12 河北工业大学 磁滞回线自动检测装置
US20150002146A1 (en) * 2013-06-28 2015-01-01 Infineon Technologies Ag System and Method for a Transformer and a Phase-Shift Network
CN203688788U (zh) * 2013-12-20 2014-07-02 河北工业大学 基于铁磁材料基本磁化曲线的自动测量装置
EP3010148A1 (en) * 2014-10-16 2016-04-20 Nxp B.V. Automatic impedance adjustment
CN104834345A (zh) * 2015-04-13 2015-08-12 西北工业大学 水下磁谐振式无线电能传输最大功率追踪方法
CN206440970U (zh) * 2016-06-06 2017-08-25 清华大学深圳研究生院 可自适应匹配负载的高压脉冲电源
CN106841736A (zh) * 2017-04-13 2017-06-13 河北工业大学 适用于三维磁特性测量系统的自动化谐振电容匹配器
CN106992765A (zh) * 2017-04-18 2017-07-28 河北工业大学 谐波电流激励下降低感性电路阻抗值的方法
CN108802638A (zh) * 2017-04-26 2018-11-13 河北工业大学 一种考虑应力下的纳米晶高频磁特性检测装置及测量方法
CN109425840A (zh) * 2017-08-30 2019-03-05 河北工业大学 一种纳米晶旋转磁特性测试系统及测量方法
CN207743705U (zh) * 2018-01-12 2018-08-17 浙江图维科技股份有限公司 一种基于电流互感器的自动匹配谐振取电直流源
CN108768183A (zh) * 2018-05-16 2018-11-06 中国计量大学 基于谐振频率跟踪的宽频带感应加热电源
CN108872653A (zh) * 2018-08-10 2018-11-23 国网吉林省电力有限公司电力科学研究院 干式空心并联电抗器组保护取样电路及其应用和保护方法
CN110571815A (zh) * 2019-07-31 2019-12-13 全球能源互联网研究院有限公司 一种基于阻容器件的可控卸荷模块,电路及控制方法
CN110646673A (zh) * 2019-09-30 2020-01-03 河北工业大学 一种磁致伸缩换能器自动阻抗匹配器
CN111142054A (zh) * 2020-01-03 2020-05-12 河北工业大学 一种适用于电工材料应力加载下的三维磁特性测量装置
CN111103446A (zh) * 2020-01-10 2020-05-05 合肥工业大学 一种基于专家系统的高压放电回路阻抗自匹配方法及装置

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
HE SUN,XINRAN YU,YONGJIAN LI: "Research of Harmonic Effects on Core Loss in Soft Magnetic Composite Materials Based on Three-Dimensional Magnetic Test System", 《INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS》 *
MING YANG , YONGJIAN LI: "Magnetic Properties Measurement and Analysis of High Frequency Core Materials Considering Temperature Effect", 《 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY》 *
MING-ZHU XIE , LI-FENG WANG: "An Impedance Matching Method for LC Passive Wireless Sensors", 《SENSORS JOURNAL》 *
XIAOJUN ZHAO,XIAONA LIU,HAISEN ZHAO: "Two-Dimensional Vector Hysteresis Modeling for Soft Magnetic Composite Materials Considering Anisotropic Property", 《INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING》 *
凌跃胜, 赵争菡, 李奇男, 李永建: "高频变压器动态电容的数值计算", 《华北电力大学学报》 *
叶建盈,陈为,黄晓生: "磁元件绕组损耗的直接测量法", 《中国电机工程学报》 *
李昂轩,李永建,张长庚,王利祥,陈瑞颖: "一种考虑应力下的新型高频二维磁特性测试仪的设计与优化", 《仪表技术与传感器》 *
檀杰,张晓明,陈雷: "基于AMR传感器SET/RESET功能的磁场精确测量技术", 《中国测试》 *
王利祥,李永建,张长庚,耿鑫: "高频旋转磁特性传感器设计及其应用方法", 《仪表技术与传感器》 *
窦润田,李永建,张献,杨明,陈瑞颖: "受工艺孔影响的变压器铁心损耗计算与分析", 《电工技术学报》 *
翁玲,曹晓宁,徐行,梁淑智,黄文美,孙英,王博文: "带磁芯励磁线圈的阻抗匹配", 《传感技术学报》 *
蔡燕,赵鹏程,姜文涛: "基于LabVIEW的开关磁阻电机特性测量系统", 《仪表技术与传感器》 *
谭宁,钱政: "巨磁电阻传感器综合特性测试装置的研制", 《电测与仪表》 *

Also Published As

Publication number Publication date
CN111766552B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
CN108684210B (zh) 电力变换装置以及非接触供电系统
CN107490737B (zh) 一种无线充电系统负载和互感估计方法
CN109283399B (zh) 一种高频磁元件绕组损耗的测量方法
TW201522991A (zh) 繞線測試裝置
CN111562306A (zh) 一种磁致伸缩导波检测系统
CN111766552B (zh) 一种磁特性测量系统的阻抗自动匹配装置及匹配方法
CN113419169A (zh) 一种高压电机定子绝缘检测系统及其方法
CN211122663U (zh) 一种无损检测传感器用磁化元件及传感器
CN104345349A (zh) 一种引信探测器及其探测方法
CN103941065B (zh) 减小电压互感器和感应分压器初级绕组残余阻抗影响的方法
CN113014088B (zh) 一种宽负载范围的全固态射频电源
CN105807247A (zh) 用于三相三元件组合互感器检测的辅助接线装置及方法
CN102594108A (zh) 用于取样功率转换器的变压器的反射电压的电路及其方法
CN115629110A (zh) 一种单端信号激励下的电感电容双端无损检测装置
CN113155954B (zh) 一种用于导体结构缺陷检测的脉冲涡流检测系统及方法
CN112886850B (zh) 一种换能器驱动系统及方法
CN115319634A (zh) 一种涡流终点检测装置及方法
CN104111027B (zh) 基于李萨如图分析法的变压器工频信号传感器系统
CN113470924A (zh) 一种在同一线圈上实现对工件感应加热与直流消磁的设备
CN111239525A (zh) 一种基于变压器的测试装置及测试方法
CN111487448B (zh) 一种利用交流信号测试lcr的电路模块及测试方法
CN111580035A (zh) 一种电压互感器磁饱和的统计识别方法
CN113543009B (zh) 一种电磁拾音器的质检装置
CN214585660U (zh) 一种小电感层间电压检测电路
CN204389590U (zh) 一种用于检测变压器绕组短路阻抗的相位自动切换装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant